Update README.md
Browse files
README.md
CHANGED
|
@@ -31,11 +31,11 @@
|
|
| 31 |
|
| 32 |
---
|
| 33 |
|
| 34 |
-
# Model Card for
|
| 35 |
|
| 36 |
<!-- Provide a quick summary of what the model is/does. -->
|
| 37 |
|
| 38 |
-
This
|
| 39 |
|
| 40 |
## Model Details
|
| 41 |
|
|
@@ -43,185 +43,225 @@ This modelcard aims to be a base template for new models. It has been generated
|
|
| 43 |
|
| 44 |
<!-- Provide a longer summary of what this model is. -->
|
| 45 |
|
|
|
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
-
|
| 49 |
-
- **Funded by [optional]:** [More Information Needed]
|
| 50 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 51 |
-
- **Model type:** [More Information Needed]
|
| 52 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 53 |
-
- **License:** [More Information Needed]
|
| 54 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 55 |
-
|
| 56 |
-
### Model Sources [optional]
|
| 57 |
|
| 58 |
<!-- Provide the basic links for the model. -->
|
| 59 |
|
| 60 |
-
- **Repository:**
|
| 61 |
-
- **
|
| 62 |
-
- **Demo [optional]:** [More Information Needed]
|
| 63 |
|
| 64 |
## Uses
|
| 65 |
|
| 66 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 67 |
-
|
| 68 |
### Direct Use
|
| 69 |
|
| 70 |
-
|
|
|
|
|
|
|
| 71 |
|
| 72 |
-
|
| 73 |
|
| 74 |
-
|
|
|
|
|
|
|
| 75 |
|
| 76 |
-
|
| 77 |
|
| 78 |
-
|
|
|
|
|
|
|
| 79 |
|
| 80 |
-
|
| 81 |
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
-
|
| 85 |
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
-
|
| 89 |
|
| 90 |
-
|
| 91 |
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
-
|
|
|
|
| 95 |
|
| 96 |
-
|
|
|
|
|
|
|
| 97 |
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
-
|
| 101 |
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
## Training Details
|
| 105 |
|
| 106 |
### Training Data
|
| 107 |
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
|
| 112 |
### Training Procedure
|
| 113 |
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
#### Preprocessing [optional]
|
| 117 |
-
|
| 118 |
-
[More Information Needed]
|
| 119 |
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
#### Training Hyperparameters
|
| 122 |
|
| 123 |
-
- **Training regime:**
|
| 124 |
-
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
-
|
| 128 |
|
| 129 |
-
|
|
|
|
|
|
|
| 130 |
|
| 131 |
## Evaluation
|
| 132 |
|
| 133 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 134 |
-
|
| 135 |
### Testing Data, Factors & Metrics
|
| 136 |
|
| 137 |
#### Testing Data
|
| 138 |
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
[More Information Needed]
|
| 142 |
|
| 143 |
#### Factors
|
| 144 |
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
[More Information Needed]
|
| 148 |
|
| 149 |
#### Metrics
|
| 150 |
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
[More Information Needed]
|
| 154 |
|
| 155 |
### Results
|
| 156 |
|
| 157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
#### Summary
|
| 160 |
|
|
|
|
| 161 |
|
|
|
|
| 162 |
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 166 |
-
|
| 167 |
-
[More Information Needed]
|
| 168 |
|
| 169 |
## Environmental Impact
|
| 170 |
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 174 |
|
| 175 |
-
- **Hardware Type:**
|
| 176 |
-
- **Hours used:**
|
| 177 |
-
- **Cloud Provider:**
|
| 178 |
-
- **Compute Region:**
|
| 179 |
-
- **Carbon Emitted:**
|
| 180 |
|
| 181 |
-
## Technical Specifications
|
| 182 |
|
| 183 |
### Model Architecture and Objective
|
| 184 |
|
| 185 |
-
|
|
|
|
|
|
|
| 186 |
|
| 187 |
### Compute Infrastructure
|
| 188 |
|
| 189 |
-
[More Information Needed]
|
| 190 |
-
|
| 191 |
#### Hardware
|
| 192 |
|
| 193 |
-
|
|
|
|
| 194 |
|
| 195 |
#### Software
|
| 196 |
|
| 197 |
-
|
|
|
|
| 198 |
|
| 199 |
-
## Citation
|
| 200 |
|
| 201 |
-
|
| 202 |
|
| 203 |
-
**BibTeX:**
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
-
|
|
|
|
| 210 |
|
| 211 |
-
|
| 212 |
|
| 213 |
-
|
| 214 |
|
| 215 |
-
|
|
|
|
|
|
|
|
|
|
| 216 |
|
| 217 |
-
## More Information
|
| 218 |
|
| 219 |
-
|
|
|
|
| 220 |
|
| 221 |
-
## Model Card Authors
|
| 222 |
|
| 223 |
-
|
|
|
|
| 224 |
|
| 225 |
## Model Card Contact
|
| 226 |
|
| 227 |
-
|
|
|
|
| 31 |
|
| 32 |
---
|
| 33 |
|
| 34 |
+
# Model Card for LLM Instruction‑Tuning for Text Classification (LoRA + QLoRA)
|
| 35 |
|
| 36 |
<!-- Provide a quick summary of what the model is/does. -->
|
| 37 |
|
| 38 |
+
This repository provides code and configuration to fine‑tune a decoder‑only LLM (default: `meta-llama/Llama-3.2-1B`) for **instruction‑style text classification** using **LoRA/QLoRA**. Rather than training a task‑specific classifier head, the project formulates classification as a short instruction → answer generation task and evaluates by **exact string match** against the label. It includes simple training/inference scripts, a 5‑label arXiv‑style demo, and optional Amazon SageMaker entrypoints.
