|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
|
import math |
|
|
import warnings |
|
|
from typing import List, Optional, Tuple, Union |
|
|
|
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
from torch import nn |
|
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
|
|
from transformers.activations import ACT2FN |
|
|
from transformers.cache_utils import Cache, DynamicCache |
|
|
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask |
|
|
from transformers.modeling_outputs import ( |
|
|
BaseModelOutputWithPast, |
|
|
CausalLMOutputWithPast, |
|
|
SequenceClassifierOutputWithPast, |
|
|
TokenClassifierOutput, |
|
|
) |
|
|
from transformers import AutoModel |
|
|
from transformers.modeling_utils import PreTrainedModel |
|
|
from transformers.utils import ( |
|
|
add_code_sample_docstrings, |
|
|
add_start_docstrings, |
|
|
add_start_docstrings_to_model_forward, |
|
|
is_flash_attn_greater_or_equal_2_10, |
|
|
logging, |
|
|
replace_return_docstrings, |
|
|
) |
|
|
from .configuration_chexbones import ChexBonesConfig, CheXagentVisionConfig |
|
|
|
|
|
from transformers.modeling_outputs import ( |
|
|
BaseModelOutput, |
|
|
|
|
|
BaseModelOutputWithPooling |
|
|
) |
|
|
|
|
|
try: |
|
|
from flash_attn import flash_attn_func, flash_attn_varlen_func |
|
|
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input |
|
|
|
|
|
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) |
|
|
except ImportError: |
|
|
pass |
|
|
|
|
|
import torch |
|
|
from torch import nn |
|
|
from transformers import PretrainedConfig |
|
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
_CONFIG_FOR_DOC = "ChexBonesConfig" |
|
|
|
|
|
|
|
|
MAX_INPUT_ID = int(1e9) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class CheXagentVisionEmbeddings(nn.Module): |
|
|
def __init__(self, config: CheXagentVisionConfig): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.embed_dim = config.hidden_size |
|
|
self.image_size = config.image_size |
|
|
self.patch_size = config.patch_size |
|
|
|
|
|
self.class_embedding = nn.Parameter(torch.randn(1, 1, self.embed_dim)) |
|
|
|
|
|
self.patch_embedding = nn.Conv2d( |
|
|
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size |
|
|
) |
|
|
|
|
|
self.num_patches = (self.image_size // self.patch_size) ** 2 |
|
|
self.num_positions = self.num_patches + 1 |
|
|
|
|
|
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim)) |
|
|
|
|
|
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: |
|
|
batch_size = pixel_values.shape[0] |
|
|
target_dtype = self.patch_embedding.weight.dtype |
|
|
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) |
|
|
patch_embeds = patch_embeds.flatten(2).transpose(1, 2) |
|
|
|
|
|
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype) |
|
|
embeddings = torch.cat([class_embeds, patch_embeds], dim=1) |
|
|
embeddings = embeddings + self.position_embedding[:, : embeddings.size(1), :].to(target_dtype) |
|
|
return embeddings |
|
|
|
|
|
|
|
|
class CheXagentAttention(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.embed_dim = config.hidden_size |
|
|
self.num_heads = config.num_attention_heads |
|
|
self.head_dim = self.embed_dim // self.num_heads |
|
|
if self.head_dim * self.num_heads != self.embed_dim: |
|
|
raise ValueError( |
|
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" |
|
|
f" {self.num_heads})." |
|
|
) |
|
|
self.scale = self.head_dim ** -0.5 |
|
|
self.dropout = nn.Dropout(config.attention_dropout) |
|
|
|
|
|
|
|
|
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=False) |
|
|
|
|
|
if config.qkv_bias: |
|
|
q_bias = nn.Parameter(torch.zeros(self.embed_dim)) |
|
|
v_bias = nn.Parameter(torch.zeros(self.embed_dim)) |
|
|
else: |
|
|
q_bias = None |
|
|
v_bias = None |
|
|
|
|
|
if q_bias is not None: |
|
|
qkv_bias = torch.cat((q_bias, torch.zeros_like(v_bias, requires_grad=False), v_bias)) |
|
|
self.qkv.bias = nn.Parameter(qkv_bias) |
|
|
|
|
|
self.projection = nn.Linear(self.embed_dim, self.embed_dim) |
|
|
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
head_mask: Optional[torch.Tensor] = None, |
|
|
output_attentions: Optional[bool] = False, |
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
bsz, tgt_len, embed_dim = hidden_states.size() |
|
|
|
|
|
mixed_qkv = self.qkv(hidden_states) |
|
|
|
|
|
mixed_qkv = mixed_qkv.reshape(bsz, tgt_len, 3, self.num_heads, embed_dim // self.num_heads).permute( |
|
|
2, 0, 3, 1, 4 |
|
|
) |
|
|
query_states, key_states, value_states = mixed_qkv[0], mixed_qkv[1], mixed_qkv[2] |
|
|
|
|
|
|
|
|
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) |
|
|
|
|
|
attention_scores = attention_scores * self.scale |
|
|
|
|
|
|
|
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1) |
|
|
|
|
|
|
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
|
|
|
|
|
if head_mask is not None: |
|
|
attention_probs = attention_probs * head_mask |
|
|
|
|
|
context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3) |
|
|
|
|
|
new_context_layer_shape = context_layer.size()[:-2] + (self.embed_dim,) |
|
|
context_layer = context_layer.reshape(new_context_layer_shape) |
|
|
|
|
|
output = self.projection(context_layer) |
|
|
|
|
|
outputs = (output, attention_probs) if output_attentions else (output, None) |
|
|
|
|
|
return outputs |
|
|
|
|
|
|
|
|
class CheXagentMLP(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.activation_fn = ACT2FN[config.hidden_act] |
|
|
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) |
|
|
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) |
|
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
hidden_states = self.fc1(hidden_states) |
|
|
hidden_states = self.activation_fn(hidden_states) |
|
|
hidden_states = self.fc2(hidden_states) |
|
|
return hidden_states |
|
|
|
|
|
|
|
|
class CheXagentEncoderLayer(nn.Module): |
|
|
def __init__(self, config: CheXagentVisionConfig): |
|
|
super().__init__() |
|
|
self.embed_dim = config.hidden_size |
|
|
self.self_attn = CheXagentAttention(config) |
|
|
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) |
|
|
self.mlp = CheXagentMLP(config) |
|
|
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: torch.Tensor, |
|
|
output_attentions: Optional[bool] = False, |
|
|
) -> Tuple[torch.FloatTensor]: |
|
|
residual = hidden_states |
|
|
hidden_states = self.layer_norm1(hidden_states) |
|
|
hidden_states, attn_weights = self.self_attn( |
|
|
hidden_states=hidden_states, |
|
|
head_mask=attention_mask, |
|
|
output_attentions=output_attentions, |
|
|
) |
|
|
hidden_states = hidden_states + residual |
|
|
residual = hidden_states |
|
|
hidden_states = self.layer_norm2(hidden_states) |
|
|
hidden_states = self.mlp(hidden_states) |
|
|
|
|
|
hidden_states = hidden_states + residual |
|
|
|
|
|
outputs = (hidden_states,) |
|
|
|
|
|
