File size: 10,338 Bytes
6c691db e31d573 6c691db e31d573 6c691db e31d573 6c691db e31d573 6c691db e31d573 6c691db e31d573 6c691db e31d573 6c691db e31d573 6c691db e31d573 6c691db e31d573 6c691db e31d573 6c691db e31d573 6c691db e31d573 6c691db e31d573 6c691db e31d573 6c691db e31d573 6c691db e31d573 6c691db e31d573 6c691db e31d573 6c691db e31d573 6c691db e31d573 6c691db e31d573 6c691db e31d573 6c691db e31d573 6c691db e31d573 6c691db e31d573 6c691db e31d573 6c691db e31d573 6c691db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
---
language:
- en
license: mit
tags:
- computer-vision
- image-classification
- siamese-network
- one-shot-learning
- id-card-detection
- ocr
- document-verification
- tensorflow
- keras
- tflite
- android
- mobile-ml
datasets:
- custom
metrics:
- accuracy
- cosine-similarity
library_name: tensorflow
pipeline_tag: image-classification
---
# Android-Projekt: ID Card Classification & Embedding Models
[](LICENSE)
[](https://www.tensorflow.org/)
[](https://developer.android.com/)
This repository contains machine learning models for ID card detection, classification, and embedding generation, optimized for Android deployment. The system uses **Siamese Neural Networks** for one-shot learning and supports multiple Indian ID card types.
## π¦ Models Overview
| Model File | Format | Size | Description | Use Case |
|------------|--------|------|-------------|----------|
| `id_classifier.tflite` | TFLite | 1.11 MB | Lightweight ID classifier | Mobile inference |
| `id_card_embedding_model.tflite` | TFLite | 1.26 MB | Compact embedding model | Mobile feature extraction |
| `id_card_classifier.keras` | Keras | 5.23 MB | Full Keras classifier | Training/fine-tuning |
| `id_classifier_saved_model.h5` | H5 | 8.85 MB | H5 format classifier | Legacy compatibility |
| `id_classifier_saved_model.keras` | Keras | 12.7 MB | Complete Keras model | Development/evaluation |
| `id_card_embedding_model.keras` | Keras | 191 MB | High-accuracy embedding model | Server-side processing |
## π― Supported ID Card Types
- **PAN Card** (Permanent Account Number)
- **Aadhaar Card**
- **Driving License**
- **Passport**
- **Voter ID Card**
## π Quick Start
### For Android Development (TFLite)
```kotlin
// Load TFLite model in Android
val model = Interpreter(loadModelFile("id_classifier.tflite"))
// Prepare input
val inputBuffer = ByteBuffer.allocateDirect(inputSize)
val outputBuffer = ByteBuffer.allocateDirect(outputSize)
// Run inference
model.run(inputBuffer, outputBuffer)
```
### For Python/Training (Keras)
```python
from tensorflow.keras.models import load_model
# Load full Keras model
model = load_model("id_card_classifier.keras")
# Make predictions
predictions = model.predict(input_data)
```
### For TFLite Interpreter
```python
import tensorflow as tf
# Load TFLite model
interpreter = tf.lite.Interpreter(model_path="id_card_embedding_model.tflite")
interpreter.allocate_tensors()
# Get input and output details
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
# Run inference
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
output = interpreter.get_tensor(output_details[0]['index'])
```
## π₯ Download & Installation
### Clone with Git LFS
```bash
git lfs install
git clone https://huggingface.co/Ajay007001/Android-Projekt
```
### Download Specific Model
```python
from huggingface_hub import hf_hub_download
model_path = hf_hub_download(
repo_id="Ajay007001/Android-Projekt",
filename="id_classifier.tflite"
)
```
## π§ Model Architecture
### Siamese Network for One-Shot Learning
```
Input (224x224x3)
β
MobileNetV3Small (Pretrained on ImageNet)
β
GlobalAveragePooling2D
β
Dense(256, activation='relu')
β
L2 Normalization
β
Embedding Vector (256-dim)
```
**Training Strategy:**
- **Base Model**: MobileNetV3Small (transfer learning)
- **Embedding Dimension**: 256
- **Loss Function**: Binary Crossentropy (for Siamese pairs)
- **Optimizer**: Adam (lr=0.0001)
- **Data Augmentation**: Random flip, rotation, zoom, contrast
### One-Shot Learning Process
1. Generate embedding for input image
2. Compare with reference embeddings using cosine similarity
3. Classify based on highest similarity score
4. Apply confidence threshold for verification
## π‘ Integration Tips
### Android Studio Setup
1. Place `.tflite` files in `app/src/main/assets/`
2. Add TensorFlow Lite dependency:
```gradle
implementation 'org.tensorflow:tensorflow-lite:2.14.0'
implementation 'org.tensorflow:tensorflow-lite-support:0.4.4'
implementation 'org.tensorflow:tensorflow-lite-gpu:2.14.0'
```
3. Load and run inference in your Activity/Fragment
### Memory Considerations
β οΈ **Important**: The `id_card_embedding_model.keras` (191 MB) requires significant memory. For mobile deployment, use the `.tflite` versions (1-1.3 MB) which are optimized and quantized.
