--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards { "library_name": "peft", "pipeline_tag": "text-generation", "license": "llama3.2", "tags": [ "LoRA", "QLoRA", "instruction-tuning", "text-classification", "peft", "transformers", "trl", "bitsandbytes", "base_model:adapter:meta-llama/Llama-3.2-1B" ], "base_model": "meta-llama/Llama-3.2-1B", "datasets": ["real-jiakai/arxiver-with-category"], "language": ["en"], "widget": [ { "text": "Classify the text into ['cs.CL','cs.CV','cs.LG','hep-ph','quant-ph'] and return the answer as the exact text label.\ntext: Quantum entanglement in photonics\nlabel:" }, { "text": "Classify the text into ['cs.CL','cs.CV','cs.LG','hep-ph','quant-ph'] and return the answer as the exact text label.\ntext: Vision transformer achieves state-of-the-art on ImageNet\nlabel:" } ] } --- # Model Card for LLM Instruction‑Tuning for Text Classification (LoRA + QLoRA) This repository provides code and configuration to fine‑tune a decoder‑only LLM (default: `meta-llama/Llama-3.2-1B`) for **instruction‑style text classification** using **LoRA/QLoRA**. Rather than training a task‑specific classifier head, the project formulates classification as a short instruction → answer generation task and evaluates by **exact string match** against the label. It includes simple training/inference scripts, a 5‑label arXiv‑style demo, and optional Amazon SageMaker entrypoints. ## Model Details ### Model Description This project instruction‑tunes a base, decoder‑only LLM with **LoRA adapters** loaded in **4‑bit NF4** precision for memory‑efficient training and inference. Supervised fine‑tuning is performed with TRL’s `SFTTrainer`. Prompts ask the model to “return the answer as the exact text label,” so predictions are decoded as plain text and compared by string match. - **Developed by:** Amirhossein Yousefi (GitHub: `amirhossein-yousefi`) - **Model type:** Decoder‑only LLM fine‑tuned with LoRA for single‑label text classification via instruction‑following - **Language(s) (NLP):** English by default (demo dataset uses arXiv titles/abstracts); broader multilingual coverage depends on the chosen base model - **License:** The repository itself does not include an explicit OSS license; the **base model** `meta-llama/Llama-3.2-1B` is governed by the **Llama 3.2 Community License**. You must accept and comply with Meta’s license to access and use the weights. - **Finetuned from model :** `meta-llama/Llama-3.2-1B` (configurable) ### Model Sources - **Repository:** https://github.com/amirhossein-yousefi/LLM-Instruction-Tuning-Text-Classification - **Demo :** The repo includes an arXiv‑style 5‑label demo and example results; no hosted demo is provided. ## Uses ### Direct Use - Fine‑tune LoRA adapters on your own CSV dataset for **single‑label text classification** (e.g., topic/category detection) using the provided `scripts/train.py`. - Run inference/evaluation with `scripts/predict.py` to generate deterministic label strings and compute **accuracy**, **micro/macro F1**, a **classification report**, and a **confusion matrix**. - Optional **Amazon SageMaker** utilities let you run managed training and deploy a real‑time endpoint with the LoRA adapters attached at load time. ### Downstream Use - Integrate the trained LoRA adapters into applications where explainable, instruction‑driven classification is helpful (e.g., routing, tagging, moderation). - Swap the base model (any compatible decoder‑only LLM on the Hugging Face Hub) and re‑train with the same prompt template. - Extend label sets without architectural changes—only prompt/label lists need to be updated. ### Out-of-Scope Use - **CPU‑only** training/inference with this repo as‑is (4‑bit `bitsandbytes` path expects NVIDIA CUDA GPUs). - **Multi‑label** classification (comma‑separated outputs) is not implemented out of the box (listed as a roadmap idea). - **Open‑domain generation** or safety‑critical decision‑making; this project focuses on label selection with short inputs. ## Bias, Risks, and Limitations - Outputs mirror biases in the **training corpus** you provide and in the **base model**. If your labels or examples are imbalanced or ambiguous, the model may propagate that bias. - Exact‑match decoding can be brittle to **tokenization/typo** effects—ensure labels are short, canonical strings and restrict the decoding space. - The base Llama 3.2 model has its own safety limitations and license‑based usage constraints (e.g., attribution and acceptable‑use provisions). - The demo dataset is limited to **5 arXiv‑style labels** and relatively short academic texts; generalizing beyond this domain requires additional data. ### Recommendations - Curate balanced datasets; consider **stratified splits** and per‑class metrics. - Keep **temperature = 0.0** for deterministic label decoding; constrain generation length (e.g., `max_new_tokens=8`). - Validate robustness with **label synonyms/aliases** and adversarial cases; consider post‑processing that maps variants to canonical labels. - Review and comply with the **Llama 3.2 Community License** (and any other upstream licenses) when distributing adapters/derivatives. ## How to Get Started with the Model **Install & train** ```bash python -m venv .venv source .venv/bin/activate # Windows: .venv\Scripts\Activate.ps1 pip install --upgrade pip pip install -r requirements.txt # If the base model is gated, export an HF token export HF_TOKEN=YOUR_HF_ACCESS_TOKEN # One‑command training on CSVs python scripts/train.py --base_path dataset --train_file train.csv --val_file validation.csv --test_file test.csv --label_column label_name --text_fields title abstract --base_model_name meta-llama/Llama-3.2-1B --output_dir llama-3.2-1b-arxiver-lora ``` **Inference & evaluation** ```bash python scripts/predict.py --base_path dataset --test_file test.csv --base_model_name meta-llama/Llama-3.2-1B --output_dir llama-3.2-1b-arxiver-lora --save_csv predictions.csv ``` **SageMaker ** ```bash # Train a managed job python sagemaker/train_sm.py --source_dir . --dataset_dir dataset --train_file train.csv --val_file validation.csv --test_file test.csv --label_column label_name --text_fields title abstract --base_model_id meta-llama/Llama-3.2-1B --instance_type ml.g5.2xlarge --instance_count 1 # Deploy a real‑time endpoint python sagemaker/deploy_sm.py --training_job_name --base_model_id meta-llama/Llama-3.2-1B --instance_type ml.g5.2xlarge --default_labels_json '["cs.CL","cs.CV","cs.LG","hep-ph","quant-ph"]' ``` ## Training Details ### Training Data - Expected input: three CSV files under a base path: `train.csv`, `validation.csv`, `test.csv`. - Required columns: a **label** column (default `label_name`) and one or more text fields (defaults: `title`, `abstract`). Missing/blank text fields are skipped; text fields are concatenated with punctuation. - The repository ships utilities to prepare a **5‑class arXiv‑style demo** (labels: `['cs.CL','cs.CV','cs.LG','hep-ph','quant-ph']`). ### Training Procedure #### Preprocessing - Prompts are constructed as short instruction → answer pairs: - **Train:** includes the gold label after `label:`. - **Inference:** leaves `label:` empty and decodes the generated label. #### Training Hyperparameters - **Training regime:** mixed precision with `fp16=True`, `tf32=True`; 4‑bit NF4 quantization with bfloat16 compute (QLoRA‑style). - **Selected defaults (single‑GPU):** - `num_train_epochs=1` - `per_device_train_batch_size=8`, `per_device_eval_batch_size=8` - `gradient_accumulation_steps=2` (effective 16 per step, per device) - `learning_rate=2e-4`, `weight_decay=1e-3`, `warmup_ratio=0.03` - `logging_steps=10`, `evaluation_strategy="epoch"`, `save_strategy="epoch"`, `save_total_limit=2` - LoRA: `r=2`, `alpha=2`, `dropout=0.0` - Quantization: `load_in_4bit=True`, `bnb_4bit_quant_type="nf4"`, `bnb_4bit_compute_dtype="bfloat16"`, `bnb_4bit_use_double_quant=True` - Generation (eval): `temperature=0.0`, `max_new_tokens=8`, `do_sample=False` #### Speeds, Sizes, Times - Example environment: Laptop RTX 3080 Ti (16 GB VRAM), CUDA 12.9, PyTorch 2.8.0+cu129. - Example run stats: ~6,314 seconds wall‑clock training, with TensorBoard logs under the run directory. - Total training FLOPs (example): ~3.69e16 (as reported by the training logs). ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data - The example evaluation uses the provided arXiv‑style 5‑label test split. #### Factors - Per‑class metrics are reported for `cs.CL`, `cs.CV`, `cs.LG`, `hep-ph`, `quant-ph`. #### Metrics - Accuracy, micro F1, macro F1, per‑class precision/recall/F1, and a confusion matrix. ### Results - **Overall:** Accuracy 93.8%, Micro‑F1 0.938, Macro‑F1 0.950. - **Per‑class (Precision / Recall / F1 / Support):** - `cs.CL`: 0.914 / 0.963 / 0.938 / 432 - `cs.CV`: 0.935 / 0.923 / 0.929 / 545 - `cs.LG`: 0.917 / 0.890 / 0.903 / 536 - `hep-ph`: 0.994 / 0.988 / 0.991 / 164 - `quant-ph`: 0.986 / 0.990 / 0.988 / 293 #### Summary The LoRA‑tuned 1B parameter Llama 3.2 model achieves strong performance on short academic texts while keeping training/inference affordable due to 4‑bit quantization. Performance is consistent across most classes, with particularly high scores for physics categories. ## Model Examination - The repo includes utilities for a **classification report** and **confusion matrix**. Inspect misclassifications to refine label definitions or add examples. Consider probing sensitivity to prompt wording. ## Environmental Impact *(Approximate; depends on your hardware and run length.)* Use the [MLCO2 Impact calculator](https://mlco2.github.io/impact#compute) with your GPU model, power draw, and wall‑clock runtime. - **Hardware Type:** Single NVIDIA GPU (example: RTX 3080 Ti Laptop 16 GB) - **Hours used:** ~1.75 hours (example) ## Technical Specifications ### Model Architecture and Objective - **Architecture:** Decoder‑only Transformer (Llama 3.2 family when using the default base) - **Objective:** Supervised instruction‑tuning for **single‑label classification** via generative decoding with exact‑match evaluation - **Context length:** 512 tokens (config default; pass explicitly to trainer to ensure enforcement) ### Compute Infrastructure #### Hardware - NVIDIA CUDA GPU required for 4‑bit `bitsandbytes` training/inference (CPU‑only runs are not supported by the included scripts). #### Software - Python ≥ 3.10, PyTorch, `transformers`, `trl`, `peft`, `bitsandbytes`, `accelerate`, and standard scientific Python packages. - Optional: Astral’s `uv` for faster, reproducible dependency management (the repo also ships `requirements.txt`). ## Citation If you use this repository, please cite the GitHub project and the base model as appropriate. **BibTeX (project):** ```bibtex @software{yousefi_2025_llm_instruction_tuning_text_classification, author = {Yousefi, Amirhossein}, title = {LLM Instruction-Tuning for Text Classification (LoRA + QLoRA)}, year = {2025}, publisher = {GitHub}, url = {https://github.com/amirhossein-yousefi/LLM-Instruction-Tuning-Text-Classification} } ``` **APA (project):** Yousefi, A. (2025). *LLM Instruction‑Tuning for Text Classification (LoRA + QLoRA)*. GitHub. https://github.com/amirhossein-yousefi/LLM-Instruction-Tuning-Text-Classification **Base model:** Meta AI. (2024). *Llama 3.2‑1B* [Computer software]. Meta. https://huggingface.co/meta-llama/Llama-3.2-1B ## Glossary - **LoRA:** Low‑Rank Adapters for parameter‑efficient fine‑tuning. - **QLoRA:** LoRA training with quantized base weights (typically 4‑bit NF4) and higher‑precision compute. - **SFT:** Supervised Fine‑Tuning. - **Exact‑match decoding:** Evaluates whether the generated label text exactly matches the gold label string. ## More Information - Amazon SageMaker scripts are included for managed training and deployment. - Roadmap ideas include multi‑label support and few‑shot exemplars in prompts. ## Model Card Authors - Drafted by: ChatGPT (based on the repository’s README and code structure) - Repository author: Amirhossein Yousefi ## Model Card Contact - Open an issue on the GitHub repository for questions or contributions.