if output_attentions: |
|
|
outputs += (attn_weights,) |
|
|
|
|
|
return outputs |
|
|
|
|
|
|
|
|
class CheXagentPreTrainedModel(PreTrainedModel): |
|
|
config_class = CheXagentVisionConfig |
|
|
base_model_prefix = "chexagent" |
|
|
supports_gradient_checkpointing = True |
|
|
_no_split_modules = [ |
|
|
"CheXagentQFormerEmbeddings", |
|
|
"CheXagentAttention", |
|
|
"CheXagentQFormerMultiHeadAttention", |
|
|
"CheXagentQFormerSelfOutput", |
|
|
] |
|
|
_keep_in_fp32_modules = [] |
|
|
|
|
|
def _init_weights(self, module): |
|
|
"""Initialize the weights""" |
|
|
factor = self.config.initializer_range |
|
|
if isinstance(module, nn.Conv2d) or isinstance(module, nn.Embedding) or isinstance(module, nn.Linear): |
|
|
module.weight.data.normal_(mean=0.0, std=factor) |
|
|
if hasattr(module, "bias") and module.bias is not None: |
|
|
module.bias.data.zero_() |
|
|
|
|
|
if isinstance(module, CheXagentVisionEmbeddings): |
|
|
if hasattr(self.config, "vision_config"): |
|
|
factor = self.config.vision_config.initializer_range |
|
|
nn.init.trunc_normal_(module.position_embedding, mean=0.0, std=factor) |
|
|
nn.init.trunc_normal_(module.class_embedding, mean=0.0, std=factor) |
|
|
|
|
|
elif isinstance(module, nn.LayerNorm): |
|
|
module.bias.data.zero_() |
|
|
module.weight.data.fill_(1.0) |
|
|
elif isinstance(module, nn.Linear) and module.bias is not None: |
|
|
module.bias.data.zero_() |
|
|
|
|
|
|
|
|
class CheXagentEncoder(nn.Module): |
|
|
def __init__(self, config: CheXagentVisionConfig): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.layers = nn.ModuleList([CheXagentEncoderLayer(config) for _ in range(config.num_hidden_layers)]) |
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
inputs_embeds, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
) -> Union[Tuple, BaseModelOutput]: |
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
output_hidden_states = ( |
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
) |
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
encoder_states = () if output_hidden_states else None |
|
|
all_attentions = () if output_attentions else None |
|
|
hidden_states = inputs_embeds |
|
|
for idx, encoder_layer in enumerate(self.layers): |
|
|
if output_hidden_states: |
|
|
encoder_states = encoder_states + (hidden_states,) |
|
|
if self.gradient_checkpointing and self.training: |
|
|
layer_outputs = self._gradient_checkpointing_func( |
|
|
encoder_layer.__call__, |
|
|
hidden_states, |
|
|
attention_mask, |
|
|
output_attentions, |
|
|
) |
|
|
else: |
|
|
layer_outputs = encoder_layer(hidden_states, attention_mask, output_attentions=output_attentions, ) |
|
|
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
|
|
if output_attentions: |
|
|
all_attentions = all_attentions + (layer_outputs[1],) |
|
|
|
|
|
if output_hidden_states: |
|
|
encoder_states = encoder_states + (hidden_states,) |
|
|
|
|
|
if not return_dict: |
|
|
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) |
|
|
return BaseModelOutput( |
|
|
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions |
|
|
) |
|
|
|
|
|
|
|
|
class CheXagentVisionModel(CheXagentPreTrainedModel): |
|
|
main_input_name = "pixel_values" |
|
|
config_class = CheXagentVisionConfig |
|
|
|
|
|
def __init__(self, config: CheXagentVisionConfig): |
|
|
super().__init__(config) |
|
|
self.config = config |
|
|
embed_dim = config.hidden_size |
|
|
|
|
|
self.embeddings = CheXagentVisionEmbeddings(config) |
|
|
self.encoder = CheXagentEncoder(config) |
|
|
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
) -> Union[Tuple, BaseModelOutputWithPooling]: |
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
output_hidden_states = ( |
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
) |
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if pixel_values is None: |
|
|
raise ValueError("You have to specify pixel_values") |
|
|
hidden_states = self.embeddings(pixel_values) |
|
|
|
|
|
encoder_outputs = self.encoder( |
|
|
inputs_embeds=hidden_states, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
return_dict=return_dict, |
|
|
) |
|
|
|
|
|
last_hidden_state = encoder_outputs[0] |
|
|
last_hidden_state = self.post_layernorm(last_hidden_state) |
|
|
|
|
|
pooled_output = last_hidden_state[:, 0, :] |
|
|
pooled_output = self.post_layernorm(pooled_output) |
|
|
|
|
|
if not return_dict: |
|
|
return (last_hidden_state, pooled_output) + encoder_outputs[1:] |
|
|
|
|
|
return BaseModelOutputWithPooling( |
|
|
last_hidden_state=last_hidden_state, |
|
|
pooler_output=pooled_output, |
|
|
hidden_states=encoder_outputs.hidden_states, |
|
|
attentions=encoder_outputs.attentions, |
|
|
) |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.embeddings |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Phi3ImageEmbedding(nn.Module): |
|
|
"""Phi3 Image embedding.""" |
|
|
|
|
|
def __init__(self, config: PretrainedConfig, wte=None, **kwargs) -> None: |
|
|
super().__init__() |
|
|
|
|
|
|
|
|
hidden_size = config.n_embd if hasattr(config, 'n_embd') else config.hidden_size |
|
|
if hasattr(config, 'embd_pdrop') or hasattr(config, 'embed_pdrop'): |
|
|
embd_drop = config.embd_pdrop if hasattr(config, 'embd_pdrop') else config.embed_pdrop |
|
|
self.drop = nn.Dropout(embd_drop) |
|
|
else: |
|
|
self.drop = None |
|
|
|
|
|
self.wte = wte |
|
|
|
|
|
if isinstance(config.img_processor, dict) and config.img_processor.get('model_type', None) == 'chexagent_vision_model': |
|
|
assert 'image_dim_out' in config.img_processor, 'image_dim_out must be provided for CLIPVisionModel' |
|
|
|
|
|
|
|
|
self.img_processor = CheXagentVisionModel(config=CheXagentVisionConfig(**config.img_processor)) |
|
|
image_dim_out = self.img_processor.config.hidden_size |
|
|
else: |
|
|
raise NotImplementedError(f'img_processor = {config.img_processor}, not implemented') |
|
|
|
|
|
if isinstance(config.img_processor, dict): |
|
|
self.layer_idx = config.img_processor.get('layer_idx', -2) |
|
|
self.type_feature = config.img_processor.get('type_feature', 'patch') |
|
|
else: |
|
|
self.layer_idx = -2 |
|
|
self.type_feature = 'patch' |
|
|
|
|
|
self.image_dim_out = image_dim_out |
|
|
self.img_sizes = None |
|
|
|
|
|
projection_cls = kwargs.get('projection_cls', 'linear') |
|
|
if projection_cls == 'linear': |
|
|
self.img_projection = nn.Linear(image_dim_out, hidden_size) |
|
|
elif projection_cls == 'mlp': |
|
|
dim_projection = hidden_size |
|
|
depth = 2 |
|
|
scale = 1 |
|
|
activation = nn.GELU() |
|
|
layers = [nn.Linear(image_dim_out, dim_projection)] |
|
|
for _ in range(1, depth): |
|
|
layers.extend([activation, |
|
|
nn.Linear(int(dim_projection*scale), dim_projection)]) |
|
|
self.img_projection = nn.Sequential(*layers) |
|
|
else: |
|
|
