Update handler.py
Browse files- handler.py +28 -51
handler.py
CHANGED
|
@@ -1,9 +1,11 @@
|
|
| 1 |
-
from typing import
|
| 2 |
import base64
|
| 3 |
from PIL import Image
|
| 4 |
from io import BytesIO
|
| 5 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
| 6 |
import torch
|
|
|
|
|
|
|
| 7 |
import numpy as np
|
| 8 |
import cv2
|
| 9 |
import controlnet_hinter
|
|
@@ -11,8 +13,7 @@ import controlnet_hinter
|
|
| 11 |
# set device
|
| 12 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 13 |
if device.type != 'cuda':
|
| 14 |
-
raise ValueError("
|
| 15 |
-
|
| 16 |
# set mixed precision dtype
|
| 17 |
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
|
| 18 |
|
|
@@ -52,14 +53,12 @@ CONTROLNET_MAPPING = {
|
|
| 52 |
}
|
| 53 |
}
|
| 54 |
|
|
|
|
| 55 |
class EndpointHandler():
|
| 56 |
-
"""
|
| 57 |
-
A class to handle endpoint logic.
|
| 58 |
-
"""
|
| 59 |
def __init__(self, path=""):
|
| 60 |
# define default controlnet id and load controlnet
|
| 61 |
-
self.control_type = "
|
| 62 |
-
self.controlnet = ControlNetModel.from_pretrained(
|
| 63 |
|
| 64 |
# Load StableDiffusionControlNetPipeline
|
| 65 |
self.stable_diffusion_id = "runwayml/stable-diffusion-v1-5"
|
|
@@ -70,30 +69,29 @@ class EndpointHandler():
|
|
| 70 |
# Define Generator with seed
|
| 71 |
self.generator = torch.Generator(device="cpu").manual_seed(3)
|
| 72 |
|
| 73 |
-
def __call__(self, data: Any) ->
|
| 74 |
"""
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
:param data: A dictionary containing `inputs` and optional `image_path` field.
|
| 78 |
-
:return: None
|
| 79 |
"""
|
| 80 |
prompt = data.pop("inputs", None)
|
| 81 |
-
|
| 82 |
controlnet_type = data.pop("controlnet_type", None)
|
| 83 |
-
|
| 84 |
-
# Check if neither prompt nor image
|
| 85 |
-
if prompt is None and
|
| 86 |
-
|
| 87 |
-
|
| 88 |
# Check if a new controlnet is provided
|
| 89 |
if controlnet_type is not None and controlnet_type != self.control_type:
|
| 90 |
-
print(f"
|
| 91 |
self.control_type = controlnet_type
|
| 92 |
-
self.controlnet = ControlNetModel.from_pretrained(
|
| 93 |
torch_dtype=dtype).to(device)
|
| 94 |
self.pipe.controlnet = self.controlnet
|
| 95 |
|
| 96 |
-
|
|
|
|
| 97 |
num_inference_steps = data.pop("num_inference_steps", 30)
|
| 98 |
guidance_scale = data.pop("guidance_scale", 7.5)
|
| 99 |
negative_prompt = data.pop("negative_prompt", None)
|
|
@@ -102,14 +100,8 @@ class EndpointHandler():
|
|
| 102 |
controlnet_conditioning_scale = data.pop("controlnet_conditioning_scale", 1.0)
|
| 103 |
|
| 104 |
# process image
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
image = Image.open(image_path)
|
| 108 |
-
else:
|
| 109 |
-
# Decode base64-encoded image
|
| 110 |
-
image = self.decode_base64_image(data.pop("image", ""))
|
| 111 |
-
|
| 112 |
-
control_image = controlnet_mapping[self.control_type]["hinter"](image)
|
| 113 |
|
| 114 |
# run inference pipeline
|
| 115 |
out = self.pipe(
|
|
@@ -125,28 +117,13 @@ class EndpointHandler():
|
|
| 125 |
generator=self.generator
|
| 126 |
)
|
| 127 |
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
|
|
|
| 132 |
def decode_base64_image(self, image_string):
|
| 133 |
base64_image = base64.b64decode(image_string)
|
| 134 |
buffer = BytesIO(base64_image)
|
| 135 |
image = Image.open(buffer)
|
| 136 |
-
return image
|
| 137 |
-
|
| 138 |
-
# Example usage
|
| 139 |
-
payload = {
|
| 140 |
-
"inputs": "Your prompt here",
|
| 141 |
-
"image_path": "path/to/your/image.jpg",
|
| 142 |
-
"controlnet_type": "depth",
|
| 143 |
-
"num_inference_steps": 30,
|
| 144 |
-
"guidance_scale": 7.5,
|
| 145 |
-
"negative_prompt": None,
|
