File size: 10,855 Bytes
90f0b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
/* ------------------------------------------------------------------
* Copyright (C) 2020 ewan xu<ewan_xu@outlook.com>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied.
* See the License for the specific language governing permissions
* and limitations under the License.
* -------------------------------------------------------------------
*/
#ifndef LIBROSA_H_
#define LIBROSA_H_
#include "eigen3/Eigen/Core"
#include "eigen3/unsupported/Eigen/FFT"
#include <vector>
#include <complex>
#include <iostream>
#include <cmath>
///
/// \brief c++ implemention of librosa
///
namespace librosa{
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif // !M_PI
typedef Eigen::Matrix<float, 1, Eigen::Dynamic, Eigen::RowMajor> Vectorf;
typedef Eigen::Matrix<std::complex<float>, 1, Eigen::Dynamic, Eigen::RowMajor> Vectorcf;
typedef Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> Matrixf;
typedef Eigen::Matrix<std::complex<float>, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> Matrixcf;
namespace internal{
static Vectorf pad(Vectorf &x, int left, int right, const std::string &mode, float value){
Vectorf x_paded = Vectorf::Constant(left+x.size()+right, value);
x_paded.segment(left, x.size()) = x;
if (mode.compare("reflect") == 0){
for (int i = 0; i < left; ++i){
x_paded[i] = x[left-i];
}
for (int i = left; i < left+right; ++i){
x_paded[i+x.size()] = x[x.size()-2-i+left];
}
}
if (mode.compare("symmetric") == 0){
for (int i = 0; i < left; ++i){
x_paded[i] = x[left-i-1];
}
for (int i = left; i < left+right; ++i){
x_paded[i+x.size()] = x[x.size()-1-i+left];
}
}
if (mode.compare("edge") == 0){
for (int i = 0; i < left; ++i){
x_paded[i] = x[0];
}
for (int i = left; i < left+right; ++i){
x_paded[i+x.size()] = x[x.size()-1];
}
}
return x_paded;
}
static Matrixcf stft(Vectorf &x, int n_fft, int n_hop, const std::string &win, bool center, const std::string &mode){
// hanning
Vectorf window = 0.5*(1.f-(Vectorf::LinSpaced(n_fft, 0.f, static_cast<float>(n_fft-1))*2.f*M_PI/n_fft).array().cos());
int pad_len = center ? n_fft / 2 : 0;
Vectorf x_paded = pad(x, pad_len, pad_len, mode, 0.f);
int n_f = n_fft/2+1;
int n_frames = 1+(x_paded.size()-n_fft) / n_hop;
Matrixcf X(n_frames, n_fft);
Eigen::FFT<float> fft;
for (int i = 0; i < n_frames; ++i){
Vectorf x_frame = window.array()*x_paded.segment(i*n_hop, n_fft).array();
X.row(i) = fft.fwd(x_frame);
}
return X.leftCols(n_f);
}
static Matrixf spectrogram(Matrixcf &X, float power = 1.f){
return X.cwiseAbs().array().pow(power);
}
static Matrixf melfilter(int sr, int n_fft, int n_mels, int fmin, int fmax){
int n_f = n_fft/2+1;
Vectorf fft_freqs = (Vectorf::LinSpaced(n_f, 0.f, static_cast<float>(n_f-1))*sr)/n_fft;
float f_min = 0.f;
float f_sp = 200.f/3.f;
float min_log_hz = 1000.f;
float min_log_mel = (min_log_hz-f_min)/f_sp;
float logstep = logf(6.4f)/27.f;
auto hz_to_mel = [=](int hz, bool htk = false) -> float {
if (htk){
return 2595.0f*log10f(1.0f+hz/700.0f);
}
float mel = (hz-f_min)/f_sp;
if (hz >= min_log_hz){
mel = min_log_mel+logf(hz/min_log_hz)/logstep;
}
return mel;
};
auto mel_to_hz = [=](Vectorf &mels, bool htk = false) -> Vectorf {
if (htk){
return 700.0f*(Vectorf::Constant(n_mels+2, 10.f).array().pow(mels.array()/2595.0f)-1.0f);
}
return (mels.array()>min_log_mel).select(((mels.array()-min_log_mel)*logstep).exp()*min_log_hz, (mels*f_sp).array()+f_min);
};
float min_mel = hz_to_mel(fmin);
float max_mel = hz_to_mel(fmax);
Vectorf mels = Vectorf::LinSpaced(n_mels+2, min_mel, max_mel);
Vectorf mel_f = mel_to_hz(mels);
Vectorf fdiff = mel_f.segment(1, mel_f.size() - 1) - mel_f.segment(0, mel_f.size() - 1);
Matrixf ramps = mel_f.replicate(n_f, 1).transpose().array() - fft_freqs.replicate(n_mels + 2, 1).array();
Matrixf lower = -ramps.topRows(n_mels).array()/fdiff.segment(0, n_mels).transpose().replicate(1, n_f).array();
Matrixf upper = ramps.bottomRows(n_mels).array()/fdiff.segment(1, n_mels).transpose().replicate(1, n_f).array();
Matrixf weights = (lower.array()<upper.array()).select(lower, upper).cwiseMax(0);
auto enorm = (2.0/(mel_f.segment(2, n_mels)-mel_f.segment(0, n_mels)).array()).transpose().replicate(1, n_f);
weights = weights.array()*enorm;
return weights;
}
static Matrixf melspectrogram(Vectorf &x, int sr, int n_fft, int n_hop,
const std::string &win, bool center,
const std::string &mode, float power,
int n_mels, int fmin, int fmax){
Matrixcf X = stft(x, n_fft, n_hop, win, center, mode);
Matrixf mel_basis = melfilter(sr, n_fft, n_mels, fmin, fmax);