raise NotImplementedError(f'projection_cls = {projection_cls}, not implemented') |
|
|
|
|
|
self.vocab_size = config.vocab_size |
|
|
self.img_features = None |
|
|
|
|
|
|
|
|
def set_img_features(self, img_features: torch.FloatTensor) -> None: |
|
|
self.img_features = img_features |
|
|
|
|
|
def set_img_sizes(self, img_sizes: torch.LongTensor) -> None: |
|
|
self.img_sizes = img_sizes |
|
|
|
|
|
def get_img_features(self, img_embeds: torch.FloatTensor) -> torch.FloatTensor: |
|
|
LAYER_IDX = self.layer_idx |
|
|
TYPE_FEATURE = self.type_feature |
|
|
|
|
|
img_processor_output = self.img_processor(img_embeds, output_hidden_states=True) |
|
|
img_feature = img_processor_output.hidden_states[LAYER_IDX] |
|
|
|
|
|
if TYPE_FEATURE == "patch": |
|
|
patch_feature = img_feature[:, 1:] |
|
|
return patch_feature |
|
|
|
|
|
raise NotImplementedError |
|
|
|
|
|
def forward( |
|
|
self, input_ids: torch.LongTensor, pixel_values: torch.FloatTensor, image_sizes=None |
|
|
) -> torch.FloatTensor: |
|
|
input_shape = input_ids.size() |
|
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
|
|
|
|
|
|
|
positions = torch.nonzero((input_ids < 0) & (input_ids > -MAX_INPUT_ID), as_tuple=True) |
|
|
has_image = len(positions[0].tolist()) > 0 |
|
|
input_ids = input_ids.clamp_min(0).clamp_max(self.vocab_size).detach() |
|
|
hidden_states = self.wte(input_ids) |
|
|
|
|
|
if has_image: |
|
|
num_images, num_crops, c, h, w = pixel_values.shape |
|
|
assert c == 3 |
|
|
img_features = self.get_img_features(pixel_values.flatten(0, 1)) |
|
|
image_features_proj = self.hd_feature_transform(img_features, image_sizes) |
|
|
hidden_states = hidden_states.index_put( |
|
|
positions, image_features_proj, accumulate=False |
|
|
) |
|
|
|
|
|
if self.drop is not None: |
|
|
hidden_states = self.drop(hidden_states) |
|
|
|
|
|
return hidden_states |
|
|
|
|
|
def hd_feature_transform(self, image_features, image_sizes): |
|
|
""" |
|
|
Remake |
|
|
""" |
|
|
if isinstance(self.img_projection, nn.Sequential): |
|
|
target_device = self.img_projection[0].bias.device |
|
|
target_dtype = self.img_projection[0].bias.dtype |
|
|
else: |
|
|
target_device = self.img_projection.bias.device |
|
|
target_dtype = self.img_projection.bias.dtype |
|
|
|
|
|
|
|
|
|
|
|
image_features_proj = self.img_projection( |
|
|
image_features.flatten(0,1).to(target_device).to(target_dtype) |
|
|
) |
|
|
|
|
|
return image_features_proj |
|
|
|
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
|
|
|
class Phi3RMSNorm(nn.Module): |
|
|
def __init__(self, hidden_size, eps=1e-6): |
|
|
""" |
|
|
Phi3RMSNorm is equivalent to T5LayerNorm |
|
|
""" |
|
|
super().__init__() |
|
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
|
self.variance_epsilon = eps |
|
|
|
|
|
def forward(self, hidden_states): |
|
|
input_dtype = hidden_states.dtype |
|
|
hidden_states = hidden_states.to(torch.float32) |
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
|
|
|
|
|
|
def _get_unpad_data(attention_mask): |
|
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) |
|
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() |
|
|
max_seqlen_in_batch = seqlens_in_batch.max().item() |
|
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) |
|
|
return ( |
|
|
indices, |
|
|
cu_seqlens, |
|
|
max_seqlen_in_batch, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
class Phi3RotaryEmbedding(nn.Module): |
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): |
|
|
super().__init__() |
|
|
|
|
|
self.dim = dim |
|
|
self.max_position_embeddings = max_position_embeddings |
|
|
self.base = base |
|
|
self.register_buffer("inv_freq", None, persistent=False) |
|
|
|
|
|
@torch.no_grad() |
|
|
def forward(self, x, position_ids, seq_len=None): |
|
|
|
|
|
if self.inv_freq is None: |
|
|
self.inv_freq = 1.0 / ( |
|
|
self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim) |
|
|
) |
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) |
|
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
|
|
|
|
|
device_type = x.device.type |
|
|
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" |
|
|
with torch.autocast(device_type=device_type, enabled=False): |
|
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
cos = emb.cos() |
|
|
sin = emb.sin() |
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
|
|
|
class Phi3SuScaledRotaryEmbedding(Phi3RotaryEmbedding): |
|
|
def __init__(self, dim, config, device=None): |
|
|
super().__init__(dim, config.max_position_embeddings, config.rope_theta, device) |
|
|
|
|
|
self.short_factor = config.rope_scaling["short_factor"] |
|
|
self.long_factor = config.rope_scaling["long_factor"] |
|
|
self.original_max_position_embeddings = config.original_max_position_embeddings |
|
|
|
|
|
@torch.no_grad() |
|
|
def forward(self, x, position_ids, seq_len=None): |
|
|
seq_len = seq_len or torch.max(position_ids) + 1 |
|
|
if seq_len > self.original_max_position_embeddings: |
|
|
ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device) |
|
|
else: |
|
|
ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device) |
|
|
|
|
|
inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim |
|
|
self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape) |
|
|
|
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) |
|
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
|
|
|
|
|
|
|
|
device_type = x.device.type |
|
|
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" |
|
|
with torch.autocast(device_type=device_type, enabled=False): |
|
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
|
|
|
scale = self.max_position_embeddings / self.original_max_position_embeddings |
|
|
if scale <= 1.0: |
|
|
scaling_factor = 1.0 |
|
|
else: |
|
|
scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings)) |
|
|
|
|
|
cos = emb.cos() * scaling_factor |
|
|
sin = emb.sin() * scaling_factor |
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
|
|
|
class Phi3YarnScaledRotaryEmbedding(Phi3RotaryEmbedding): |
|
|
def __init__(self, dim, config, device=None): |
|
|
super().__init__(dim, config.max_position_embeddings, config.rope_theta, device) |
|
|
|
|
|
self.short_factor = config.rope_scaling["short_factor"] |
|
|
self.long_factor = config.rope_scaling["long_factor"] |
|
|
self.original_max_position_embeddings = config.original_max_position_embeddings |
|
|
|
|
|
@torch.no_grad() |
|
|
def forward(self, x, position_ids, seq_len=None): |
|
|
seq_len = torch.max(position_ids) + 1 |
|
|
if seq_len > self.original_max_position_embeddings: |
|
|
ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device) |
|
|
else: |
|
|
ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device) |
|
|
|
|
|
inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim |
|
|
self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape) |
|
|
|