| 146 |
-
"height": None,
|
| 147 |
-
"width": None,
|
| 148 |
-
"controlnet_conditioning_scale": 1.0,
|
| 149 |
-
}
|
| 150 |
-
|
| 151 |
-
handler = EndpointHandler()
|
| 152 |
-
handler(payload)
|
|
|
|
| 1 |
+
from typing import Dict, List, Any
|
| 2 |
import base64
|
| 3 |
from PIL import Image
|
| 4 |
from io import BytesIO
|
| 5 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
| 6 |
import torch
|
| 7 |
+
|
| 8 |
+
|
| 9 |
import numpy as np
|
| 10 |
import cv2
|
| 11 |
import controlnet_hinter
|
|
|
|
| 13 |
# set device
|
| 14 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 15 |
if device.type != 'cuda':
|
| 16 |
+
raise ValueError("need to run on GPU")
|
|
|
|
| 17 |
# set mixed precision dtype
|
| 18 |
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
|
| 19 |
|
|
|
|
| 53 |
}
|
| 54 |
}
|
| 55 |
|
| 56 |
+
|
| 57 |
class EndpointHandler():
|
|
|
|
|
|
|
|
|
|
| 58 |
def __init__(self, path=""):
|
| 59 |
# define default controlnet id and load controlnet
|
| 60 |
+
self.control_type = "normal"
|
| 61 |
+
self.controlnet = ControlNetModel.from_pretrained(CONTROLNET_MAPPING[self.control_type]["model_id"],torch_dtype=dtype).to(device)
|
| 62 |
|
| 63 |
# Load StableDiffusionControlNetPipeline
|
| 64 |
self.stable_diffusion_id = "runwayml/stable-diffusion-v1-5"
|
|
|
|
| 69 |
# Define Generator with seed
|
| 70 |
self.generator = torch.Generator(device="cpu").manual_seed(3)
|
| 71 |
|
| 72 |
+
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
| 73 |
"""
|
| 74 |
+
:param data: A dictionary contains `inputs` and optional `image` field.
|
| 75 |
+
:return: A dictionary with `image` field contains image in base64.
|
|
|
|
|
|
|
| 76 |
"""
|
| 77 |
prompt = data.pop("inputs", None)
|
| 78 |
+
image = data.pop("image", None)
|
| 79 |
controlnet_type = data.pop("controlnet_type", None)
|
| 80 |
+
|
| 81 |
+
# Check if neither prompt nor image is provided
|
| 82 |
+
if prompt is None and image is None:
|
| 83 |
+
return {"error": "Please provide a prompt and base64 encoded image."}
|
| 84 |
+
|
| 85 |
# Check if a new controlnet is provided
|
| 86 |
if controlnet_type is not None and controlnet_type != self.control_type:
|
| 87 |
+
print(f"changing controlnet from {self.control_type} to {controlnet_type} using {CONTROLNET_MAPPING[controlnet_type]['model_id']} model")
|
| 88 |
self.control_type = controlnet_type
|
| 89 |
+
self.controlnet = ControlNetModel.from_pretrained(CONTROLNET_MAPPING[self.control_type]["model_id"],
|
| 90 |
torch_dtype=dtype).to(device)
|
| 91 |
self.pipe.controlnet = self.controlnet
|
| 92 |
|
| 93 |
+
|
| 94 |
+
# hyperparamters
|
| 95 |
num_inference_steps = data.pop("num_inference_steps", 30)
|
| 96 |
guidance_scale = data.pop("guidance_scale", 7.5)
|
| 97 |
negative_prompt = data.pop("negative_prompt", None)
|
|
|
|
| 100 |
controlnet_conditioning_scale = data.pop("controlnet_conditioning_scale", 1.0)
|
| 101 |
|
| 102 |
# process image
|
| 103 |
+
image = self.decode_base64_image(image)
|
| 104 |
+
control_image = CONTROLNET_MAPPING[self.control_type]["hinter"](image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
# run inference pipeline
|
| 107 |
out = self.pipe(
|
|
|
|
| 117 |
generator=self.generator
|
| 118 |
)
|
| 119 |
|
| 120 |
+
|
| 121 |
+
# return first generate PIL image
|
| 122 |
+
return out.images[0]
|
| 123 |
+
|
| 124 |
+
# helper to decode input image
|
| 125 |
def decode_base64_image(self, image_string):
|
| 126 |
base64_image = base64.b64decode(image_string)
|
| 127 |
buffer = BytesIO(base64_image)
|
| 128 |
image = Image.open(buffer)
|
| 129 |
+
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|