File size: 16,003 Bytes
4994fd0 b31917b 4994fd0 b31917b 4994fd0 b31917b 4994fd0 b31917b 4994fd0 b31917b 4994fd0 b31917b 4994fd0 b31917b 4994fd0 b31917b 4994fd0 b31917b 4994fd0 b31917b 4994fd0 b31917b 4994fd0 b31917b 4994fd0 b31917b 4994fd0 b31917b 4994fd0 b31917b 4994fd0 b31917b 4994fd0 b31917b 4994fd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 |
"""
RunPod Serverless Handler - Wrapper for AI-Toolkit
Does NOT modify ai-toolkit code, only wraps it
Supports RunPod model caching via HuggingFace integration.
"""
import os
import sys
import subprocess
import traceback
import logging
import uuid
from pathlib import Path
# =============================================================================
# Environment Setup (must be before other imports)
# =============================================================================
# RunPod cache paths
RUNPOD_CACHE_BASE = "/runpod-volume/huggingface-cache"
RUNPOD_HF_CACHE = "/runpod-volume/huggingface-cache/hub"
# Check if running on RunPod with cache available
IS_RUNPOD_CACHE = os.path.exists("/runpod-volume")
if IS_RUNPOD_CACHE:
# Use RunPod's cache directory for HuggingFace downloads
os.environ["HF_HOME"] = RUNPOD_CACHE_BASE
os.environ["HUGGINGFACE_HUB_CACHE"] = RUNPOD_HF_CACHE
os.environ["TRANSFORMERS_CACHE"] = RUNPOD_HF_CACHE
os.environ["HF_DATASETS_CACHE"] = f"{RUNPOD_CACHE_BASE}/datasets"
# Performance and telemetry settings
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
os.environ["NO_ALBUMENTATIONS_UPDATE"] = "1"
os.environ["DISABLE_TELEMETRY"] = "YES"
# Get HF token from environment
HF_TOKEN = os.environ.get("HF_TOKEN", "")
if HF_TOKEN:
os.environ["HUGGING_FACE_HUB_TOKEN"] = HF_TOKEN
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
AI_TOOLKIT_DIR = os.path.join(SCRIPT_DIR, "ai-toolkit")
import runpod
import torch
import yaml
import gc
import shutil
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Track current loaded model for cleanup
CURRENT_MODEL = None
# =============================================================================
# Model Configuration
# =============================================================================
# Model configs matching ai-toolkit/config/examples exactly
MODEL_PRESETS = {
"wan21_1b": "train_lora_wan21_1b_24gb.yaml",
"wan21_14b": "train_lora_wan21_14b_24gb.yaml",
"wan22_14b": "train_lora_wan22_14b_24gb.yaml",
"qwen_image": "train_lora_qwen_image_24gb.yaml",
"qwen_image_edit": "train_lora_qwen_image_edit_32gb.yaml",
"qwen_image_edit_2509": "train_lora_qwen_image_edit_2509_32gb.yaml",
"flux_dev": "train_lora_flux_24gb.yaml",
"flux_schnell": "train_lora_flux_schnell_24gb.yaml",
}
# All models cached in single HuggingFace repo for RunPod caching
CACHE_REPO = "Aloukik21/trainer"
# Map model keys to subfolder in cache repo
MODEL_CACHE_PATHS = {
"wan21_1b": "wan21-14b", # Uses same base, different config
"wan21_14b": "wan21-14b",
"wan22_14b": "wan22-14b",
"qwen_image": "qwen-image",
"qwen_image_edit": "qwen-image", # Same base model
"qwen_image_edit_2509": "qwen-image",
"flux_dev": "flux-dev",
"flux_schnell": "flux-schnell",
}
# Original HuggingFace repos (fallback if cache not available)
MODEL_HF_REPOS = {
"wan21_1b": "Wan-AI/Wan2.1-T2V-1.3B-Diffusers",
"wan21_14b": "Wan-AI/Wan2.1-T2V-14B-Diffusers",
"wan22_14b": "ai-toolkit/Wan2.2-T2V-A14B-Diffusers-bf16",
"qwen_image": "Qwen/Qwen-Image",
"qwen_image_edit": "Qwen/Qwen-Image-Edit",
"qwen_image_edit_2509": "Qwen/Qwen-Image-Edit",
"flux_dev": "black-forest-labs/FLUX.1-dev",
"flux_schnell": "black-forest-labs/FLUX.1-schnell",
}
# Accuracy Recovery Adapters path in cache repo
ARA_CACHE_PATH = "accuracy_recovery_adapters"
# =============================================================================
# Cleanup Functions
# =============================================================================
def cleanup_gpu_memory():
"""Aggressively clean up GPU memory."""