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) |
|
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
|
|
|
|
|
|
|
|
device_type = x.device.type |
|
|
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" |
|
|
with torch.autocast(device_type=device_type, enabled=False): |
|
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
|
|
|
scale = self.max_position_embeddings / self.original_max_position_embeddings |
|
|
if scale <= 1.0: |
|
|
scaling_factor = 1.0 |
|
|
else: |
|
|
scaling_factor = 0.1 * math.log(scale) + 1.0 |
|
|
|
|
|
cos = emb.cos() * scaling_factor |
|
|
sin = emb.sin() * scaling_factor |
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
|
|
|
|
|
|
def rotate_half(x): |
|
|
"""Rotates half the hidden dims of the input.""" |
|
|
x1 = x[..., : x.shape[-1] // 2] |
|
|
x2 = x[..., x.shape[-1] // 2 :] |
|
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
|
|
Args: |
|
|
q (`torch.Tensor`): The query tensor. |
|
|
k (`torch.Tensor`): The key tensor. |
|
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
|
position_ids (`torch.Tensor`, *optional*): |
|
|
Deprecated and unused. |
|
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
|
Returns: |
|
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
|
""" |
|
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
|
return q_embed, k_embed |
|
|
|
|
|
|
|
|
class Phi3MLP(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
|
|
|
self.config = config |
|
|
self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False) |
|
|
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) |
|
|
|
|
|
self.activation_fn = ACT2FN[config.hidden_act] |
|
|
|
|
|
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: |
|
|
up_states = self.gate_up_proj(hidden_states) |
|
|
|
|
|
gate, up_states = up_states.chunk(2, dim=-1) |
|
|
up_states = up_states * self.activation_fn(gate) |
|
|
|
|
|
return self.down_proj(up_states) |
|
|
|
|
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
|
""" |
|
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
|
""" |
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
|
if n_rep == 1: |
|
|
return hidden_states |
|
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
|
|
|
class Phi3Attention(nn.Module): |
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
|
|
def __init__(self, config: ChexBonesConfig, layer_idx: Optional[int] = None): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.layer_idx = layer_idx |
|
|
if layer_idx is None: |
|
|
logger.warning_once( |
|
|
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " |
|
|
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " |
|
|
"when creating this class." |
|
|
) |
|
|
|
|
|
self.attention_dropout = config.attention_dropout |
|
|
self.hidden_size = config.hidden_size |
|
|
self.num_heads = config.num_attention_heads |
|
|
self.head_dim = self.hidden_size // self.num_heads |
|
|
self.num_key_value_heads = config.num_key_value_heads |
|
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
|
self.max_position_embeddings = config.max_position_embeddings |
|
|
self.original_max_position_embeddings = config.original_max_position_embeddings |
|
|
self.rope_theta = config.rope_theta |
|
|
self.rope_scaling = config.rope_scaling |
|
|
self.is_causal = True |
|
|
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
|
raise ValueError( |
|
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
|
f" and `num_heads`: {self.num_heads})." |
|
|
) |
|
|
|
|
|
op_size = self.num_heads * self.head_dim + 2 * (self.num_key_value_heads * self.head_dim) |
|
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) |
|
|
self.qkv_proj = nn.Linear(self.hidden_size, op_size, bias=False) |
|
|
self._init_rope() |
|
|
|
|
|
def _init_rope(self): |
|
|
if self.rope_scaling is None: |
|
|
self.rotary_emb = Phi3RotaryEmbedding( |
|
|
self.head_dim, |
|
|
max_position_embeddings=self.max_position_embeddings, |
|
|
base=self.rope_theta, |
|
|
) |
|
|
else: |
|
|
scaling_type = self.config.rope_scaling["type"] |
|
|
if scaling_type == "su": |
|
|
self.rotary_emb = Phi3SuScaledRotaryEmbedding(self.head_dim, self.config) |
|
|
elif scaling_type == "yarn": |
|
|
self.rotary_emb = Phi3YarnScaledRotaryEmbedding(self.head_dim, self.config) |
|
|
else: |
|
|
raise ValueError(f"Unknown RoPE scaling type {scaling_type}") |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[Cache] = None, |
|
|
output_attentions: bool = False, |
|
|
use_cache: bool = False, |
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
logger.warning_once("You are not running the flash-attention implementation, expect numerical differences.") |
|
|
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
|
|
qkv = self.qkv_proj(hidden_states) |
|
|
query_pos = self.num_heads * self.head_dim |
|
|
query_states = qkv[..., :query_pos] |
|
|
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim] |
|
|
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :] |
|
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
kv_seq_len = key_states.shape[-2] |
|
|
if past_key_value is not None: |
|
|
if self.layer_idx is None: |
|
|
raise ValueError( |
|
|
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " |
|
|
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " |
|
|
"with a layer index." |
|
|
) |
|
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
|
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len) |
|
|
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
|
|
if past_key_value is not None: |
|
|
cache_kwargs = {"sin": sin, "cos": cos} |
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
|
|
|
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): |
|
|
raise ValueError( |
|
|
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" |
|
|
f" {attn_weights.size()}" |
|
|
) |
|
|
|
|
|
if attention_mask is not None: |
|
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
|
raise ValueError( |
|
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
|
) |
|
|
attn_weights = attn_weights + attention_mask |
|
|
|
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype) |
|
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) |
|
|
|
|
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
|
raise ValueError( |
|
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
|
f" {attn_output.size()}" |
|
|
) |
|
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
|
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
|
|
if not output_attentions: |
|
|
attn_weights = None |
|
|
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
|
|
|
class Phi3FlashAttention2(Phi3Attention): |
|
|
""" |
|
|
Phi-3 flash attention module. This module inherits from `Phi3Attention` as the weights of the module stays |
|
|
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of |
