File size: 7,346 Bytes
38f7d61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import argparse
import math
import os

import torch
import torch.distributed as dist
from torch import optim
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader
from tqdm import tqdm

from model.dataset import XrdDataset
from model.CPICANN import CPICANN
from model.focal_loss import FocalLoss
from util.logger import Logger


def get_acc(cls, label):
    cls_acc = sum(cls.argmax(1) == label.int()) / cls.shape[0]
    return cls_acc


def run_one_epoch(model, dataloader, criterion, optimizer, epoch, mode):
    if mode == 'Train':
        model.train()
        criterion.train()
        desc = 'Training... '
    else:
        model.eval()
        criterion.eval()
        desc = 'Evaluating... '

    epoch_loss, cls_acc = 0, 0
    if args.progress_bar:
        pbar = tqdm(total=len(dataloader.dataset), desc=desc, unit='data')
    iters = len(dataloader)
    for i, batch in enumerate(dataloader):
        data = batch[0].to(device)
        label_cls = batch[1].to(device)

        if mode == 'Train':
            adjust_learning_rate_withWarmup(optimizer, epoch + i / iters, args)

            logits = model(data)
            loss = criterion(logits, label_cls.long())

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        else:
            with torch.no_grad():
                logits = model(data)
                loss = criterion(logits, label_cls.long())

        epoch_loss += loss.item()
        if args.progress_bar:
            pbar.update(len(data))
            pbar.set_postfix(**{'loss': loss.item()})

        _cls_acc = get_acc(logits, label_cls)
        cls_acc += _cls_acc.item()

    return epoch_loss / iters, cls_acc * 100 / iters


def print_log(epoch, loss_train, loss_val, acc_train, acc_val, lr):
    log.printlog('---------------- Epoch {} ----------------'.format(epoch))

    log.printlog('loss_train : {}'.format(round(loss_train, 4)))
    log.printlog('loss_val   : {}'.format(round(loss_val, 4)))

    log.printlog('acc_train  : {}%'.format(round(acc_train, 4)))
    log.printlog('acc_val    : {}%'.format(round(acc_val, 4)))

    log.train_writer.add_scalar('loss', loss_train, epoch)
    log.val_writer.add_scalar('loss', loss_val, epoch)

    log.train_writer.add_scalar('acc', acc_train, epoch)
    log.val_writer.add_scalar('acc', acc_val, epoch)

    log.train_writer.add_scalar('lr', lr, epoch)


def save_checkpoint(state, is_best, filepath, filename):
    if (state['epoch']) % 10 == 0 or state['epoch'] == 1:
        os.makedirs(filepath, exist_ok=True)
        torch.save(state, filepath + filename)
        log.printlog('checkpoint saved!')
        if is_best:
            torch.save(state, '{}/model_best.pth'.format(filepath))
            log.printlog('best model saved!')


def adjust_learning_rate_withWarmup(optimizer, epoch, args):
    """Decays the learning rate with half-cycle cosine after warmup"""
    if epoch < args.warmup_epochs:
        lr = args.lr * epoch / args.warmup_epochs
    else:
        lr = args.lr * 0.5 * (1. + math.cos(math.pi * (epoch - args.warmup_epochs) / (args.epochs - args.warmup_epochs)))
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr
    return lr


def main():
    print('>>>>  Running on {}  <<<<'.format(device))

    model = CPICANN(embed_dim=128, num_classes=args.num_classes)
    model.to(device)
    if rank == 0:
        log.printlog(model)

    trainset = XrdDataset(args.data_dir_train, args.anno_train)
    valset = XrdDataset(args.data_dir_val, args.anno_val)

    if distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(trainset, shuffle=True)
        val_sampler = torch.utils.data.distributed.DistributedSampler(valset, shuffle=True)

        train_loader = DataLoader(trainset, batch_size=128, num_workers=16, pin_memory=True, drop_last=True, sampler=train_sampler)
        val_loader = DataLoader(valset, batch_size=128, num_workers=16, pin_memory=True, drop_last=True, sampler=val_sampler)

        model = DDP(model, device_ids=[device], output_device=local_rank, find_unused_parameters=False)
    else:
        train_loader = DataLoader(trainset, batch_size=128, num_workers=16, pin_memory=True, shuffle=True)
        val_loader = DataLoader(valset, batch_size=128, num_workers=16, pin_memory=True, shuffle=True)

    criterion = FocalLoss(class_num=args.num_classes, device=device)

    optimizer = optim.AdamW(model.parameters(), args.lr, weight_decay=1e-4)
    start_epoch = 0

    for epoch in range(start_epoch + 1, args.epochs + 1):
        if distributed:
            train_sampler.set_epoch(epoch)
            val_sampler.set_epoch(epoch)

        loss_train, acc_train = run_one_epoch(model, train_loader, criterion, optimizer, epoch, mode='Train')

        loss_val, acc_val = run_one_epoch(model, val_loader, criterion, optimizer, epoch, mode='Eval')

        if rank == 0:
            print_log(epoch,  loss_train, loss_val, acc_train, acc_val, optimizer.param_groups[0]['lr'])
            save_checkpoint({'epoch': epoch,
                             'model': model.module.state_dict() if distributed else model.state_dict(),
                             'optimizer': optimizer}, is_best=False,
                            filepath='{}/checkpoints/'.format(log.get_path()),
                            filename='checkpoint_{:04d}.pth'.format(epoch))


if __name__ == '__main__':
    if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
        rank = int(os.environ["RANK"])
        local_rank = int(os.environ["LOCAL_RANK"])
        torch.cuda.set_device(rank % torch.cuda.device_count())
        dist.init_process_group(backend="nccl")
        device = torch.device("cuda", local_rank)
        print(f"[init] == local rank: {local_rank}, global rank: {rank} ==")
        distributed = True
    else:
        rank = 0
        device = 'cuda:0'
        distributed = False

    parser = argparse.ArgumentParser()
    parser.add_argument("--progress_bar", type=bool, default=True)

    parser.add_argument('--epochs', default=200, type=int, metavar='N',
                        help='number of total epochs to run')
    parser.add_argument('--warmup-epochs', default=20, type=int, metavar='N',
                        help='number of warmup epochs')
    parser.add_argument('--lr', '--learning-rate', default=8e-5, type=float,
                        metavar='LR', help='initial (base) learning rate', dest='lr')

    parser.add_argument('--data_dir_train', default='data/train/', type=str)
    parser.add_argument('--data_dir_val', default='data/val/', type=str)
    parser.add_argument('--anno_train', default='annotation/anno_train.csv', type=str,
                        help='path to annotation file for training data')
    parser.add_argument('--anno_val', default='annotation/anno_val.csv', type=str,
                        help='path to annotation file for validation data')
    parser.add_argument('--num_classes', default=23073, type=int, metavar='N')

    args = parser.parse_args()

    if rank == 0:
        log = Logger(val=True)

    main()
    print('THE END')