logger.info("Cleaning up GPU memory...")
# Clear PyTorch cache
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
# Force garbage collection
gc.collect()
# Clear again after GC
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.info(f"GPU memory after cleanup: {get_gpu_info()}")
def cleanup_temp_files():
"""Clean up temporary training files."""
logger.info("Cleaning up temporary files...")
# Clean up generated configs (keep example configs)
config_dir = os.path.join(AI_TOOLKIT_DIR, "config")
for f in os.listdir(config_dir):
if f.endswith('.yaml') and f.startswith(('lora_', 'test_', 'my_')):
try:
os.remove(os.path.join(config_dir, f))
logger.info(f"Removed temp config: {f}")
except Exception as e:
logger.warning(f"Failed to remove {f}: {e}")
# Clean up latent cache directories in workspace
workspace_dirs = ["/workspace/dataset", "/workspace/output"]
for ws_dir in workspace_dirs:
if os.path.exists(ws_dir):
for item in os.listdir(ws_dir):
item_path = os.path.join(ws_dir, item)
if item.startswith(('_latent_cache', '_t_e_cache', '.aitk')):
try:
if os.path.isdir(item_path):
shutil.rmtree(item_path)
else:
os.remove(item_path)
logger.info(f"Removed cache: {item_path}")
except Exception as e:
logger.warning(f"Failed to remove {item_path}: {e}")
def cleanup_before_training(new_model: str):
"""Full cleanup before starting new model training."""
global CURRENT_MODEL
if CURRENT_MODEL and CURRENT_MODEL != new_model:
logger.info(f"Switching from {CURRENT_MODEL} to {new_model} - performing full cleanup")
cleanup_gpu_memory()
cleanup_temp_files()
elif CURRENT_MODEL == new_model:
logger.info(f"Same model {new_model} - light cleanup only")
cleanup_gpu_memory()
else:
logger.info(f"First training run with {new_model}")
CURRENT_MODEL = new_model
# Final memory check
gpu_info = get_gpu_info()
logger.info(f"Ready for training. GPU: {gpu_info['name']}, Free: {gpu_info['free_gb']}GB")
# =============================================================================
# Utility Functions
# =============================================================================
def get_gpu_info():
"""Get GPU information."""
if not torch.cuda.is_available():
return {"available": False}
props = torch.cuda.get_device_properties(0)
free_mem, total_mem = torch.cuda.mem_get_info(0)
return {
"available": True,
"name": props.name,
"total_gb": round(total_mem / (1024**3), 2),
"free_gb": round(free_mem / (1024**3), 2),
}
def get_environment_info():
"""Get environment information for debugging."""
return {
"is_runpod_cache": IS_RUNPOD_CACHE,
"hf_home": os.environ.get("HF_HOME", "not set"),
"hf_token_set": bool(HF_TOKEN),
"gpu": get_gpu_info(),
"ai_toolkit_dir": AI_TOOLKIT_DIR,
"cache_exists": os.path.exists(RUNPOD_HF_CACHE) if IS_RUNPOD_CACHE else False,
}
def find_cached_model(model_key: str) -> str:
"""
Find cached model path on RunPod from Aloukik21/trainer repo.