|
|
flash attention and deal with padding tokens in case the input contains any of them. |
|
|
""" |
|
|
|
|
|
|
|
|
def __init__(self, *args, **kwargs): |
|
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.LongTensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[Cache] = None, |
|
|
output_attentions: bool = False, |
|
|
use_cache: bool = False, |
|
|
**kwargs, |
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
|
|
|
|
|
|
if not _flash_supports_window_size: |
|
|
logger.warning_once( |
|
|
"The current flash attention version does not support sliding window attention. Please use `attn_implementation='eager'` or upgrade flash-attn library." |
|
|
) |
|
|
raise ValueError("The current flash attention version does not support sliding window attention.") |
|
|
|
|
|
output_attentions = False |
|
|
|
|
|
if "padding_mask" in kwargs: |
|
|
warnings.warn( |
|
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" |
|
|
) |
|
|
|
|
|
|
|
|
attention_mask = kwargs.pop("padding_mask") |
|
|
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
|
|
qkv = self.qkv_proj(hidden_states) |
|
|
query_pos = self.num_heads * self.head_dim |
|
|
query_states = qkv[..., :query_pos] |
|
|
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim] |
|
|
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
kv_seq_len = key_states.shape[-2] |
|
|
if past_key_value is not None: |
|
|
if self.layer_idx is None: |
|
|
raise ValueError( |
|
|
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " |
|
|
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " |
|
|
"with a layer index." |
|
|
) |
|
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
|
|
|
|
|
|
|
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1 |
|
|
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=rotary_seq_len) |
|
|
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
|
|
use_sliding_windows = ( |
|
|
_flash_supports_window_size |
|
|
and getattr(self.config, "sliding_window", None) is not None |
|
|
and kv_seq_len > self.config.sliding_window |
|
|
) |
|
|
|
|
|
if past_key_value is not None: |
|
|
|
|
|
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0 |
|
|
if ( |
|
|
getattr(self.config, "sliding_window", None) is not None |
|
|
and kv_seq_len > self.config.sliding_window |
|
|
and cache_has_contents |
|
|
): |
|
|
slicing_tokens = 1 - self.config.sliding_window |
|
|
|
|
|
past_key = past_key_value[self.layer_idx][0] |
|
|
past_value = past_key_value[self.layer_idx][1] |
|
|
|
|
|
past_key = past_key[:, :, slicing_tokens:, :].contiguous() |
|
|
past_value = past_value[:, :, slicing_tokens:, :].contiguous() |
|
|
|
|
|
if past_key.shape[-2] != self.config.sliding_window - 1: |
|
|
raise ValueError( |
|
|
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got" |
|
|
f" {past_key.shape}" |
|
|
) |
|
|
|
|
|
if attention_mask is not None: |
|
|
attention_mask = attention_mask[:, slicing_tokens:] |
|
|
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) |
|
|
|
|
|
cache_kwargs = {"sin": sin, "cos": cos} |
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
|
|
attn_dropout = self.attention_dropout if self.training else 0.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if query_states.dtype == torch.float32: |
|
|
if torch.is_autocast_enabled(): |
|
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
|
|
|
|
elif hasattr(self.config, "_pre_quantization_dtype"): |
|
|
target_dtype = self.config._pre_quantization_dtype |
|
|
else: |
|
|
target_dtype = self.qkv_proj.weight.dtype |
|
|
|
|
|
logger.warning_once( |
|
|
f"The input hidden states seems to be silently casted in float32, this might be related to" |
|
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" |
|
|
f" {target_dtype}." |
|
|
) |
|
|
|
|
|
query_states = query_states.to(target_dtype) |
|
|
key_states = key_states.to(target_dtype) |
|
|
value_states = value_states.to(target_dtype) |
|
|
|
|
|
|
|
|
query_states = query_states.transpose(1, 2) |
|
|
key_states = key_states.transpose(1, 2) |
|
|
value_states = value_states.transpose(1, 2) |
|
|
|
|
|
attn_output = self._flash_attention_forward( |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attention_mask, |
|
|
q_len, |
|
|
dropout=attn_dropout, |
|
|
use_sliding_windows=use_sliding_windows, |
|
|
) |
|
|
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() |
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
|
|
if not output_attentions: |
|
|
attn_weights = None |
|
|
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
|
|
|
def _flash_attention_forward( |
|
|
self, |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attention_mask, |
|
|
query_length, |
|
|
dropout=0.0, |
|
|
softmax_scale=None, |
|
|
use_sliding_windows=False, |
|
|
): |
|
|
""" |
|
|
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token |
|
|
first unpad the input, then computes the attention scores and pad the final attention scores. |
|
|
|
|
|
Args: |
|
|
query_states (`torch.Tensor`): |
|
|
Input query states to be passed to Flash Attention API |
|
|
key_states (`torch.Tensor`): |
|
|
Input key states to be passed to Flash Attention API |
|
|
value_states (`torch.Tensor`): |
|
|
Input value states to be passed to Flash Attention API |
|
|
attention_mask (`torch.Tensor`): |
|
|
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the |
|
|
position of padding tokens and 1 for the position of non-padding tokens. |
|
|
dropout (`float`): |
|
|
Attention dropout |
|
|
softmax_scale (`float`, *optional*): |
|
|
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) |
|
|
use_sliding_windows (`bool`, *optional*): |
|
|
Whether to activate sliding window attention. |
|
|
""" |
|
|
if not self._flash_attn_uses_top_left_mask: |
|
|
causal = self.is_causal |
|
|
else: |
|
|
|
|
|
causal = self.is_causal and query_length != 1 |
|
|
|
|
|
|
|
|
if attention_mask is not None: |
|
|
batch_size = query_states.shape[0] |
|
|
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( |
|
|
query_states, key_states, value_states, attention_mask, query_length |
|
|
) |
|
|
|
|
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens |
|
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens |
|
|
|
|
|
if not use_sliding_windows: |
|
|
attn_output_unpad = flash_attn_varlen_func( |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
cu_seqlens_q=cu_seqlens_q, |
|
|
cu_seqlens_k=cu_seqlens_k, |
|
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
|
dropout_p=dropout, |
|
|
softmax_scale=softmax_scale, |
|
|
causal=causal, |
|
|
) |
|
|
else: |
|
|
attn_output_unpad = flash_attn_varlen_func( |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
cu_seqlens_q=cu_seqlens_q, |
|
|
cu_seqlens_k=cu_seqlens_k, |
|
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
|
dropout_p=dropout, |
