from collections import OrderedDict import math from typing import Callable, List, Optional, Sequence, Tuple, Union import torch from torch import nn from torch.nn import functional as F from einops import pack, repeat from .flex_attn import Flex_Attention class LayerNormFp32(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back).""" def forward(self, x: torch.Tensor): orig_type = x.dtype x = F.layer_norm(x.to(torch.float32), self.normalized_shape, self.weight, self.bias, self.eps) return x.to(orig_type) class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm (with cast back to input dtype).""" def forward(self, x: torch.Tensor): orig_type = x.dtype x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) return x.to(orig_type) class QuickGELU(nn.Module): # NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x) class LayerScale(nn.Module): def __init__(self, dim, init_values=1e-5, inplace=False): super().__init__() self.inplace = inplace self.gamma = nn.Parameter(init_values * torch.ones(dim)) def forward(self, x): return x.mul_(self.gamma) if self.inplace else x * self.gamma class PatchDropout(nn.Module): """ https://arxiv.org/abs/2212.00794 """ def __init__(self, prob, exclude_first_token=True): super().__init__() assert 0 <= prob < 1. self.prob = prob self.exclude_first_token = exclude_first_token # exclude CLS token def forward(self, x): if not self.training or self.prob == 0.: return x if self.exclude_first_token: cls_tokens, x = x[:, :1], x[:, 1:] else: cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1]) batch = x.size()[0] num_tokens = x.size()[1] batch_indices = torch.arange(batch) batch_indices = batch_indices[..., None] keep_prob = 1 - self.prob num_patches_keep = max(1, int(num_tokens * keep_prob)) rand = torch.randn(batch, num_tokens) patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices x = x[batch_indices, patch_indices_keep] if self.exclude_first_token: x = torch.cat((cls_tokens, x), dim=1) return x class Attention(nn.Module): def __init__( self, dim: int, num_heads: int = 8, qkv_bias: bool = True, scaled_cosine: bool = True, scale_heads: bool = False, logit_scale_max: float = math.log(1. / 0.01), batch_first: bool = True, attn_drop: float = 0., proj_drop: float = 0. ): super().__init__() self.scaled_cosine = scaled_cosine self.scale_heads = scale_heads assert dim % num_heads == 0, 'dim should be divisible by num_heads' self.num_heads = num_heads self.head_dim = dim // num_heads self.scale = self.head_dim ** -0.5 self.logit_scale_max = logit_scale_max self.batch_first = batch_first self.use_fsdpa = hasattr(nn.functional, 'scaled_dot_product_attention') # keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale) if qkv_bias: self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3)) else: self.in_proj_bias = None if self.scaled_cosine: self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1)))) else: self.logit_scale = None self.attn_drop = nn.Dropout(attn_drop) if self.scale_heads: self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1))) else: self.head_scale = None self.out_proj = nn.Linear(dim, dim) self.out_drop = nn.Dropout(proj_drop) def forward(self, x, coords, attn_mask: Optional[torch.Tensor] = None): if self.batch_first: x = x.transpose(0, 1) L, N, C = x.shape q, k, v = F.linear(x, self.in_proj_weight, self.in_proj_bias).chunk(3, dim=-1) q = q.reshape(L, N * self.num_heads, -1).transpose(0, 1) k = k.reshape(L, N * self.num_heads, -1).transpose(0, 1) v = v.reshape(L, N * self.num_heads, -1).transpose(0, 1) if attn_mask is not None and attn_mask.dtype == torch.bool: new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype) new_attn_mask.masked_fill_(attn_mask, float("-inf")) attn_mask = new_attn_mask # if self.logit_scale is not None: attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2)) logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp() attn = attn.view(N, self.num_heads, L, L) * logit_scale if attn_mask is not None: attn = attn + attn_mask[:, None, None, :] attn = attn.view(-1, L, L) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = torch.bmm(attn, v) if self.head_scale is not None: x = x.view(N, self.num_heads, L, C) * self.head_scale x = x.view(-1, L, C) x = x.transpose(0, 1).reshape(L, N, C) if self.batch_first: x = x.transpose(0, 1) x = self.out_proj(x) x = self.out_drop(x) return x class AttentionalPooler(nn.Module): def __init__( self, d_model: int, context_dim: int, n_head: int = 8, n_queries: int = 256, norm_layer: Callable = LayerNorm, ): super().__init__() self.query = nn.Parameter(torch.randn(n_queries, d_model)) self.attn = nn.MultiheadAttention(d_model, n_head, kdim=context_dim, vdim=context_dim, batch_first=True) self.ln_q = norm_layer(d_model) self.ln_k = norm_layer(context_dim) def forward(self, x: torch.Tensor): N = x.shape[0] x = self.ln_k(x) q = self.ln_q(self.query) out = self.attn(q.unsqueeze(0).expand(N, -1, -1), x, x, need_weights=False)[0] return out class ResidualAttentionBlock(nn.Module): def __init__( self, d_model: int, n_head: int, mlp_ratio: float = 4.0, ls_init_value: float = None, act_layer: Callable = nn.GELU, norm_layer: Callable = LayerNorm, is_cross_attention: bool = False, batch_first: bool = True, use_flex:bool = False, dropout:float = 0.2, use_rel_bias:bool = True, ): super().