File size: 16,003 Bytes
4994fd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b31917b
 
 
 
 
 
 
 
 
 
 
 
 
4994fd0
 
b31917b
 
 
 
 
 
 
 
 
 
4994fd0
 
b31917b
 
 
4994fd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b31917b
4994fd0
b31917b
4994fd0
 
b31917b
4994fd0
 
b31917b
4994fd0
 
b31917b
4994fd0
b31917b
 
4994fd0
 
 
 
 
b31917b
 
 
 
 
 
 
 
 
 
 
 
4994fd0
b31917b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4994fd0
 
 
b31917b
 
4994fd0
 
b31917b
 
 
 
 
4994fd0
b31917b
 
 
4994fd0
b31917b
 
 
 
 
 
 
4994fd0
b31917b
 
 
 
4994fd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b31917b
 
 
 
 
 
4994fd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
"""
RunPod Serverless Handler - Wrapper for AI-Toolkit
Does NOT modify ai-toolkit code, only wraps it

Supports RunPod model caching via HuggingFace integration.
"""

import os
import sys
import subprocess
import traceback
import logging
import uuid
from pathlib import Path

# =============================================================================
# Environment Setup (must be before other imports)
# =============================================================================

# RunPod cache paths
RUNPOD_CACHE_BASE = "/runpod-volume/huggingface-cache"
RUNPOD_HF_CACHE = "/runpod-volume/huggingface-cache/hub"

# Check if running on RunPod with cache available
IS_RUNPOD_CACHE = os.path.exists("/runpod-volume")

if IS_RUNPOD_CACHE:
    # Use RunPod's cache directory for HuggingFace downloads
    os.environ["HF_HOME"] = RUNPOD_CACHE_BASE
    os.environ["HUGGINGFACE_HUB_CACHE"] = RUNPOD_HF_CACHE
    os.environ["TRANSFORMERS_CACHE"] = RUNPOD_HF_CACHE
    os.environ["HF_DATASETS_CACHE"] = f"{RUNPOD_CACHE_BASE}/datasets"

# Performance and telemetry settings
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
os.environ["NO_ALBUMENTATIONS_UPDATE"] = "1"
os.environ["DISABLE_TELEMETRY"] = "YES"

# Get HF token from environment
HF_TOKEN = os.environ.get("HF_TOKEN", "")
if HF_TOKEN:
    os.environ["HUGGING_FACE_HUB_TOKEN"] = HF_TOKEN

SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
AI_TOOLKIT_DIR = os.path.join(SCRIPT_DIR, "ai-toolkit")

import runpod
import torch
import yaml
import gc
import shutil

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Track current loaded model for cleanup
CURRENT_MODEL = None

# =============================================================================
# Model Configuration
# =============================================================================

# Model configs matching ai-toolkit/config/examples exactly
MODEL_PRESETS = {
    "wan21_1b": "train_lora_wan21_1b_24gb.yaml",
    "wan21_14b": "train_lora_wan21_14b_24gb.yaml",
    "wan22_14b": "train_lora_wan22_14b_24gb.yaml",
    "qwen_image": "train_lora_qwen_image_24gb.yaml",
    "qwen_image_edit": "train_lora_qwen_image_edit_32gb.yaml",
    "qwen_image_edit_2509": "train_lora_qwen_image_edit_2509_32gb.yaml",
    "flux_dev": "train_lora_flux_24gb.yaml",
    "flux_schnell": "train_lora_flux_schnell_24gb.yaml",
}

# All models cached in single HuggingFace repo for RunPod caching
CACHE_REPO = "Aloukik21/trainer"

# Map model keys to subfolder in cache repo
MODEL_CACHE_PATHS = {
    "wan21_1b": "wan21-14b",  # Uses same base, different config
    "wan21_14b": "wan21-14b",
    "wan22_14b": "wan22-14b",
    "qwen_image": "qwen-image",
    "qwen_image_edit": "qwen-image",  # Same base model
    "qwen_image_edit_2509": "qwen-image",
    "flux_dev": "flux-dev",
    "flux_schnell": "flux-schnell",
}

