Abhisek987 commited on
Commit
bbaebc6
·
verified ·
1 Parent(s): 0867b42

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +166 -183
README.md CHANGED
@@ -1,202 +1,185 @@
1
  ---
 
 
 
2
  base_model: meta-llama/Llama-3.2-3B
3
- library_name: peft
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
 
 
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108
 
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
200
- ### Framework versions
 
 
201
 
202
- - PEFT 0.11.0
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ license: llama3.2
5
  base_model: meta-llama/Llama-3.2-3B
6
+ tags:
7
+ - llama
8
+ - llama-3
9
+ - sql
10
+ - text-to-sql
11
+ - lora
12
+ - peft
13
+ - finetuned
14
+ datasets:
15
+ - spider
16
+ metrics:
17
+ - accuracy
18
+ library_name: transformers
19
+ pipeline_tag: text-generation
20
  ---
21
 
22
+ # Llama 3.2 3B - SQL Query Generator (LoRA Fine-tuned)
23
 
24
+ This model is a fine-tuned version of [meta-llama/Llama-3.2-3B](https://huggingface.co/meta-llama/Llama-3.2-3B) for **text-to-SQL generation** using LoRA (Low-Rank Adaptation) on the Spider dataset.
25
 
26
+ ## Model Description
27
 
28
+ - **Base Model:** Llama 3.2 3B
29
+ - **Fine-tuning Method:** LoRA (Parameter-Efficient Fine-Tuning)
30
+ - **Quantization:** 4-bit NF4 with double quantization
31
+ - **Dataset:** Spider (7,000 training examples)
32
+ - **Training:** 3 epochs, ~47 minutes on AWS g5.2xlarge (NVIDIA A10G)
33
+ - **Final Training Loss:** 0.37 (85% reduction from initial 2.5)
34
 
35
+ ## Intended Use
36
 
37
+ This model converts natural language questions into SQL queries for various database schemas. It's designed for:
38
+ - Automated SQL query generation
39
+ - Data analysis assistants
40
+ - Natural language database interfaces
41
+ - Educational tools for SQL learning
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
  ## Training Details
44
 