|
| 39 |
|
| 40 |
## Model Details
|
| 41 |
|
|
|
|
| 43 |
|
| 44 |
<!-- Provide a longer summary of what this model is. -->
|
| 45 |
|
| 46 |
+
This project instruction‑tunes a base, decoder‑only LLM with **LoRA adapters** loaded in **4‑bit NF4** precision for memory‑efficient training and inference. Supervised fine‑tuning is performed with TRL’s `SFTTrainer`. Prompts ask the model to “return the answer as the exact text label,” so predictions are decoded as plain text and compared by string match.
|
| 47 |
|
| 48 |
+
- **Developed by:** Amirhossein Yousefi (GitHub: `amirhossein-yousefi`)
|
| 49 |
+
- **Model type:** Decoder‑only LLM fine‑tuned with LoRA for single‑label text classification via instruction‑following
|
| 50 |
+
- **Language(s) (NLP):** English by default (demo dataset uses arXiv titles/abstracts); broader multilingual coverage depends on the chosen base model
|
| 51 |
+
- **License:** The repository itself does not include an explicit OSS license; the **base model** `meta-llama/Llama-3.2-1B` is governed by the **Llama 3.2 Community License**. You must accept and comply with Meta’s license to access and use the weights.
|
| 52 |
+
- **Finetuned from model :** `meta-llama/Llama-3.2-1B` (configurable)
|
| 53 |
|
| 54 |
+
### Model Sources
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
<!-- Provide the basic links for the model. -->
|
| 57 |
|
| 58 |
+
- **Repository:** https://github.com/amirhossein-yousefi/LLM-Instruction-Tuning-Text-Classification
|
| 59 |
+
- **Demo :** The repo includes an arXiv‑style 5‑label demo and example results; no hosted demo is provided.
|
|
|
|
| 60 |
|
| 61 |
## Uses
|
| 62 |
|
|
|
|
|
|
|
| 63 |
### Direct Use
|
| 64 |
|
| 65 |
+
- Fine‑tune LoRA adapters on your own CSV dataset for **single‑label text classification** (e.g., topic/category detection) using the provided `scripts/train.py`.
|
| 66 |
+
- Run inference/evaluation with `scripts/predict.py` to generate deterministic label strings and compute **accuracy**, **micro/macro F1**, a **classification report**, and a **confusion matrix**.
|
| 67 |
+
- Optional **Amazon SageMaker** utilities let you run managed training and deploy a real‑time endpoint with the LoRA adapters attached at load time.
|
| 68 |
|
| 69 |
+
### Downstream Use
|
| 70 |
|
| 71 |
+
- Integrate the trained LoRA adapters into applications where explainable, instruction‑driven classification is helpful (e.g., routing, tagging, moderation).
|
| 72 |
+
- Swap the base model (any compatible decoder‑only LLM on the Hugging Face Hub) and re‑train with the same prompt template.
|
| 73 |
+
- Extend label sets without architectural changes—only prompt/label lists need to be updated.
|
| 74 |
|
| 75 |
+
### Out-of-Scope Use
|
| 76 |
|
| 77 |
+
- **CPU‑only** training/inference with this repo as‑is (4‑bit `bitsandbytes` path expects NVIDIA CUDA GPUs).
|
| 78 |
+
- **Multi‑label** classification (comma‑separated outputs) is not implemented out of the box (listed as a roadmap idea).