# Original HuggingFace repos (fallback if cache not available)
MODEL_HF_REPOS = {
    "wan21_1b": "Wan-AI/Wan2.1-T2V-1.3B-Diffusers",
    "wan21_14b": "Wan-AI/Wan2.1-T2V-14B-Diffusers",
    "wan22_14b": "ai-toolkit/Wan2.2-T2V-A14B-Diffusers-bf16",
    "qwen_image": "Qwen/Qwen-Image",
    "qwen_image_edit": "Qwen/Qwen-Image-Edit",
    "qwen_image_edit_2509": "Qwen/Qwen-Image-Edit",
    "flux_dev": "black-forest-labs/FLUX.1-dev",
    "flux_schnell": "black-forest-labs/FLUX.1-schnell",
}

# Accuracy Recovery Adapters path in cache repo
ARA_CACHE_PATH = "accuracy_recovery_adapters"


# =============================================================================
# Cleanup Functions
# =============================================================================

def cleanup_gpu_memory():
    """Aggressively clean up GPU memory."""
    logger.info("Cleaning up GPU memory...")

    # Clear PyTorch cache
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.synchronize()

    # Force garbage collection
    gc.collect()

    # Clear again after GC
    if torch.cuda.is_available():
        torch.cuda.empty_cache()

    logger.info(f"GPU memory after cleanup: {get_gpu_info()}")


def cleanup_temp_files():
    """Clean up temporary training files."""
    logger.info("Cleaning up temporary files...")

    # Clean up generated configs (keep example configs)
    config_dir = os.path.join(AI_TOOLKIT_DIR, "config")
    for f in os.listdir(config_dir):
        if f.endswith('.yaml') and f.startswith(('lora_', 'test_', 'my_')):
            try:
                os.remove(os.path.join(config_dir, f))
                logger.info(f"Removed temp config: {f}")
            except Exception as e:
                logger.warning(f"Failed to remove {f}: {e}")

    # Clean up latent cache directories in workspace
    workspace_dirs = ["/workspace/dataset", "/workspace/output"]
    for ws_dir in workspace_dirs:
        if os.path.exists(ws_dir):
            for item in os.listdir(ws_dir):
                item_path = os.path.join(ws_dir, item)
                if item.startswith(('_latent_cache', '_t_e_cache', '.aitk')):
                    try:
                        if os.path.isdir(item_path):
                            shutil.rmtree(item_path)
                        else:
                            os.remove(item_path)
                        logger.info(f"Removed cache: {item_path}")
                    except Exception as e:
                        logger.warning(f"Failed to remove {item_path}: {e}")


def cleanup_before_training(new_model: str):
    """Full cleanup before starting new model training."""
    global CURRENT_MODEL

    if CURRENT_MODEL and CURRENT_MODEL != new_model:
        logger.info(f"Switching from {CURRENT_MODEL} to {new_model} - performing full cleanup")
        cleanup_gpu_memory()
        cleanup_temp_files()
    elif CURRENT_MODEL == new_model:
        logger.info(f"Same model {new_model} - light cleanup only")
        cleanup_gpu_memory()
    else:
        logger.info(f"First training run with {new_model}")

    CURRENT_MODEL = new_model

    # Final memory check
    gpu_info = get_gpu_info()
    logger.info(f"Ready for training. GPU: {gpu_info['name']}, Free: {gpu_info['free_gb']}GB")


# =============================================================================
# Utility Functions
# =============================================================================

def get_gpu_info():
    """Get GPU information."""
    if not torch.cuda.is_available():
        return {"available": False}
    props = torch.cuda.get_device_properties(0)
    free_mem, total_mem = torch.cuda.mem_get_info(0)
    return {
        "available": True,
        "name": props.name,
        "total_gb": round(total_mem / (1024**3), 2),
        "free_gb": round(free_mem / (1024**3), 2),
    }


def get_environment_info():
    """Get environment information for debugging."""
    return {
        "is_runpod_cache": IS_RUNPOD_CACHE,
        "hf_home": os.environ.get("HF_HOME", "not set"),
        "hf_token_set": bool(HF_TOKEN),
        "gpu": get_gpu_info(),
        "ai_toolkit_dir": AI_TOOLKIT_DIR,
        "cache_exists": os.path.exists(RUNPOD_HF_CACHE) if IS_RUNPOD_CACHE else False,
    }


def find_cached_model(model_key: str) -> str:
    """
    Find cached model path on RunPod from Aloukik21/trainer repo.