|
|
softmax_scale=softmax_scale, |
|
|
causal=causal, |
|
|
window_size=(self.config.sliding_window, self.config.sliding_window), |
|
|
) |
|
|
|
|
|
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) |
|
|
else: |
|
|
if not use_sliding_windows: |
|
|
attn_output = flash_attn_func( |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
dropout, |
|
|
softmax_scale=softmax_scale, |
|
|
causal=causal, |
|
|
) |
|
|
else: |
|
|
attn_output = flash_attn_func( |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
dropout, |
|
|
softmax_scale=softmax_scale, |
|
|
causal=causal, |
|
|
window_size=(self.config.sliding_window, self.config.sliding_window), |
|
|
) |
|
|
|
|
|
return attn_output |
|
|
|
|
|
|
|
|
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): |
|
|
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape |
|
|
|
|
|
|
|
|
|
|
|
if kv_seq_len != attention_mask.shape[-1]: |
|
|
attention_mask_num_tokens = attention_mask.shape[-1] |
|
|
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :] |
|
|
|
|
|
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) |
|
|
|
|
|
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) |
|
|
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) |
|
|
|
|
|
if query_length == kv_seq_len: |
|
|
query_layer = index_first_axis( |
|
|
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k |
|
|
) |
|
|
cu_seqlens_q = cu_seqlens_k |
|
|
max_seqlen_in_batch_q = max_seqlen_in_batch_k |
|
|
indices_q = indices_k |
|
|
elif query_length == 1: |
|
|
max_seqlen_in_batch_q = 1 |
|
|
cu_seqlens_q = torch.arange( |
|
|
batch_size + 1, dtype=torch.int32, device=query_layer.device |
|
|
) |
|
|
indices_q = cu_seqlens_q[:-1] |
|
|
query_layer = query_layer.squeeze(1) |
|
|
else: |
|
|
|
|
|
attention_mask = attention_mask[:, -query_length:] |
|
|
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) |
|
|
|
|
|
return ( |
|
|
query_layer, |
|
|
key_layer, |
|
|
value_layer, |
|
|
indices_q, |
|
|
(cu_seqlens_q, cu_seqlens_k), |
|
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Phi3SdpaAttention(Phi3Attention): |
|
|
""" |
|
|
Phi3 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from |
|
|
`Phi3Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to |
|
|
SDPA API. |
|
|
""" |
|
|
|
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[Cache] = None, |
|
|
output_attentions: bool = False, |
|
|
use_cache: bool = False, |
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
if output_attentions: |
|
|
|
|
|
logger.warning_once( |
|
|
"ChexBonesModel is using Phi3SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " |
|
|
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' |
|
|
) |
|
|
return super().forward( |
|
|
hidden_states=hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_value, |
|
|
output_attentions=output_attentions, |
|
|
use_cache=use_cache, |
|
|
) |
|
|
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
|
|
qkv = self.qkv_proj(hidden_states) |
|
|
query_pos = self.num_heads * self.head_dim |
|
|
query_states = qkv[..., :query_pos] |
|
|
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim] |
|
|
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :] |
|
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
kv_seq_len = key_states.shape[-2] |
|
|
if past_key_value is not None: |
|
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
|
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len) |
|
|
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
|
|
if past_key_value is not None: |
|
|
cache_kwargs = {"sin": sin, "cos": cos} |
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
|
|
if attention_mask is not None: |
|
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
|
raise ValueError( |
|
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
if query_states.device.type == "cuda" and attention_mask is not None: |
|
|
query_states = query_states.contiguous() |
|
|
key_states = key_states.contiguous() |
|
|
value_states = value_states.contiguous() |
|
|
|
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention( |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attn_mask=attention_mask, |
|
|
dropout_p=self.attention_dropout if self.training else 0.0, |
|
|
|
|
|
is_causal=self.is_causal and attention_mask is None and q_len > 1, |
|
|
) |
|
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
attn_output = attn_output.view(bsz, q_len, self.hidden_size) |
|
|
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
|
|
return attn_output, None, past_key_value |
|
|
|
|
|
|
|
|
PHI3_ATTENTION_CLASSES = { |
|
|
"eager": Phi3Attention, |
|
|
"flash_attention_2": Phi3FlashAttention2, |
|
|
"sdpa": Phi3SdpaAttention, |
|
|
} |
|
|
|
|
|
|
|
|
class Phi3DecoderLayer(nn.Module): |
|
|
def __init__(self, config: ChexBonesConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
|
|
|
self.config = config |
|
|
self.self_attn = PHI3_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx) |
|
|
|
|
|
self.mlp = Phi3MLP(config) |
|
|
self.input_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
self.resid_attn_dropout = nn.Dropout(config.resid_pdrop) |
|
|
self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop) |
|
|
self.post_attention_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
|
output_attentions: Optional[bool] = False, |
|
|
use_cache: Optional[bool] = False, |
|
|
**kwargs, |
|
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
|
if "padding_mask" in kwargs: |
|
|
warnings.warn( |
|
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" |
|
|
) |
|
|
""" |
|
|
Args: |
|
|
hidden_states (`torch.FloatTensor`): |
|
|
input to the layer of shape `(batch, seq_len, embed_dim)` |
|
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size |
|
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. |
|
|
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): |
|
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range |
|
|
`[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) |
|
|
output_attentions (`bool`, *optional*): |
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
|
returned tensors for more detail. |
|
|
use_cache (`bool`, *optional*): |
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
|
(see `past_key_values`). |
|
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
|
""" |
|
|
|
|
|
residual = hidden_states |
|
|
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
|
|
|
attn_outputs, self_attn_weights, present_key_value = self.self_attn( |
|
|
hidden_states=hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_value, |
|
|
output_attentions=output_attentions, |
|
|
use_cache=use_cache, |
|
|
) |
|
|
|
|
|
hidden_states = residual + self.resid_attn_dropout(attn_outputs) |
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
|