Matrixf sp = spectrogram(X, power);
Matrixf mel = mel_basis*sp.transpose();
return mel.transpose();
}
static Matrixf power2db(Matrixf& x) {
auto log_sp = 10.0f*x.array().max(1e-10).log10();
return log_sp.cwiseMax(log_sp.maxCoeff() - 80.0f);
}
static Matrixf dct(Matrixf& x, bool norm, int type) {
int N = x.cols();
Matrixf xi = Matrixf::Zero(N, N);
xi.rowwise() += Vectorf::LinSpaced(N, 0.f, static_cast<float>(N-1));
// type 2
Matrixf coeff = 2*(M_PI*xi.transpose().array()/N*(xi.array()+0.5)).cos();
Matrixf dct = x*coeff.transpose();
// ortho
if (norm) {
Vectorf ortho = Vectorf::Constant(N, sqrtf(0.5f/N));
ortho[0] = sqrtf(0.25f/N);
dct = dct*ortho.asDiagonal();
}
return dct;
}
} // namespace internal
class Feature
{
public:
/// \brief short-time fourier transform similar with librosa.feature.stft
/// \param x input audio signal
/// \param n_fft length of the FFT size
/// \param n_hop number of samples between successive frames
/// \param win window function. currently only supports 'hann'
/// \param center same as librosa
/// \param mode pad mode. support "reflect","symmetric","edge"
/// \return complex-valued matrix of short-time fourier transform coefficients.
static std::vector<std::vector<std::complex<float>>> stft(std::vector<float> &x,
int n_fft, int n_hop,
const std::string &win, bool center,
const std::string &mode){
Vectorf map_x = Eigen::Map<Vectorf>(x.data(), x.size());
Matrixcf X = internal::stft(map_x, n_fft, n_hop, win, center, mode);
std::vector<std::vector<std::complex<float>>> X_vector(X.rows(), std::vector<std::complex<float>>(X.cols(), 0));
for (int i = 0; i < X.rows(); ++i){
auto &row = X_vector[i];
Eigen::Map<Vectorcf>(row.data(), row.size()) = X.row(i);
}
return X_vector;
}
/// \brief compute mel spectrogram similar with librosa.feature.melspectrogram
/// \param x input audio signal
/// \param sr sample rate of 'x'
/// \param n_fft length of the FFT size
/// \param n_hop number of samples between successive frames
/// \param win window function. currently only supports 'hann'
/// \param center same as librosa
/// \param mode pad mode. support "reflect","symmetric","edge"
/// \param power exponent for the magnitude melspectrogram
/// \param n_mels number of mel bands
/// \param f_min lowest frequency (in Hz)
/// \param f_max highest frequency (in Hz)
/// \return mel spectrogram matrix
static std::vector<std::vector<float>> melspectrogram(std::vector<float> &x, int sr,
int n_fft, int n_hop, const std::string &win, bool center, const std::string &mode,
float power, int n_mels, int fmin, int fmax){
Vectorf map_x = Eigen::Map<Vectorf>(x.data(), x.size());
Matrixf mel = internal::melspectrogram(map_x, sr, n_fft, n_hop, win, center, mode, power, n_mels, fmin, fmax).transpose();
std::vector<std::vector<float>> mel_vector(mel.rows(), std::vector<float>(mel.cols(), 0.f));
for (int i = 0; i < mel.rows(); ++i){
auto &row = mel_vector[i];
Eigen::Map<Vectorf>(row.data(), row.size()) = mel.row(i);
}
return mel_vector;
}
/// \brief compute mfcc similar with librosa.feature.mfcc
/// \param x input audio signal
/// \param sr sample rate of 'x'
/// \param n_fft length of the FFT size
/// \param n_hop number of samples between successive frames
/// \param win window function. currently only supports 'hann'
/// \param center same as librosa
/// \param mode pad mode. support "reflect","symmetric","edge"
/// \param power exponent for the magnitude melspectrogram
/// \param n_mels number of mel bands
/// \param f_min lowest frequency (in Hz)
/// \param f_max highest frequency (in Hz)
/// \param n_mfcc number of mfccs
/// \param norm ortho-normal dct basis
/// \param type dct type. currently only supports 'type-II'
/// \return mfcc matrix
static std::vector<std::vector<float>> mfcc(std::vector<float> &x, int sr,
int n_fft, int n_hop, const std::string &win, bool center, const std::string &mode,
float power, int n_mels, int fmin, int fmax,
int n_mfcc, bool norm, int type) {
Vectorf map_x = Eigen::Map<Vectorf>(x.data(), x.size());
Matrixf mel = internal::melspectrogram(map_x, sr, n_fft, n_hop, win, center, mode, power, n_mels, fmin, fmax).transpose();
Matrixf mel_db = internal::power2db(mel);
Matrixf dct = internal::dct(mel_db, norm, type).leftCols(n_mfcc);
std::vector<std::vector<float>> mfcc_vector(dct.rows(), std::vector<float>(dct.cols(), 0.f));
for (int i = 0; i < dct.rows(); ++i) {
auto &row = mfcc_vector[i];
Eigen::Map<Vectorf>(row.data(), row.size()) = dct.row(i);
}
return mfcc_vector;
}
};
} // namespace librosa
#endif
|