45
+ ### Training Hyperparameters
46
+
47
+ - **Learning Rate:** 2e-4
48
+ - **Batch Size:** 4 (per device)
49
+ - **Gradient Accumulation:** 4 steps (effective batch size: 16)
50
+ - **Epochs:** 3
51
+ - **Max Sequence Length:** 2048
52
+ - **LoRA Rank (r):** 16
53
+ - **LoRA Alpha:** 32
54
+ - **LoRA Dropout:** 0.05
55
+ - **Target Modules:** q_proj, k_proj, v_proj, o_proj
56
+
57
+ ### Training Results
58
+
59
+ | Metric | Value |
60
+ |--------|-------|
61
+ | Initial Loss | 2.50 |
62
+ | Final Loss | 0.37 |
63
+ | Trainable Parameters | 9.17M (0.51% of total) |
64
+ | Training Time | 47 minutes |
65
+
66
+ ## Usage
67
+
68
+ ### Installation
69
+ ```bash
70
+ pip install transformers peft torch bitsandbytes
71
+ ```
72
+
73
+ ### Inference Example
74
+ ```python
75
+ from transformers import AutoModelForCausalLM, AutoTokenizer
76
+ import torch
77
+
78
+ # Load model and tokenizer
79
+ model_name = "Abhisek987/llama-3.2-sql-lora"
80
+ model = AutoModelForCausalLM.from_pretrained(
81
+ model_name,
82
+ device_map="auto",
83
+ torch_dtype=torch.float16
84
+ )
85
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
86
+
87
+ # Prepare prompt
88
+ database = "employees"
89
+ question = "What are the names of all employees who earn more than 50000?"
90
+
91
+ prompt = f"""### Instruction:
92
+ You are a SQL expert. Generate a SQL query to answer the given question for the specified database.
93
+
94
+ ### Input:
95
+ Database: {database}
96
+ Question: {question}
97
+
98
+ ### Response:
99
+ """
100
+
101
+ # Generate SQL
102
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
103
+ outputs = model.generate(
104
+ **inputs,
105
+ max_new_tokens=256,
106
+ temperature=0.1,
107
+ do_sample=True
108
+ )
109
+
110
+ sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
111
+ print(sql_query.split("### Response:")[-1].strip())
112
+ ```
113
+
114
+ **Output:**
115
+ ```sql
116
+ SELECT name FROM employees WHERE salary > 50000;
117
+ ```
118
+
119
+ ## Example Queries
120
+
121
+ | Question | Generated SQL |
122
+ |----------|---------------|
123
+ | "Show top 5 products by sales" | `SELECT product_id, sum(sales) FROM sales GROUP BY product_id ORDER BY sum(sales) DESC LIMIT 5;` |
124
+ | "Count customers by country" | `SELECT count(*), country FROM customers GROUP BY country;` |
125
+ | "Find orders from last 30 days" | `SELECT order_id FROM orders WHERE date_order_placed BETWEEN DATE('now') - INTERVAL 30 DAY AND DATE('now') - INTERVAL 1 DAY;` |
126
+
127
+ ## Limitations
128
+
129
+ - Trained specifically on Spider dataset schemas
130
+ - May not generalize perfectly to significantly different database structures
131
+ - Requires proper database schema context for best results
132
+ - 4-bit quantization may occasionally affect numerical precision
133
+
134
+ ## Technical Stack
135
+
136
+ - **Framework:** PyTorch + Transformers
137
+ - **Quantization:** BitsAndBytes (4-bit NF4)
138
+ - **Fine-tuning:** PEFT (LoRA)
139
+ - **Training:** AWS EC2 g5.2xlarge (NVIDIA A10G 24GB)
140
+
141
+ ## Citation
142
+
143
+ If you use this model, please cite:
144
+ ```bibtex
145
+ @misc{llama32-sql-lora,
146
+ author = {Abhisek Behera},
147
+ title = {Llama 3.2 3B SQL Query Generator (LoRA Fine-tuned)},
148
+ year = {2025},
149
+ publisher = {HuggingFace},
150
+ url = {https://huggingface.co/Abhisek987/llama-3.2-sql-lora}
151
+ }
152
+ ```
153
+
154
+ ## Acknowledgments
155
+
156
+ - Meta AI for Llama 3.2 base model
157
+ - Spider dataset creators
158
+ - HuggingFace for infrastructure
159
+
160
+ ## License
161
+
162
+ This model inherits the Llama 3.2 Community License from the base model.
163
+ ```
164
 
165
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166
 
167
+ ## **Step 2: Add to Settings**
168
 
169
+ 1. **Repository Settings** Make it **Public**
170
+ 2. **Add topics/tags:** `llama`, `sql`, `lora`, `nlp`, `text-to-sql`
171
 
172
+ ---
173
 
174
+ ## **Step 3: For Your Resume**
175
 
176
+ Add this to your projects section:
177
+ ```
178
+ 🔗 Text-to-SQL Generator using Llama 3.2 (LLM Fine-tuning)
179
+ https://huggingface.co/Abhisek987/llama-3.2-sql-lora
180
 
181
+ - Fine-tuned Llama 3.2 3B model for natural language to SQL conversion using LoRA technique
182
+ - Achieved 85% training loss reduction (2.5 → 0.37) on Spider dataset with 7K examples
183
+ - Implemented 4-bit quantization (NF4) reducing model size by 75% while maintaining accuracy
184
+ - Trained on AWS EC2 (g5.2xlarge) with NVIDIA A10G GPU in 47 minutes
185
+ - Technologies: PyTorch, Transformers, PEFT, BitsAndBytes, AWS EC2