hidden_states = self.mlp(hidden_states) |
|
|
hidden_states = residual + self.resid_mlp_dropout(hidden_states) |
|
|
|
|
|
outputs = (hidden_states,) |
|
|
|
|
|
if output_attentions: |
|
|
outputs += (self_attn_weights,) |
|
|
|
|
|
if use_cache: |
|
|
outputs += (present_key_value,) |
|
|
|
|
|
return outputs |
|
|
|
|
|
|
|
|
CHEXBONES_START_DOCSTRING = r""" |
|
|
|
|
|
""" |
|
|
|
|
|
|
|
|
@add_start_docstrings( |
|
|
"Chex Bones Model.", |
|
|
CHEXBONES_START_DOCSTRING, |
|
|
) |
|
|
class ChexBonesPreTrainedModel(PreTrainedModel): |
|
|
config_class = ChexBonesConfig |
|
|
base_model_prefix = "model" |
|
|
supports_gradient_checkpointing = True |
|
|
_no_split_modules = ["Phi3DecoderLayer"] |
|
|
_skip_keys_device_placement = "past_key_values" |
|
|
_supports_flash_attn_2 = True |
|
|
_supports_sdpa = False |
|
|
_supports_cache_class = True |
|
|
|
|
|
_version = "0.0.5" |
|
|
|
|
|
def _init_weights(self, module): |
|
|
std = self.config.initializer_range |
|
|
if isinstance(module, nn.Linear): |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
if module.bias is not None: |
|
|
module.bias.data.zero_() |
|
|
elif isinstance(module, nn.Embedding): |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
if module.padding_idx is not None: |
|
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
|
|
|
CHEXBONES_INPUTS_DOCSTRING = r""" |
|
|
Args: |
|
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
|
it. |
|
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
|
|
- 1 for tokens that are **not masked**, |
|
|
- 0 for tokens that are **masked**. |
|
|
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
|
|
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see |
|
|
`past_key_values`). |
|
|
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
|
information on the default strategy. |
|
|
|
|
|
- 1 indicates the head is **not masked**, |
|
|
- 0 indicates the head is **masked**. |
|
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
|
config.n_positions - 1]`. |
|
|
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
|
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): |
|
|
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
|
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` |
|
|
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. |
|
|
|
|
|
Two formats are allowed: |
|
|
- a [`~cache_utils.Cache`] instance; |
|
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of |
|
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy |
|
|
cache format. |
|
|
|
|
|
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the |
|
|
legacy cache format will be returned. |
|
|
|
|
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't |
|
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` |
|
|
of shape `(batch_size, sequence_length)`. |
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
|
model's internal embedding lookup matrix. |
|
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)): |
|
|
The tensors corresponding to the input images. Pixel values can be obtained using [`AutoImageProcessor`]. |
|
|
See [`ChexBonesImageProcessor.__call__`] for details. |
|
|
image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`, *optional*): |
|
|
The sizes of the images in the batch, being (height, width) for each image. |
|
|
use_cache (`bool`, *optional*): |
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
|
`past_key_values`). |
|
|
output_attentions (`bool`, *optional*): |
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
|
tensors for more detail. |
|
|
output_hidden_states (`bool`, *optional*): |
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
|
more detail. |
|
|
return_dict (`bool`, *optional*): |
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
@add_start_docstrings( |
|
|
"Chex Bones - CheXAgent", |
|
|
CHEXBONES_START_DOCSTRING, |
|
|
) |
|
|
class ChexBonesModel(ChexBonesPreTrainedModel): |
|
|
""" |
|
|
""" |
|
|
|
|
|
def __init__(self, config: ChexBonesConfig): |
|
|
super().__init__(config) |
|
|
self.padding_idx = config.pad_token_id |
|
|
self.vocab_size = config.vocab_size |
|
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
|
self.embed_dropout = nn.Dropout(config.embd_pdrop) |
|
|
|
|
|
self.vision_embed_tokens = None |
|
|
if isinstance(config.embd_layer, dict): |
|
|
|
|
|
embedding_config = { |
|
|
'embedding_cls': config.embd_layer['embedding_cls'], |
|
|
**config.embd_layer |
|
|
} |
|
|
self.vision_embed_tokens = Phi3ImageEmbedding(config, wte=self.embed_tokens, **embedding_config) |
|
|
|
|
|
|
|
|
|
|
|
self.layers = nn.ModuleList( |
|
|
[Phi3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
|
) |
|
|
self._attn_implementation = config._attn_implementation |
|
|
self.norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.embed_tokens |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.embed_tokens = value |
|
|
|
|
|
@add_start_docstrings_to_model_forward(CHEXBONES_INPUTS_DOCSTRING) |
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.LongTensor = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
|
image_sizes: Optional[torch.LongTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
output_hidden_states = ( |
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
) |
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
|
elif input_ids is not None: |
|
|
batch_size, seq_length = input_ids.shape[:2] |
|
|
elif inputs_embeds is not None: |
|
|
batch_size, seq_length = inputs_embeds.shape[:2] |
|
|
else: |
|
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
|
|
past_key_values_length = 0 |
|
|
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
if use_cache: |
|
|
logger.warning_once( |
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
|
) |
|
|
use_cache = False |
|
|
|
|
|
if use_cache: |
|
|
use_legacy_cache = not isinstance(past_key_values, Cache) |
|
|
if use_legacy_cache: |
|
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values) |
|
|
past_key_values_length = past_key_values.get_usable_length(seq_length) |
|
|
|
|
|
if position_ids is None: |
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
position_ids = torch.arange( |
|
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device |
|
|
) |
|
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) |
|
|
else: |
|
|
position_ids = position_ids.view(-1, seq_length).long() |
|
|
|
|
|
if inputs_embeds is None: |
|
|
if pixel_values is not None and image_sizes is not None: |
|
|
assert self.vision_embed_tokens is not None, "Vision embedding layer is not defined" |
|
|
inputs_embeds = self.vision_embed_tokens(input_ids, pixel_values=pixel_values, image_sizes=image_sizes) |
|
|
else: |
|
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache: |
|
|
is_padding_right = attention_mask[:, -1].sum().item() != batch_size |