    Args:
        model_key: Model key (e.g., 'flux_dev', 'wan22_14b')

    Returns:
        Path to cached model subfolder, or original HF repo if not cached
    """
    if not IS_RUNPOD_CACHE:
        return MODEL_HF_REPOS.get(model_key, "")

    # Check for Aloukik21/trainer cache
    cache_name = CACHE_REPO.replace("/", "--")
    snapshots_dir = Path(RUNPOD_HF_CACHE) / f"models--{cache_name}" / "snapshots"

    if snapshots_dir.exists():
        snapshots = list(snapshots_dir.iterdir())
        if snapshots:
            # Get the subfolder for this model
            subfolder = MODEL_CACHE_PATHS.get(model_key)
            if subfolder:
                cached_path = snapshots[0] / subfolder
                if cached_path.exists():
                    logger.info(f"Using cached model: {model_key} -> {cached_path}")
                    return str(cached_path)

    # Fallback to original repo
    original_repo = MODEL_HF_REPOS.get(model_key, "")
    logger.info(f"Model not in cache, using original: {original_repo}")
    return original_repo


def find_cached_ara(adapter_name: str) -> str:
    """
    Find cached accuracy recovery adapter.

    Args:
        adapter_name: Adapter filename (e.g., 'wan22_14b_t2i_torchao_uint4.safetensors')

    Returns:
        Path to cached adapter, or original HF path
    """
    if not IS_RUNPOD_CACHE:
        return f"ostris/accuracy_recovery_adapters/{adapter_name}"

    cache_name = CACHE_REPO.replace("/", "--")
    snapshots_dir = Path(RUNPOD_HF_CACHE) / f"models--{cache_name}" / "snapshots"

    if snapshots_dir.exists():
        snapshots = list(snapshots_dir.iterdir())
        if snapshots:
            cached_path = snapshots[0] / ARA_CACHE_PATH / adapter_name
            if cached_path.exists():
                logger.info(f"Using cached ARA: {adapter_name} -> {cached_path}")
                return str(cached_path)

    return f"ostris/accuracy_recovery_adapters/{adapter_name}"


def check_model_cache_status(model_key: str) -> dict:
    """Check if model files are cached in Aloukik21/trainer."""
    if model_key not in MODEL_CACHE_PATHS:
        return {"cached": False, "reason": "unknown model"}

    status = {
        "model": model_key,
        "cache_repo": CACHE_REPO,
        "subfolder": MODEL_CACHE_PATHS.get(model_key),
    }

    # Check if main cache repo exists
    cache_name = CACHE_REPO.replace("/", "--")
    snapshots_dir = Path(RUNPOD_HF_CACHE) / f"models--{cache_name}" / "snapshots"

    if snapshots_dir.exists():
        snapshots = list(snapshots_dir.iterdir())
        if snapshots:
            subfolder = MODEL_CACHE_PATHS.get(model_key)
            model_path = snapshots[0] / subfolder
            status["cached"] = model_path.exists()
            status["path"] = str(model_path) if model_path.exists() else None
        else:
            status["cached"] = False
    else:
        status["cached"] = False
        status["reason"] = "cache repo not found"

    return status


# =============================================================================
# Config Loading and Training
# =============================================================================

def load_example_config(model_key):
    """Load example config from ai-toolkit."""
    if model_key not in MODEL_PRESETS:
        raise ValueError(f"Unknown model: {model_key}. Available: {list(MODEL_PRESETS.keys())}")

    config_file = MODEL_PRESETS[model_key]
    config_path = os.path.join(AI_TOOLKIT_DIR, "config", "examples", config_file)

    with open(config_path, 'r') as f:
        return yaml.safe_load(f)


def run_training(params):
    """Run training using ai-toolkit."""
    model_key = params.get("model", "wan22_14b")

    # Cleanup before starting new training
    cleanup_before_training(model_key)

    # Load base config from ai-toolkit examples
    config = load_example_config(model_key)

    # Override with user params
    job_name = params.get("name", f"lora_{model_key}_{uuid.uuid4().hex[:6]}")
    config["config"]["name"] = job_name

    process = config["config"]["process"][0]

