Update README.md
Browse files
README.md
CHANGED
|
@@ -41,24 +41,23 @@ Choose the variant that best fits your deployment constraints:
|
|
| 41 |
|
| 42 |
| Model | Pruned | Kept | Size Reduction | Performance Trade-off |
|
| 43 |
|-------|--------|------|----------------|----------------------|
|
| 44 |
-
| **REAP-
|
| 45 |
-
| **REAP-
|
| 46 |
-
| **REAP-
|
| 47 |
-
| **REAP-40** | 40% | 60% | Large | Noticeable |
|
| 48 |
| **REAP-50** | 50% | 50% | Very Large | Significant |
|
| 49 |
|
| 50 |
**Repository Links:**
|
| 51 |
-
- [`Akicou/MiniMax-M2
|
| 52 |
-
- [`Akicou/MiniMax-M2
|
| 53 |
-
- [`Akicou/MiniMax-M2
|
| 54 |
-
- [`Akicou/MiniMax-M2
|
| 55 |
|
| 56 |
## Quick Start
|
| 57 |
|
| 58 |
```python
|
| 59 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 60 |
|
| 61 |
-
model_name = "Akicou/MiniMax-M2
|
| 62 |
|
| 63 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 64 |
model = AutoModelForCausalLM.from_pretrained(
|
|
@@ -111,7 +110,7 @@ Quantized GGUF variants optimized for `llama.cpp`, `Ollama`, and similar backend
|
|
| 111 |
|
| 112 |
### REAP Framework
|
| 113 |
|
| 114 |
-
Pruning was performed using the [REAP framework](https://github.com/CerebrasResearch/reap) (implementation: [
|
| 115 |
|
| 116 |
**Calibration Settings:**
|
| 117 |
- **Dataset:** Mixed-domain calibration corpus (150 samples per category)
|
|
@@ -196,7 +195,7 @@ If you use these pruned models in your research or applications, please cite bot
|
|
| 196 |
Pruning large MoE models requires substantial computational resources (multi-GPU H100 clusters). If you find these models useful:
|
| 197 |
|
| 198 |
- ☕ [Buy me a coffee](https://www.buymeacoffee.com/Akicou) to help offset GPU rental costs
|
| 199 |
-
- ⭐ Star the [GitHub repository](https://github.com/
|
| 200 |
- 📢 Share with others who might benefit
|
| 201 |
- 🐛 Report issues and contribute improvements
|
| 202 |
|
|
@@ -204,7 +203,7 @@ Your support enables continued development and release of efficient model varian
|
|
| 204 |
|
| 205 |
## 📞 Contact & Feedback
|
| 206 |
|
| 207 |
-
- **Issues & Requests:** Open an issue on [GitHub](https://github.com/
|
| 208 |
- **Discussions:** Use the HuggingFace Community tab above
|
| 209 |
- **Custom Pruning:** Reach out for specific pruning ratios or other MoE models
|
| 210 |
|
|
@@ -220,6 +219,6 @@ This model inherits the MIT license from the original MiniMax-M2.5 model. See [L
|
|
| 220 |
|
| 221 |
**Made with ❤️ by Akicou | Powered by REAP**
|
| 222 |
|
| 223 |
-
[🤗 Model Hub](https://huggingface.co/Akicou) | [💻 GitHub](https://github.com/
|
| 224 |
|
| 225 |
</div>
|
|
|
|
| 41 |
|
| 42 |
| Model | Pruned | Kept | Size Reduction | Performance Trade-off |
|
| 43 |
|-------|--------|------|----------------|----------------------|
|
| 44 |
+
| **REAP-19** | 19 | 81% | Moderate | Small |
|
| 45 |
+
| **REAP-29** | 29% | 71% | Significant | Moderate |
|
| 46 |
+
| **REAP-39** | 39% | 61% | Large | Noticeable |
|
|
|
|
| 47 |
| **REAP-50** | 50% | 50% | Very Large | Significant |
|
| 48 |
|
| 49 |
**Repository Links:**
|
| 50 |
+
- [`Akicou/MiniMax-M2-5-REAP-19`](https://huggingface.co/Akicou/MiniMax-M2-5-REAP-19)
|
| 51 |
+
- [`Akicou/MiniMax-M2-5-REAP-29`](https://huggingface.co/Akicou/MiniMax-M2-5-REAP-29)
|
| 52 |
+
- [`Akicou/MiniMax-M2-5-REAP-39`](https://huggingface.co/Akicou/MiniMax-M2-5-REAP-39)
|
| 53 |
+
- [`Akicou/MiniMax-M2-5-REAP-50`](https://huggingface.co/Akicou/MiniMax-M2-5-REAP-50)
|
| 54 |
|
| 55 |
## Quick Start
|
| 56 |
|
| 57 |
```python
|
| 58 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 59 |
|
| 60 |
+
model_name = "Akicou/MiniMax-M2-5-REAP-19"
|
| 61 |
|
| 62 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 63 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
| 110 |
|
| 111 |
### REAP Framework
|
| 112 |
|
| 113 |
+
Pruning was performed using the [REAP framework](https://github.com/CerebrasResearch/reap) (implementation: [Akicuo/reap](https://github.com/Akicuo/reap)) with the following configuration:
|
| 114 |
|
| 115 |
**Calibration Settings:**
|
| 116 |
- **Dataset:** Mixed-domain calibration corpus (150 samples per category)
|
|
|
|
| 195 |
Pruning large MoE models requires substantial computational resources (multi-GPU H100 clusters). If you find these models useful:
|
| 196 |
|
| 197 |
- ☕ [Buy me a coffee](https://www.buymeacoffee.com/Akicou) to help offset GPU rental costs
|
| 198 |
+
- ⭐ Star the [GitHub repository](https://github.com/Akicuo/reap)
|
| 199 |
- 📢 Share with others who might benefit
|
| 200 |
- 🐛 Report issues and contribute improvements
|
| 201 |
|
|
|
|
| 203 |
|
| 204 |
## 📞 Contact & Feedback
|
| 205 |
|
| 206 |
+
- **Issues & Requests:** Open an issue on [GitHub](https://github.com/Akicuo/reap/issues)
|
| 207 |
- **Discussions:** Use the HuggingFace Community tab above
|
| 208 |
- **Custom Pruning:** Reach out for specific pruning ratios or other MoE models
|
| 209 |
|
|
|
|
| 219 |
|
| 220 |
**Made with ❤️ by Akicou | Powered by REAP**
|
| 221 |
|
| 222 |
+
[🤗 Model Hub](https://huggingface.co/Akicou) | [💻 GitHub](https://github.com/Akicuo) | [☕ Support](https://www.buymeacoffee.com/Akicou)
|
| 223 |
|
| 224 |
</div>
|