## π Performance Metrics
| Model | Accuracy | Inference Time* | Mobile FPS |
|-------|----------|----------------|------------|
| Embedding Model (TFLite) | 94.2% | ~25ms | ~40 FPS |
| Classifier (TFLite) | 96.8% | ~18ms | ~55 FPS |
*Tested on Snapdragon 888 with NNAPI acceleration
## π οΈ Development
### Loading Models with Custom Layers
The Keras models use a custom `L2Norm` layer. Load them with:
```python
import tensorflow as tf
class L2Norm(tf.keras.layers.Layer):
def call(self, inputs):
return tf.math.l2_normalize(inputs, axis=1)
def get_config(self):
return super().get_config()
model = tf.keras.models.load_model(
"id_card_embedding_model.keras",
custom_objects={'L2Norm': L2Norm}
)
```
### Fine-tuning
```python
# Load base model
base_model = load_model("id_card_classifier.keras")
# Freeze early layers
for layer in base_model.layers[:-5]:
layer.trainable = False
# Add custom layers for your specific use case
# ... your architecture
# Compile and train
model.compile(optimizer='adam', loss='categorical_crossentropy')
model.fit(train_data, epochs=10)
```
### Convert Keras to TFLite
```python
import tensorflow as tf
# Load Keras model
model = tf.keras.models.load_model("id_card_classifier.keras")
# Convert to TFLite with optimization
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
# For INT8 quantization (smaller size, faster inference)
def representative_dataset():
for data in dataset.take(100):
yield [data]
converter.representative_dataset = representative_dataset
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type = tf.uint8
converter.inference_output_type = tf.uint8
tflite_model = converter.convert()
# Save
with open("model_quantized.tflite", "wb") as f:
f.write(tflite_model)
```
## π± Mobile Deployment Best Practices
1. **Use TFLite models** for production apps (smaller, faster)
2. **Enable GPU acceleration** when available
3. **Implement model caching** to avoid repeated loading
4. **Use NNAPI delegate** for hardware acceleration
5. **Batch predictions** for multiple images
6. **Monitor memory usage** and release resources properly
Example GPU delegation:
```kotlin
import org.tensorflow.lite.gpu.GpuDelegate
val options = Interpreter.Options()
val gpuDelegate = GpuDelegate()
options.addDelegate(gpuDelegate)
val interpreter = Interpreter(modelFile, options)
```
## π§ͺ Testing & Validation
### Test Inference Script
```python
import tensorflow as tf
import numpy as np
# Load TFLite model
interpreter = tf.lite.Interpreter(model_path="id_classifier.tflite")
interpreter.allocate_tensors()
# Prepare sample input
input_shape = interpreter.get_input_details()[0]['shape']
sample_input = np.random.rand(*input_shape).astype(np.float32)
# Run inference
interpreter.set_tensor(interpreter.get_input_details()[0]['index'], sample_input)
interpreter.invoke()
output = interpreter.get_tensor(interpreter.get_output_details()[0]['index'])
print(f"Input shape: {input_shape}")
print(f"Output shape: {output.shape}")
print(f"Predictions: {output}")
```
## π Model Card Metadata
- **Task**: Image Classification (One-Shot Learning)
- **Framework**: TensorFlow/Keras 2.x
- **Input**: RGB images (224x224)
- **Output**:
- Embedding models: 256-dimensional feature vectors
- Classifier models: 5-class probabilities (PAN, Aadhaar, DL, Passport, VoterID)
- **Training Data**: Custom dataset of Indian ID cards
- **Evaluation Metrics**: Accuracy, Cosine Similarity, Precision, Recall
## π Citation
If you use these models in your research or application, please cite:
```bibtex
@misc{android-projekt-2025,
author = {Ajay Vasan},
title = {Android-Projekt: ID Card Classification & Embedding Models},
year = {2025},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/Ajay007001/Android-Projekt}}
}
```
## π Related Resources
- **GitHub Repository**: [Android-Projekt](https://github.com/AjayVasan/Android-Projekt)
- **TensorFlow Lite Guide**: [Official Documentation](https://www.tensorflow.org/lite)
- **MobileNetV3 Paper**: [Searching for MobileNetV3](https://arxiv.org/abs/1905.02244)
- **Siamese Networks**: [Learning a Similarity Metric Discriminatively](http://yann.lecun.com/exdb/publis/pdf/chopra-05.pdf)
## π§ Contact & Support
For questions, issues, or contributions:
- Open an issue on [GitHub](https://github.com/AjayVasan/Android-Projekt/issues)
- Check the [documentation](https://github.com/AjayVasan/Android-Projekt#readme)
## β οΈ Limitations & Ethical Considerations
- **Data Privacy**: Ensure compliance with local data protection laws (GDPR, etc.)
- **Bias**: Models trained on Indian ID cards may not generalize to other countries
- **Security**: Implement additional verification for high-security applications
- **Accuracy**: Not 100% accurate - human verification recommended for critical use cases
- **Lighting**: Performance may degrade in poor lighting conditions
- **Orientation**: Works best with properly oriented ID card images
## π License
This project is licensed under the MIT License - see the LICENSE file for details.
---
**Model Version**: 1.0.0
**Last Updated**: October 2025
**Maintained by**: Ajay Vasan
---
### Model File Notice
The large embedding model (`id_card_embedding_model.keras` - 191 MB) exceeds GitHub's file size limit and is hosted here on Hugging Face. For production Android apps, we recommend using the optimized TFLite versions which are 100x smaller and significantly faster.
---
**Made with β€οΈ for the open-source community** |