Args:
model_key: Model key (e.g., 'flux_dev', 'wan22_14b')
Returns:
Path to cached model subfolder, or original HF repo if not cached
"""
if not IS_RUNPOD_CACHE:
return MODEL_HF_REPOS.get(model_key, "")
# Check for Aloukik21/trainer cache
cache_name = CACHE_REPO.replace("/", "--")
snapshots_dir = Path(RUNPOD_HF_CACHE) / f"models--{cache_name}" / "snapshots"
if snapshots_dir.exists():
snapshots = list(snapshots_dir.iterdir())
if snapshots:
# Get the subfolder for this model
subfolder = MODEL_CACHE_PATHS.get(model_key)
if subfolder:
cached_path = snapshots[0] / subfolder
if cached_path.exists():
logger.info(f"Using cached model: {model_key} -> {cached_path}")
return str(cached_path)
# Fallback to original repo
original_repo = MODEL_HF_REPOS.get(model_key, "")
logger.info(f"Model not in cache, using original: {original_repo}")
return original_repo
def find_cached_ara(adapter_name: str) -> str:
"""
Find cached accuracy recovery adapter.
Args:
adapter_name: Adapter filename (e.g., 'wan22_14b_t2i_torchao_uint4.safetensors')
Returns:
Path to cached adapter, or original HF path
"""
if not IS_RUNPOD_CACHE:
return f"ostris/accuracy_recovery_adapters/{adapter_name}"
cache_name = CACHE_REPO.replace("/", "--")
snapshots_dir = Path(RUNPOD_HF_CACHE) / f"models--{cache_name}" / "snapshots"
if snapshots_dir.exists():
snapshots = list(snapshots_dir.iterdir())
if snapshots:
cached_path = snapshots[0] / ARA_CACHE_PATH / adapter_name
if cached_path.exists():
logger.info(f"Using cached ARA: {adapter_name} -> {cached_path}")
return str(cached_path)
return f"ostris/accuracy_recovery_adapters/{adapter_name}"
def check_model_cache_status(model_key: str) -> dict:
"""Check if model files are cached in Aloukik21/trainer."""
if model_key not in MODEL_CACHE_PATHS:
return {"cached": False, "reason": "unknown model"}
status = {
"model": model_key,
"cache_repo": CACHE_REPO,
"subfolder": MODEL_CACHE_PATHS.get(model_key),
}
# Check if main cache repo exists
cache_name = CACHE_REPO.replace("/", "--")
snapshots_dir = Path(RUNPOD_HF_CACHE) / f"models--{cache_name}" / "snapshots"
if snapshots_dir.exists():
snapshots = list(snapshots_dir.iterdir())
if snapshots:
subfolder = MODEL_CACHE_PATHS.get(model_key)
model_path = snapshots[0] / subfolder
status["cached"] = model_path.exists()
status["path"] = str(model_path) if model_path.exists() else None
else:
status["cached"] = False
else:
status["cached"] = False
status["reason"] = "cache repo not found"
return status
# =============================================================================
# Config Loading and Training
# =============================================================================
def load_example_config(model_key):
"""Load example config from ai-toolkit."""
if model_key not in MODEL_PRESETS:
raise ValueError(f"Unknown model: {model_key}. Available: {list(MODEL_PRESETS.keys())}")
config_file = MODEL_PRESETS[model_key]
config_path = os.path.join(AI_TOOLKIT_DIR, "config", "examples", config_file)
with open(config_path, 'r') as f:
return yaml.safe_load(f)
def run_training(params):
"""Run training using ai-toolkit."""