|
| 79 |
+
- **Open‑domain generation** or safety‑critical decision‑making; this project focuses on label selection with short inputs.
|
| 80 |
|
| 81 |
+
## Bias, Risks, and Limitations
|
| 82 |
|
| 83 |
+
- Outputs mirror biases in the **training corpus** you provide and in the **base model**. If your labels or examples are imbalanced or ambiguous, the model may propagate that bias.
|
| 84 |
+
- Exact‑match decoding can be brittle to **tokenization/typo** effects—ensure labels are short, canonical strings and restrict the decoding space.
|
| 85 |
+
- The base Llama 3.2 model has its own safety limitations and license‑based usage constraints (e.g., attribution and acceptable‑use provisions).
|
| 86 |
+
- The demo dataset is limited to **5 arXiv‑style labels** and relatively short academic texts; generalizing beyond this domain requires additional data.
|
| 87 |
|
| 88 |
+
### Recommendations
|
| 89 |
|
| 90 |
+
- Curate balanced datasets; consider **stratified splits** and per‑class metrics.
|
| 91 |
+
- Keep **temperature = 0.0** for deterministic label decoding; constrain generation length (e.g., `max_new_tokens=8`).
|
| 92 |
+
- Validate robustness with **label synonyms/aliases** and adversarial cases; consider post‑processing that maps variants to canonical labels.
|
| 93 |
+
- Review and comply with the **Llama 3.2 Community License** (and any other upstream licenses) when distributing adapters/derivatives.
|
| 94 |
|
| 95 |
+
## How to Get Started with the Model
|
| 96 |
|
| 97 |
+
**Install & train**
|
| 98 |
|
| 99 |
+
```bash
|
| 100 |
+
python -m venv .venv
|
| 101 |
+
source .venv/bin/activate # Windows: .venv\Scripts\Activate.ps1
|
| 102 |
+
pip install --upgrade pip
|
| 103 |
+
pip install -r requirements.txt
|
| 104 |
|
| 105 |
+
# If the base model is gated, export an HF token
|
| 106 |
+
export HF_TOKEN=YOUR_HF_ACCESS_TOKEN
|
| 107 |
|
| 108 |
+
# One‑command training on CSVs
|
| 109 |
+
python scripts/train.py --base_path dataset --train_file train.csv --val_file validation.csv --test_file test.csv --label_column label_name --text_fields title abstract --base_model_name meta-llama/Llama-3.2-1B --output_dir llama-3.2-1b-arxiver-lora
|
| 110 |
+
```
|
| 111 |
|
| 112 |
+
**Inference & evaluation**
|
| 113 |
+
|
| 114 |
+
```bash
|
| 115 |
+
python scripts/predict.py --base_path dataset --test_file test.csv --base_model_name meta-llama/Llama-3.2-1B --output_dir llama-3.2-1b-arxiver-lora --save_csv predictions.csv
|
| 116 |
+
```
|
| 117 |
|
| 118 |
+
**SageMaker **
|
| 119 |
|
| 120 |
+
```bash
|
| 121 |
+
# Train a managed job
|
| 122 |
+
python sagemaker/train_sm.py --source_dir . --dataset_dir dataset --train_file train.csv --val_file validation.csv --test_file test.csv --label_column label_name --text_fields title abstract --base_model_id meta-llama/Llama-3.2-1B --instance_type ml.g5.2xlarge --instance_count 1
|
| 123 |
+
|
| 124 |
+
# Deploy a real‑time endpoint
|
| 125 |
+
python sagemaker/deploy_sm.py --training_job_name <your-job> --base_model_id meta-llama/Llama-3.2-1B --instance_type ml.g5.2xlarge --default_labels_json '["cs.CL","cs.CV","cs.LG","hep-ph","quant-ph"]'
|
| 126 |
+
```
|
| 127 |
|
| 128 |
## Training Details
|
| 129 |
|
| 130 |
### Training Data
|
| 131 |
|
| 132 |
+
- Expected input: three CSV files under a base path: `train.csv`, `validation.csv`, `test.csv`.
|
| 133 |
+
- Required columns: a **label** column (default `label_name`) and one or more text fields (defaults: `title`, `abstract`). Missing/blank text fields are skipped; text fields are concatenated with punctuation.
|
| 134 |
+
- The repository ships utilities to prepare a **5‑class arXiv‑style demo** (labels: `['cs.CL','cs.CV','cs.LG','hep-ph','quant-ph']`).