|
|
if is_padding_right: |
|
|
raise ValueError( |
|
|
"You are attempting to perform batched generation with padding_side='right'" |
|
|
" this may lead to unexpected behaviour for Flash Attention version of ChexBones. Make sure to " |
|
|
" call `tokenizer.padding_side = 'left'` before tokenizing the input. " |
|
|
) |
|
|
|
|
|
if self._attn_implementation == "flash_attention_2": |
|
|
|
|
|
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None |
|
|
else: |
|
|
|
|
|
attention_mask = _prepare_4d_causal_attention_mask( |
|
|
attention_mask, |
|
|
(batch_size, seq_length), |
|
|
inputs_embeds, |
|
|
past_key_values_length, |
|
|
sliding_window=self.config.sliding_window, |
|
|
) |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
|
all_self_attns = () if output_attentions else None |
|
|
next_decoder_cache = None |
|
|
|
|
|
for decoder_layer in self.layers: |
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
layer_outputs = self._gradient_checkpointing_func( |
|
|
decoder_layer.__call__, |
|
|
hidden_states, |
|
|
attention_mask, |
|
|
position_ids, |
|
|
past_key_values, |
|
|
output_attentions, |
|
|
use_cache, |
|
|
) |
|
|
else: |
|
|
layer_outputs = decoder_layer( |
|
|
hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_values, |
|
|
output_attentions=output_attentions, |
|
|
use_cache=use_cache, |
|
|
) |
|
|
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
|
|
if use_cache: |
|
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1] |
|
|
|
|
|
if output_attentions: |
|
|
all_self_attns += (layer_outputs[1],) |
|
|
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
|
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
next_cache = None |
|
|
if use_cache: |
|
|
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache |
|
|
if not return_dict: |
|
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
|
return BaseModelOutputWithPast( |
|
|
last_hidden_state=hidden_states, |
|
|
past_key_values=next_cache, |
|
|
hidden_states=all_hidden_states, |
|
|
attentions=all_self_attns, |
|
|
) |
|
|
|
|
|
|
|
|
class ChexBonesForCausalLM(ChexBonesPreTrainedModel): |
|
|
_tied_weights_keys = ["lm_head.weight", 'model.embed_tokens.weight', 'model.vision_embed_tokens.wte.weight'] |
|
|
|
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__(config) |
|
|
self.model = ChexBonesModel(config) |
|
|
self.vocab_size = config.vocab_size |
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.model.embed_tokens |
|
|
|
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.model.embed_tokens = value |
|
|
|
|
|
|
|
|
def get_output_embeddings(self): |
|
|
return self.lm_head |
|
|
|
|
|
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
|
self.lm_head = new_embeddings |
|
|
|
|
|
|
|
|
def set_decoder(self, decoder): |
|
|
self.model = decoder |
|
|
|
|
|
|
|
|
def get_decoder(self): |
|
|
return self.model |
|
|
|
|
|
|
|
|
@add_start_docstrings_to_model_forward(CHEXBONES_INPUTS_DOCSTRING) |
|
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.LongTensor = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
|
image_sizes: Optional[torch.LongTensor] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
|
r""" |
|
|
Args: |
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
|
|
Returns: |
|
|
```""" |
|
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
output_hidden_states = ( |
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
) |
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
|
|
|
outputs = self.model( |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=inputs_embeds, |
|
|
pixel_values=pixel_values, |
|
|
image_sizes=image_sizes, |
|
|
use_cache=use_cache, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
return_dict=return_dict, |
|
|
) |
|
|
|
|
|
hidden_states = outputs[0] |
|
|
logits = self.lm_head(hidden_states) |
|
|
logits = logits.float() |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
|
|
loss_fct = CrossEntropyLoss() |
|
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
|
shift_labels = shift_labels.view(-1) |
|
|
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
|
|
if not return_dict: |
|
|
output = (logits,) + outputs[1:] |
|
|
return (loss,) + output if loss is not None else output |
|
|
|
|
|
return CausalLMOutputWithPast( |
|
|
loss=loss, |
|
|
logits=logits, |
|
|
past_key_values=outputs.past_key_values, |
|
|
hidden_states=outputs.hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
) |
|
|
|
|
|
|
|
|
def prepare_inputs_for_generation( |
|
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, pixel_values=None, image_sizes=None, **kwargs |
|
|
): |
|
|
|
|
|
|
|
|
if past_key_values and self.config.rope_scaling and input_ids.shape[1] >= self.config.original_max_position_embeddings + 1: |
|
|
past_length = past_key_values.seen_tokens if isinstance(past_key_values, Cache) else past_key_values[0][0].shape[2] |
|
|
if past_length <= self.config.original_max_position_embeddings: |
|
|
past_key_values = None |
|
|
|
|
|
if past_key_values is not None: |
|
|
if isinstance(past_key_values, Cache): |
|
|
cache_length = past_key_values.get_seq_length() |
|
|
past_length = past_key_values.seen_tokens |
|
|
max_cache_length = past_key_values.get_max_length() |
|
|
else: |
|
|
cache_length = past_length = past_key_values[0][0].shape[2] |
|
|
max_cache_length = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: |
|
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] |
|
|
|
|
|
|
|
|
elif past_length < input_ids.shape[1]: |
|
|
input_ids = input_ids[:, past_length:] |
|
|
|
|
|
|
|
|
|
|
|
if ( |
|
|
max_cache_length is not None |
|
|
and attention_mask is not None |
|
|
and cache_length + input_ids.shape[1] > max_cache_length |
|
|
): |
|
|
attention_mask = attention_mask[:, -max_cache_length:] |
|
|
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
|
if attention_mask is not None and position_ids is None: |
|
|
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
|
if past_key_values: |
|
|
position_ids = position_ids[:, -input_ids.shape[1] :] |
|
|
|
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
|
else: |
|
|
model_inputs = {"input_ids": input_ids} |
|
|
|
|
|
model_inputs.update( |
|
|
{ |
|
|
"position_ids": position_ids, |
|
|
"past_key_values": past_key_values, |
|
|
"use_cache": kwargs.get("use_cache"), |
|
|
"attention_mask": attention_mask, |
|
|
"pixel_values": pixel_values, |
|
|
"image_sizes": image_sizes, |
|
|
} |
|
|
) |
|
|
return model_inputs |
|
|
|
|
|
@staticmethod |
|
|
|
|
|
def _reorder_cache(past_key_values, beam_idx): |
|
|
reordered_past = () |
|
|
for layer_past in past_key_values: |
|
|
reordered_past += ( |
|
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), |
|
|
) |
|
|
return reordered_past |
|
|
|
|
|
|