Akicou commited on
Commit
3d9f7de
·
verified ·
1 Parent(s): b193971

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -13
README.md CHANGED
@@ -41,24 +41,23 @@ Choose the variant that best fits your deployment constraints:
41
 
42
  | Model | Pruned | Kept | Size Reduction | Performance Trade-off |
43
  |-------|--------|------|----------------|----------------------|
44
- | **REAP-10** | 10% | 90% | Small | Minimal |
45
- | **REAP-20** | 20% | 80% | Moderate | Small |
46
- | **REAP-30** | 30% | 70% | Significant | Moderate |
47
- | **REAP-40** | 40% | 60% | Large | Noticeable |
48
  | **REAP-50** | 50% | 50% | Very Large | Significant |
49
 
50
  **Repository Links:**
51
- - [`Akicou/MiniMax-M2.5-REAP-19`](https://huggingface.co/Akicou/MiniMax-M2.5-REAP-19)
52
- - [`Akicou/MiniMax-M2.5-REAP-29`](https://huggingface.co/Akicou/MiniMax-M2.5-REAP-29)
53
- - [`Akicou/MiniMax-M2.5-REAP-39`](https://huggingface.co/Akicou/MiniMax-M2.5-REAP-39)
54
- - [`Akicou/MiniMax-M2.5-REAP-50`](https://huggingface.co/Akicou/MiniMax-M2.5-REAP-50)
55
 
56
  ## Quick Start
57
 
58
  ```python
59
  from transformers import AutoTokenizer, AutoModelForCausalLM
60
 
61
- model_name = "Akicou/MiniMax-M2.5-REAP-19"
62
 
63
  tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
64
  model = AutoModelForCausalLM.from_pretrained(
@@ -111,7 +110,7 @@ Quantized GGUF variants optimized for `llama.cpp`, `Ollama`, and similar backend
111
 
112
  ### REAP Framework
113
 
114
- Pruning was performed using the [REAP framework](https://github.com/CerebrasResearch/reap) (implementation: [Akicou/reap](https://github.com/Akicou/reap)) with the following configuration:
115
 
116
  **Calibration Settings:**
117
  - **Dataset:** Mixed-domain calibration corpus (150 samples per category)
@@ -196,7 +195,7 @@ If you use these pruned models in your research or applications, please cite bot
196
  Pruning large MoE models requires substantial computational resources (multi-GPU H100 clusters). If you find these models useful:
197
 
198
  - ☕ [Buy me a coffee](https://www.buymeacoffee.com/Akicou) to help offset GPU rental costs
199
- - ⭐ Star the [GitHub repository](https://github.com/Akicou/reap)
200
  - 📢 Share with others who might benefit
201
  - 🐛 Report issues and contribute improvements
202
 
@@ -204,7 +203,7 @@ Your support enables continued development and release of efficient model varian
204
 
205
  ## 📞 Contact & Feedback
206
 
207
- - **Issues & Requests:** Open an issue on [GitHub](https://github.com/Akicou/reap/issues)
208
  - **Discussions:** Use the HuggingFace Community tab above
209
  - **Custom Pruning:** Reach out for specific pruning ratios or other MoE models
210
 
@@ -220,6 +219,6 @@ This model inherits the MIT license from the original MiniMax-M2.5 model. See [L
220
 
221
  **Made with ❤️ by Akicou | Powered by REAP**
222
 
223
- [🤗 Model Hub](https://huggingface.co/Akicou) | [💻 GitHub](https://github.com/Akicou) | [☕ Support](https://www.buymeacoffee.com/Akicou)
224
 
225
  </div>
 
41
 
42
  | Model | Pruned | Kept | Size Reduction | Performance Trade-off |
43
  |-------|--------|------|----------------|----------------------|
44
+ | **REAP-19** | 19 | 81% | Moderate | Small |
45
+ | **REAP-29** | 29% | 71% | Significant | Moderate |
46
+ | **REAP-39** | 39% | 61% | Large | Noticeable |
 
47
  | **REAP-50** | 50% | 50% | Very Large | Significant |
48
 
49
  **Repository Links:**
50
+ - [`Akicou/MiniMax-M2-5-REAP-19`](https://huggingface.co/Akicou/MiniMax-M2-5-REAP-19)
51
+ - [`Akicou/MiniMax-M2-5-REAP-29`](https://huggingface.co/Akicou/MiniMax-M2-5-REAP-29)
52
+ - [`Akicou/MiniMax-M2-5-REAP-39`](https://huggingface.co/Akicou/MiniMax-M2-5-REAP-39)
53
+ - [`Akicou/MiniMax-M2-5-REAP-50`](https://huggingface.co/Akicou/MiniMax-M2-5-REAP-50)
54
 
55
  ## Quick Start
56
 
57
  ```python
58
  from transformers import AutoTokenizer, AutoModelForCausalLM
59
 
60
+ model_name = "Akicou/MiniMax-M2-5-REAP-19"
61
 
62
  tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
63
  model = AutoModelForCausalLM.from_pretrained(
 
110
 
111
  ### REAP Framework
112
 
113
+ Pruning was performed using the [REAP framework](https://github.com/CerebrasResearch/reap) (implementation: [Akicuo/reap](https://github.com/Akicuo/reap)) with the following configuration:
114
 
115
  **Calibration Settings:**
116
  - **Dataset:** Mixed-domain calibration corpus (150 samples per category)
 
195
  Pruning large MoE models requires substantial computational resources (multi-GPU H100 clusters). If you find these models useful:
196
 
197
  - ☕ [Buy me a coffee](https://www.buymeacoffee.com/Akicou) to help offset GPU rental costs
198
+ - ⭐ Star the [GitHub repository](https://github.com/Akicuo/reap)
199
  - 📢 Share with others who might benefit
200
  - 🐛 Report issues and contribute improvements
201
 
 
203
 
204
  ## 📞 Contact & Feedback
205
 
206
+ - **Issues & Requests:** Open an issue on [GitHub](https://github.com/Akicuo/reap/issues)
207
  - **Discussions:** Use the HuggingFace Community tab above
208
  - **Custom Pruning:** Reach out for specific pruning ratios or other MoE models
209
 
 
219
 
220
  **Made with ❤️ by Akicou | Powered by REAP**
221
 
222
+ [🤗 Model Hub](https://huggingface.co/Akicou) | [💻 GitHub](https://github.com/Akicuo) | [☕ Support](https://www.buymeacoffee.com/Akicou)
223
 
224
  </div>