|
| 135 |
|
| 136 |
### Training Procedure
|
| 137 |
|
| 138 |
+
#### Preprocessing
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
+
- Prompts are constructed as short instruction → answer pairs:
|
| 141 |
+
- **Train:** includes the gold label after `label:`.
|
| 142 |
+
- **Inference:** leaves `label:` empty and decodes the generated label.
|
| 143 |
|
| 144 |
#### Training Hyperparameters
|
| 145 |
|
| 146 |
+
- **Training regime:** mixed precision with `fp16=True`, `tf32=True`; 4‑bit NF4 quantization with bfloat16 compute (QLoRA‑style).
|
| 147 |
+
- **Selected defaults (single‑GPU):**
|
| 148 |
+
- `num_train_epochs=1`
|
| 149 |
+
- `per_device_train_batch_size=8`, `per_device_eval_batch_size=8`
|
| 150 |
+
- `gradient_accumulation_steps=2` (effective 16 per step, per device)
|
| 151 |
+
- `learning_rate=2e-4`, `weight_decay=1e-3`, `warmup_ratio=0.03`
|
| 152 |
+
- `logging_steps=10`, `evaluation_strategy="epoch"`, `save_strategy="epoch"`, `save_total_limit=2`
|
| 153 |
+
- LoRA: `r=2`, `alpha=2`, `dropout=0.0`
|
| 154 |
+
- Quantization: `load_in_4bit=True`, `bnb_4bit_quant_type="nf4"`, `bnb_4bit_compute_dtype="bfloat16"`, `bnb_4bit_use_double_quant=True`
|
| 155 |
+
- Generation (eval): `temperature=0.0`, `max_new_tokens=8`, `do_sample=False`
|
| 156 |
|
| 157 |
+
#### Speeds, Sizes, Times
|
| 158 |
|
| 159 |
+
- Example environment: Laptop RTX 3080 Ti (16 GB VRAM), CUDA 12.9, PyTorch 2.8.0+cu129.
|
| 160 |
+
- Example run stats: ~6,314 seconds wall‑clock training, with TensorBoard logs under the run directory.
|
| 161 |
+
- Total training FLOPs (example): ~3.69e16 (as reported by the training logs).
|
| 162 |
|
| 163 |
## Evaluation
|
| 164 |
|
|
|
|
|
|
|
| 165 |
### Testing Data, Factors & Metrics
|
| 166 |
|
| 167 |
#### Testing Data
|
| 168 |
|
| 169 |
+
- The example evaluation uses the provided arXiv‑style 5‑label test split.
|
|
|
|
|
|
|
| 170 |
|
| 171 |
#### Factors
|
| 172 |
|
| 173 |
+
- Per‑class metrics are reported for `cs.CL`, `cs.CV`, `cs.LG`, `hep-ph`, `quant-ph`.
|
|
|
|
|
|
|
| 174 |
|
| 175 |
#### Metrics
|
| 176 |
|
| 177 |
+
- Accuracy, micro F1, macro F1, per‑class precision/recall/F1, and a confusion matrix.
|
|
|
|
|
|
|
| 178 |
|
| 179 |
### Results
|
| 180 |
|
| 181 |
+
- **Overall:** Accuracy 93.8%, Micro‑F1 0.938, Macro‑F1 0.950.
|
| 182 |
+
- **Per‑class (Precision / Recall / F1 / Support):**
|
| 183 |
+
- `cs.CL`: 0.914 / 0.963 / 0.938 / 432
|
| 184 |
+
- `cs.CV`: 0.935 / 0.923 / 0.929 / 545
|
| 185 |
+
- `cs.LG`: 0.917 / 0.890 / 0.903 / 536
|
| 186 |
+
- `hep-ph`: 0.994 / 0.988 / 0.991 / 164
|
| 187 |
+
- `quant-ph`: 0.986 / 0.990 / 0.988 / 293
|
| 188 |
|
| 189 |
#### Summary
|
| 190 |
|
| 191 |
+
The LoRA‑tuned 1B parameter Llama 3.2 model achieves strong performance on short academic texts while keeping training/inference affordable due to 4‑bit quantization. Performance is consistent across most classes, with particularly high scores for physics categories.
|
| 192 |
|
| 193 |
+
## Model Examination
|
| 194 |
|
| 195 |
+
- The repo includes utilities for a **classification report** and **confusion matrix**. Inspect misclassifications to refine label definitions or add examples. Consider probing sensitivity to prompt wording.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
## Environmental Impact
|
| 198 |
|
| 199 |
+
*(Approximate; depends on your hardware and run length.)*
|
| 200 |
+
Use the [MLCO2 Impact calculator](https://mlco2.github.io/impact#compute) with your GPU model, power draw, and wall‑clock runtime.