model_key = params.get("model", "wan22_14b")
# Cleanup before starting new training
cleanup_before_training(model_key)
# Load base config from ai-toolkit examples
config = load_example_config(model_key)
# Override with user params
job_name = params.get("name", f"lora_{model_key}_{uuid.uuid4().hex[:6]}")
config["config"]["name"] = job_name
process = config["config"]["process"][0]
# Dataset
process["datasets"][0]["folder_path"] = params.get("dataset_path", "/workspace/dataset")
# Output
process["training_folder"] = params.get("output_path", "/workspace/output")
# Training params (only override if provided)
if "steps" in params:
process["train"]["steps"] = params["steps"]
if "batch_size" in params:
process["train"]["batch_size"] = params["batch_size"]
if "learning_rate" in params:
process["train"]["lr"] = params["learning_rate"]
if "lora_rank" in params:
process["network"]["linear"] = params["lora_rank"]
process["network"]["linear_alpha"] = params.get("lora_alpha", params["lora_rank"])
if "save_every" in params:
process["save"]["save_every"] = params["save_every"]
if "sample_every" in params:
process["sample"]["sample_every"] = params["sample_every"]
if "resolution" in params:
process["datasets"][0]["resolution"] = params["resolution"]
if "num_frames" in params:
process["datasets"][0]["num_frames"] = params["num_frames"]
if "sample_prompts" in params:
process["sample"]["prompts"] = params["sample_prompts"]
if "trigger_word" in params:
process["trigger_word"] = params["trigger_word"]
# Check if we should use cached model path from Aloukik21/trainer
if "model" in process:
cached_path = find_cached_model(model_key)
if cached_path:
process["model"]["name_or_path"] = cached_path
logger.info(f"Model path set to: {cached_path}")
# Save config
config_dir = os.path.join(AI_TOOLKIT_DIR, "config")
config_path = os.path.join(config_dir, f"{job_name}.yaml")
with open(config_path, 'w') as f:
yaml.dump(config, f, default_flow_style=False)
logger.info(f"Config saved: {config_path}")
logger.info(f"Starting: {job_name}")
# Run ai-toolkit
cmd = [sys.executable, os.path.join(AI_TOOLKIT_DIR, "run.py"), config_path]
logger.info(f"Command: {' '.join(cmd)}")
proc = subprocess.Popen(
cmd,
cwd=AI_TOOLKIT_DIR,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
bufsize=1,
)
for line in proc.stdout:
logger.info(line.rstrip())
proc.wait()
# Cleanup after training (success or fail)
cleanup_gpu_memory()
if proc.returncode != 0:
raise RuntimeError(f"Training failed with code {proc.returncode}")
return {
"status": "success",
"job_name": job_name,
"output_path": process["training_folder"],
"model": model_key,
}
# =============================================================================
# Handler
# =============================================================================
def handler(job):
"""RunPod handler."""
job_input = job.get("input", {})
action = job_input.get("action", "train")
logger.info(f"Action: {action}, GPU: {get_gpu_info()}")
try:
if action == "list_models":
return {"status": "success", "models": list(MODEL_PRESETS.keys())}
elif action == "status":
return {
"status": "success",
"environment": get_environment_info(),
}
elif action == "check_cache":
model_key = job_input.get("model")
if model_key:
cache_status = check_model_cache_status(model_key)
else:
cache_status = {m: check_model_cache_status(m) for m in MODEL_PRESETS.keys()}
return {"status": "success", "cache": cache_status}
elif action == "cleanup":
# Manual cleanup action
cleanup_gpu_memory()
cleanup_temp_files()
global CURRENT_MODEL
CURRENT_MODEL = None
return {
"status": "success",
"message": "Cleanup complete",
"gpu": get_gpu_info(),
}
elif action == "train":
params = job_input.get("params", {})
params["model"] = job_input.get("model", params.get("model", "wan22_14b"))
return run_training(params)
else:
return {"status": "error", "error": f"Unknown action: {action}"}
except Exception as e:
logger.error(traceback.format_exc())
return {"status": "error", "error": str(e)}
if __name__ == "__main__":
logger.info("Starting AI-Toolkit RunPod Handler")
logger.info(f"Environment: {get_environment_info()}")
runpod.serverless.start({"handler": handler})
|