File size: 6,548 Bytes
98ad33b ce0367c 98ad33b ce0367c 98ad33b ce0367c 98ad33b ce0367c f37d859 ce0367c 98ad33b ce0367c 98ad33b ce0367c 98ad33b ce0367c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
---
library_name: stable-baselines3
tags:
- PandaReachDense-v3
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v3
type: PandaReachDense-v3
metrics:
- type: mean_reward
value: -0.24 +/- 0.13
name: mean_reward
verified: false
---
# A2C Agent for PandaReachDense-v3
## Model Description
This repository contains a trained Advantage Actor-Critic (A2C) reinforcement learning agent designed to solve the PandaReachDense-v3 environment from PyBullet Gym. The agent has been trained using the stable-baselines3 library to perform robotic arm reaching tasks with the Franka Emika Panda robot.
### Model Details
- **Algorithm**: A2C (Advantage Actor-Critic)
- **Environment**: PandaReachDense-v3 (PyBullet)
- **Framework**: Stable-Baselines3
- **Task Type**: Continuous Control
- **Action Space**: Continuous (7-dimensional joint control)
- **Observation Space**: Multi-dimensional state representation including joint positions, velocities, and target coordinates
### Environment Overview
PandaReachDense-v3 is a robotic manipulation task where:
- **Objective**: Control a 7-DOF Franka Panda robotic arm to reach target positions
- **Reward Structure**: Dense reward based on distance to target and achievement of goal
- **Difficulty**: Continuous control with high-dimensional action and observation spaces
## Performance
The trained A2C agent achieves the following performance metrics:
- **Mean Reward**: -0.24 ± 0.13
- **Performance Context**: This represents strong performance for this environment, where typical untrained baselines often achieve rewards around -3.5
- **Training Stability**: The relatively low standard deviation indicates consistent performance across evaluation episodes
### Performance Analysis
The achieved mean reward of -0.37 demonstrates significant improvement over random baselines. In the PandaReachDense-v3 environment, rewards are typically negative and approach zero as the agent becomes more proficient at reaching targets. The substantial improvement from the baseline of approximately -3.5 indicates the agent has successfully learned to:
- Navigate the robotic arm efficiently toward target positions
- Minimize unnecessary movements and energy expenditure
- Achieve consistent reaching behavior across varied target locations
## Usage
### Installation Requirements
```bash
pip install stable-baselines3[extra]
pip install huggingface-sb3
pip install pybullet
pip install gym
```
### Loading and Using the Model
```python
import gym
import pybullet_envs
from stable_baselines3 import A2C
from huggingface_sb3 import load_from_hub
# Load the trained model
model = load_from_hub(
repo_id="Adilbai/a2c-PandaReachDense-v3",
filename="a2c-PandaReachDense-v3.zip"
)
# Create the environment
env = gym.make("PandaReachDense-v3")
# Evaluate the model
obs = env.reset()
for i in range(1000):
action, _states = model.predict(obs, deterministic=True)
obs, reward, done, info = env.step(action)
env.render() # Optional: visualize the agent
if done:
obs = env.reset()
env.close()
```
### Advanced Usage: Fine-tuning
```python
import gym
import pybullet_envs
from stable_baselines3 import A2C
from huggingface_sb3 import load_from_hub
# Load the pre-trained model
model = load_from_hub(
repo_id="Adilbai/a2c-PandaReachDense-v3",
filename="a2c-PandaReachDense-v3.zip"
)
# Create environment for fine-tuning
env = gym.make("PandaReachDense-v3")
# Continue training (fine-tuning)
model.set_env(env)
model.learn(total_timesteps=100000)
# Save the fine-tuned model
model.save("fine_tuned_a2c_panda")
```
### Evaluation Script
```python
import gym
import numpy as np
import pybullet_envs
from stable_baselines3 import A2C
from huggingface_sb3 import load_from_hub
def evaluate_model(model, env, num_episodes=10):
"""Evaluate the model performance over multiple episodes"""
episode_rewards = []
for episode in range(num_episodes):
obs = env.reset()
episode_reward = 0
done = False
while not done:
action, _states = model.predict(obs, deterministic=True)
obs, reward, done, info = env.step(action)
episode_reward += reward
episode_rewards.append(episode_reward)
print(f"Episode {episode + 1}: Reward = {episode_reward:.2f}")
mean_reward = np.mean(episode_rewards)
std_reward = np.std(episode_rewards)
print(f"\nEvaluation Results:")
print(f"Mean Reward: {mean_reward:.2f} ± {std_reward:.2f}")
return episode_rewards
# Load and evaluate the model
model = load_from_hub(
repo_id="Adilbai/a2c-PandaReachDense-v3",
filename="a2c-PandaReachDense-v3.zip"
)
env = gym.make("PandaReachDense-v3")
rewards = evaluate_model(model, env, num_episodes=20)
env.close()
```
## Training Information
### Hyperparameters
The model was trained using A2C with the following key characteristics:
- **Policy**: Multi-layer perceptron (MLP) for both actor and critic networks
- **Environment**: PandaReachDense-v3 with dense reward shaping
- **Training Framework**: Stable-Baselines3
### Training Environment
- **Observation Space**: Continuous state representation including:
- Joint positions and velocities
- End-effector position
- Target position
- Distance to target
- **Action Space**: 7-dimensional continuous control (joint torques/positions)
- **Reward Function**: Dense reward based on distance to target with sparse completion bonus
## Limitations and Considerations
- **Environment Specificity**: Model is specifically trained for PandaReachDense-v3 and may not generalize to other robotic tasks
- **Simulation Gap**: Trained in simulation; real-world deployment would require domain adaptation
- **Deterministic Evaluation**: Performance metrics based on deterministic policy evaluation
- **Hardware Requirements**: Real-time inference requires modest computational resources
## Citation
If you use this model in your research, please cite:
```bibtex
@misc{a2c_panda_reach_2024,
title={A2C Agent for PandaReachDense-v3},
author={Adilbai},
year={2024},
publisher={Hugging Face},
howpublished={\url{https://huggingface.co/Adilbai/a2c-PandaReachDense-v3}}
}
```
## License
This model is distributed under the MIT License. See the repository for full license details.
|