|
|
|
|
| 201 |
|
| 202 |
+
- **Hardware Type:** Single NVIDIA GPU (example: RTX 3080 Ti Laptop 16 GB)
|
| 203 |
+
- **Hours used:** ~1.75 hours (example)
|
| 204 |
+
- **Cloud Provider:** N/A (local) in example; SageMaker supported
|
| 205 |
+
- **Compute Region:** N/A (local) or your chosen AWS region
|
| 206 |
+
- **Carbon Emitted:** Not estimated
|
| 207 |
|
| 208 |
+
## Technical Specifications
|
| 209 |
|
| 210 |
### Model Architecture and Objective
|
| 211 |
|
| 212 |
+
- **Architecture:** Decoder‑only Transformer (Llama 3.2 family when using the default base)
|
| 213 |
+
- **Objective:** Supervised instruction‑tuning for **single‑label classification** via generative decoding with exact‑match evaluation
|
| 214 |
+
- **Context length:** 512 tokens (config default; pass explicitly to trainer to ensure enforcement)
|
| 215 |
|
| 216 |
### Compute Infrastructure
|
| 217 |
|
|
|
|
|
|
|
| 218 |
#### Hardware
|
| 219 |
|
| 220 |
+
- NVIDIA CUDA GPU required for 4‑bit `bitsandbytes` training/inference
|
| 221 |
+
(CPU‑only runs are not supported by the included scripts).
|
| 222 |
|
| 223 |
#### Software
|
| 224 |
|
| 225 |
+
- Python ≥ 3.10, PyTorch, `transformers`, `trl`, `peft`, `bitsandbytes`, `accelerate`, and standard scientific Python packages.
|
| 226 |
+
- Optional: Astral’s `uv` for faster, reproducible dependency management (the repo also ships `requirements.txt`).
|
| 227 |
|
| 228 |
+
## Citation
|
| 229 |
|
| 230 |
+
If you use this repository, please cite the GitHub project and the base model as appropriate.
|
| 231 |
|
| 232 |
+
**BibTeX (project):**
|
| 233 |
+
```bibtex
|
| 234 |
+
@software{yousefi_2025_llm_instruction_tuning_text_classification,
|
| 235 |
+
author = {Yousefi, Amirhossein},
|
| 236 |
+
title = {LLM Instruction-Tuning for Text Classification (LoRA + QLoRA)},
|
| 237 |
+
year = {2025},
|
| 238 |
+
publisher = {GitHub},
|
| 239 |
+
url = {https://github.com/amirhossein-yousefi/LLM-Instruction-Tuning-Text-Classification}
|
| 240 |
+
}
|
| 241 |
+
```
|
| 242 |
|
| 243 |
+
**APA (project):**
|
| 244 |
+
Yousefi, A. (2025). *LLM Instruction‑Tuning for Text Classification (LoRA + QLoRA)*. GitHub. https://github.com/amirhossein-yousefi/LLM-Instruction-Tuning-Text-Classification
|
| 245 |
|
| 246 |
+
**Base model:** Meta AI. (2024). *Llama 3.2‑1B* [Computer software]. Meta. https://huggingface.co/meta-llama/Llama-3.2-1B
|
| 247 |
|
| 248 |
+
## Glossary
|
| 249 |
|
| 250 |
+
- **LoRA:** Low‑Rank Adapters for parameter‑efficient fine‑tuning.
|
| 251 |
+
- **QLoRA:** LoRA training with quantized base weights (typically 4‑bit NF4) and higher‑precision compute.
|
| 252 |
+
- **SFT:** Supervised Fine‑Tuning.
|
| 253 |
+
- **Exact‑match decoding:** Evaluates whether the generated label text exactly matches the gold label string.
|
| 254 |
|
| 255 |
+
## More Information
|
| 256 |
|
| 257 |
+
- Amazon SageMaker scripts are included for managed training and deployment.
|
| 258 |
+
- Roadmap ideas include multi‑label support and few‑shot exemplars in prompts.
|
| 259 |
|
| 260 |
+
## Model Card Authors
|
| 261 |
|
| 262 |
+
- Drafted by: ChatGPT (based on the repository’s README and code structure)
|
| 263 |
+
- Repository author: Amirhossein Yousefi
|
| 264 |
|
| 265 |
## Model Card Contact
|
| 266 |
|
| 267 |
+
- Open an issue on the GitHub repository for questions or contributions.
|