__init__() self.ln_1 = norm_layer(d_model) if use_flex: print("Flex_Attention!") self.attn = Flex_Attention(dim = d_model, num_heads=n_head, proj_drop=dropout, use_rel_bias=use_rel_bias) else: self.attn = Attention(dim = d_model, num_heads=n_head, batch_first=batch_first, proj_drop=dropout, attn_drop=dropout) self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() if is_cross_attention: self.ln_1_kv = norm_layer(d_model) self.ln_2 = norm_layer(d_model) mlp_width = int(d_model * mlp_ratio) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, mlp_width)), ("gelu", act_layer()), ("c_proj", nn.Linear(mlp_width, d_model)) ])) self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() def attention( self, q_x: torch.Tensor, k_x: Optional[torch.Tensor] = None, v_x: Optional[torch.Tensor] = None, coords = None, attn_mask: Optional[torch.Tensor] = None, key_padding_mask=None, ): k_x = k_x if k_x is not None else q_x v_x = v_x if v_x is not None else q_x attn_mask = attn_mask.to(q_x.dtype) if attn_mask is not None else None return self.attn( q_x, coords=coords, attn_mask=key_padding_mask ) def forward( self, q_x: torch.Tensor, k_x: Optional[torch.Tensor] = None, v_x: Optional[torch.Tensor] = None, coords = None, attn_mask: Optional[torch.Tensor] = None, key_padding_mask = None, ): k_x = self.ln_1_kv(k_x) if hasattr(self, "ln_1_kv") and k_x is not None else None v_x = self.ln_1_kv(v_x) if hasattr(self, "ln_1_kv") and v_x is not None else None x = q_x + self.ls_1(self.attention(q_x=self.ln_1(q_x), k_x=k_x, v_x=v_x, coords=coords, attn_mask=attn_mask, key_padding_mask=key_padding_mask)) x = x + self.ls_2(self.mlp(self.ln_2(x))) return x def _expand_token(token, batch_size: int): return token.view(1, 1, -1).expand(batch_size, -1, -1) class Transformer(nn.Module): def __init__( self, width: int, layers: int, heads: int, mlp_ratio: float = 4.0, ls_init_value: float = None, act_layer: Callable = nn.GELU, norm_layer: Callable = LayerNorm, batch_first: bool = True, use_flex: bool = False, dropout: float = False, use_rel_bias: bool = True, ): super().__init__() self.width = width self.layers = layers self.batch_first = batch_first self.grad_checkpointing = False self.resblocks = nn.ModuleList([ ResidualAttentionBlock( width, heads, mlp_ratio, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer, batch_first=batch_first, use_flex=use_flex, dropout=dropout, use_rel_bias=use_rel_bias ) for _ in range(layers) ]) def get_cast_dtype(self) -> torch.dtype: if hasattr(self.resblocks[0].mlp.c_fc, 'int8_original_dtype'): return self.resblocks[0].mlp.c_fc.int8_original_dtype return self.resblocks[0].mlp.c_fc.weight.dtype def forward(self, x: torch.Tensor, coords = None, attn_mask: Optional[torch.Tensor] = None, key_padding_mask=None): if not self.batch_first: x = x.transpose(0, 1).contiguous() # NLD -> LND for r in self.resblocks: x = r(x, attn_mask=attn_mask, key_padding_mask=key_padding_mask, coords=coords) if not self.batch_first: x = x.transpose(0, 1).contiguous() # LND -> NLD return x class VisionTransformer(nn.Module): def __init__( self, width: int, layers: int, heads: int, mlp_ratio: float, ls_init_value: float = None, output_dim: int = 512, patch_dropout: float = 0., no_ln_pre: bool = False, pool_type: str = 'tok', final_ln_after_pool: bool = False, act_layer: Callable = nn.GELU, norm_layer: Callable = LayerNorm, output_tokens: bool = False, img_embed: bool = False, use_flex:bool = False, dropout:float = 0.1, num_registers: int = 0, use_rel_bias: bool = True, ): super().__init__() assert pool_type in ('tok', 'avg', 'none') self.output_tokens = output_tokens self.final_ln_after_pool = final_ln_after_pool # currently ignored w/ attn pool enabled self.output_dim = output_dim self.img_embed = img_embed self.num_registers = num_registers self.positional_embedding = None self.pre_linear = nn.Linear(768, width) if num_registers>0: self.register_token = nn.Parameter(torch.empty(num_registers, width)) nn.init.normal_(self.register_token, std=0.02) self.positional_embedding = None self.positional_embedding = None # setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity() self.ln_pre = nn.Identity() if no_ln_pre else norm_layer(width) self.transformer = Transformer( width, layers, heads, mlp_ratio, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer, use_flex=use_flex, dropout=dropout, use_rel_bias=use_rel_bias, ) pool_dim = width self.pool_type = pool_type self.ln_post = norm_layer(pool_dim) def _global_pool(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: if self.pool_type == 'avg': pooled, tokens = x[:, 1:].mean(dim=1), x[:, 1:] elif self.pool_type == 'tok': pooled, tokens = x[:, 0], x[:, 1:] else: pooled = tokens = x return pooled, tokens def forward(self, x: torch.Tensor, coords=None, mask=None, key_padding_mask=None): x = self.pre_linear(x) if self.num_registers > 0: r = repeat(self.register_token, 'n d -> b n d', b=x.size(0)) x, ps = pack([x, r], 'b * d') x = self.patch_dropout(x) x = self.ln_pre(x) x = self.transformer(x, coords, mask, key_padding_mask=key_padding_mask) if self.final_ln_after_pool: pooled, tokens = self._global_pool(x) pooled = self.ln_post(pooled) else: x = self.ln_post(x) pooled, tokens = self._global_pool(x) return pooled