Update README.md
Browse files
README.md
CHANGED
|
@@ -70,6 +70,74 @@ MICCAI 2025 <br/>
|
|
| 70 |
*Johns Hopkins University* <br/>
|
| 71 |
<a href='https://www.zongweiz.com/dataset'><img src='https://img.shields.io/badge/Project-Page-Green'></a> <a href='https://www.cs.jhu.edu/~zongwei/publication/li2025pants.pdf'><img src='https://img.shields.io/badge/Paper-PDF-purple'></a>
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
# Citations
|
| 74 |
If you use this data, please cite the 2 papers below:
|
| 75 |
|
|
|
|
| 70 |
*Johns Hopkins University* <br/>
|
| 71 |
<a href='https://www.zongweiz.com/dataset'><img src='https://img.shields.io/badge/Project-Page-Green'></a> <a href='https://www.cs.jhu.edu/~zongwei/publication/li2025pants.pdf'><img src='https://img.shields.io/badge/Paper-PDF-purple'></a>
|
| 72 |
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
# Inference
|
| 77 |
+
|
| 78 |
+
**0- Download and installation.**
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
<details>
|
| 82 |
+
<summary style="margin-left: 25px;">[Optional] Install Anaconda on Linux</summary>
|
| 83 |
+
<div style="margin-left: 25px;">
|
| 84 |
+
|
| 85 |
+
```bash
|
| 86 |
+
wget https://repo.anaconda.com/archive/Anaconda3-2024.06-1-Linux-x86_64.sh
|
| 87 |
+
bash Anaconda3-2024.06-1-Linux-x86_64.sh -b -p ./anaconda3
|
| 88 |
+
./anaconda3/bin/conda init
|
| 89 |
+
source ~/.bashrc
|
| 90 |
+
```
|
| 91 |
+
</div>
|
| 92 |
+
</details>
|
| 93 |
+
|
| 94 |
+
```
|
| 95 |
+
git clone https://github.com/MrGiovanni/R-Super
|
| 96 |
+
cd R-Super/rsuper_train
|
| 97 |
+
conda create -n rsuper python=3.10
|
| 98 |
+
conda activate rsuper
|
| 99 |
+
pip install -r requirements.txt
|
| 100 |
+
pip install -U "huggingface_hub[cli]"
|
| 101 |
+
hf download AbdomenAtlas/MedFormerPanTS --local-dir ./MedFormerPanTS
|
| 102 |
+
```
|
| 103 |
+
|
| 104 |
+
**1- Pre-processing.** Prepare your dataset in the format below. You can use symlinks instead of copying your data.
|
| 105 |
+
<details>
|
| 106 |
+
<summary style="margin-left: 25px;">Dataset format.</summary>
|
| 107 |
+
<div style="margin-left: 25px;">
|
| 108 |
+
|
| 109 |
+
```
|
| 110 |
+
/path/to/dataset/
|
| 111 |
+
βββ BDMAP_0000001
|
| 112 |
+
| βββ ct.nii.gz
|
| 113 |
+
βββ BDMAP_0000002
|
| 114 |
+
| βββ ct.nii.gz
|
| 115 |
+
...
|
| 116 |
+
```
|
| 117 |
+
</div>
|
| 118 |
+
</details>
|
| 119 |
+
|
| 120 |
+
**2- Inference.** The code below will inference, generating binary segmentation masks. To save probabilities, add the argument --save_probabilities or --save_probabilities_lesions (which saves only probabilities for lesions, not for organs). The optional argument --organ_mask_on_lesion will use organ segmentations (produced by the R-Super model itself, not ground-truth) to remove tumor predictions outside its organ.
|
| 121 |
+
|
| 122 |
+
```bash
|
| 123 |
+
python predict_abdomenatlas.py --load MedFormerPanTS/pants_pancreas_release/fold_0_latest.pth --img_path /path/to/test/dataset/ --class_list MedFormerPanTS/labels_pants.yaml --save_path /path/to/inference/output/ --organ_mask_on_lesion
|
| 124 |
+
```
|
| 125 |
+
<details>
|
| 126 |
+
<summary style="margin-left: 25px;"> Argument Details </summary>
|
| 127 |
+
<div style="margin-left: 25px;">
|
| 128 |
+
|
| 129 |
+
- load: path to the model checkpoint (fold_0_latest.pth)
|
| 130 |
+
- img_path: path to dataset
|
| 131 |
+
- class_list: a yaml file with the class names of your model
|
| 132 |
+
- save_path: path to output, where masks will be saved
|
| 133 |
+
- ids: this is an optional argument. By default, the code will predict on all cases in --img_path. If you pass ids, the code will only test with the CT scans indicated in ids. You can use this to separate a test set: --ids /path/to/test/set/ids.csv. The csv file must have a 'BDMAP ID' column with the ids of the test cases.
|
| 134 |
+
|
| 135 |
+
</details>
|
| 136 |
+
|
| 137 |
+
For more details, see https://github.com/MrGiovanni/R-Super/tree/main/rsuper_train#test
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
|
| 141 |
# Citations
|
| 142 |
If you use this data, please cite the 2 papers below:
|
| 143 |
|