    # Dataset
    process["datasets"][0]["folder_path"] = params.get("dataset_path", "/workspace/dataset")

    # Output
    process["training_folder"] = params.get("output_path", "/workspace/output")

    # Training params (only override if provided)
    if "steps" in params:
        process["train"]["steps"] = params["steps"]
    if "batch_size" in params:
        process["train"]["batch_size"] = params["batch_size"]
    if "learning_rate" in params:
        process["train"]["lr"] = params["learning_rate"]
    if "lora_rank" in params:
        process["network"]["linear"] = params["lora_rank"]
        process["network"]["linear_alpha"] = params.get("lora_alpha", params["lora_rank"])
    if "save_every" in params:
        process["save"]["save_every"] = params["save_every"]
    if "sample_every" in params:
        process["sample"]["sample_every"] = params["sample_every"]
    if "resolution" in params:
        process["datasets"][0]["resolution"] = params["resolution"]
    if "num_frames" in params:
        process["datasets"][0]["num_frames"] = params["num_frames"]
    if "sample_prompts" in params:
        process["sample"]["prompts"] = params["sample_prompts"]
    if "trigger_word" in params:
        process["trigger_word"] = params["trigger_word"]

    # Check if we should use cached model path from Aloukik21/trainer
    if "model" in process:
        cached_path = find_cached_model(model_key)
        if cached_path:
            process["model"]["name_or_path"] = cached_path
            logger.info(f"Model path set to: {cached_path}")

    # Save config
    config_dir = os.path.join(AI_TOOLKIT_DIR, "config")
    config_path = os.path.join(config_dir, f"{job_name}.yaml")

    with open(config_path, 'w') as f:
        yaml.dump(config, f, default_flow_style=False)

    logger.info(f"Config saved: {config_path}")
    logger.info(f"Starting: {job_name}")

    # Run ai-toolkit
    cmd = [sys.executable, os.path.join(AI_TOOLKIT_DIR, "run.py"), config_path]
    logger.info(f"Command: {' '.join(cmd)}")

    proc = subprocess.Popen(
        cmd,
        cwd=AI_TOOLKIT_DIR,
        stdout=subprocess.PIPE,
        stderr=subprocess.STDOUT,
        text=True,
        bufsize=1,
    )

    for line in proc.stdout:
        logger.info(line.rstrip())

    proc.wait()

    # Cleanup after training (success or fail)
    cleanup_gpu_memory()

    if proc.returncode != 0:
        raise RuntimeError(f"Training failed with code {proc.returncode}")

    return {
        "status": "success",
        "job_name": job_name,
        "output_path": process["training_folder"],
        "model": model_key,
    }


# =============================================================================
# Handler
# =============================================================================

def handler(job):
    """RunPod handler."""
    job_input = job.get("input", {})
    action = job_input.get("action", "train")

    logger.info(f"Action: {action}, GPU: {get_gpu_info()}")

    try:
        if action == "list_models":
            return {"status": "success", "models": list(MODEL_PRESETS.keys())}

        elif action == "status":
            return {
                "status": "success",
                "environment": get_environment_info(),
            }

        elif action == "check_cache":
            model_key = job_input.get("model")
            if model_key:
                cache_status = check_model_cache_status(model_key)
            else:
                cache_status = {m: check_model_cache_status(m) for m in MODEL_PRESETS.keys()}
            return {"status": "success", "cache": cache_status}

        elif action == "cleanup":
            # Manual cleanup action
            cleanup_gpu_memory()
            cleanup_temp_files()
            global CURRENT_MODEL
            CURRENT_MODEL = None
            return {
                "status": "success",
                "message": "Cleanup complete",
                "gpu": get_gpu_info(),
            }

        elif action == "train":
            params = job_input.get("params", {})
            params["model"] = job_input.get("model", params.get("model", "wan22_14b"))
            return run_training(params)

        else:
            return {"status": "error", "error": f"Unknown action: {action}"}

    except Exception as e:
        logger.error(traceback.format_exc())
        return {"status": "error", "error": str(e)}


if __name__ == "__main__":
    logger.info("Starting AI-Toolkit RunPod Handler")
    logger.info(f"Environment: {get_environment_info()}")
    runpod.serverless.start({"handler": handler})