File size: 30,013 Bytes
7510827 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 |
/*
2022-09-16
The author disclaims copyright to this source code. In place of a
legal notice, here is a blessing:
* May you do good and not evil.
* May you find forgiveness for yourself and forgive others.
* May you share freely, never taking more than you give.
***********************************************************************
A Worker which manages asynchronous OPFS handles on behalf of a
synchronous API which controls it via a combination of Worker
messages, SharedArrayBuffer, and Atomics. It is the asynchronous
counterpart of the API defined in sqlite3-vfs-opfs.js.
Highly indebted to:
https://github.com/rhashimoto/wa-sqlite/blob/master/src/examples/OriginPrivateFileSystemVFS.js
for demonstrating how to use the OPFS APIs.
This file is to be loaded as a Worker. It does not have any direct
access to the sqlite3 JS/WASM bits, so any bits which it needs (most
notably SQLITE_xxx integer codes) have to be imported into it via an
initialization process.
This file represents an implementation detail of a larger piece of
code, and not a public interface. Its details may change at any time
and are not intended to be used by any client-level code.
2022-11-27: Chrome v108 changes some async methods to synchronous, as
documented at:
https://developer.chrome.com/blog/sync-methods-for-accesshandles/
Firefox v111 and Safari 16.4, both released in March 2023, also
include this.
We cannot change to the sync forms at this point without breaking
clients who use Chrome v104-ish or higher. truncate(), getSize(),
flush(), and close() are now (as of v108) synchronous. Calling them
with an "await", as we have to for the async forms, is still legal
with the sync forms but is superfluous. Calling the async forms with
theFunc().then(...) is not compatible with the change to
synchronous, but we do do not use those APIs that way. i.e. we don't
_need_ to change anything for this, but at some point (after Chrome
versions (approximately) 104-107 are extinct) should change our
usage of those methods to remove the "await".
*/
"use strict";
const wPost = (type,...args)=>postMessage({type, payload:args});
const installAsyncProxy = function(){
const toss = function(...args){throw new Error(args.join(' '))};
if(globalThis.window === globalThis){
toss("This code cannot run from the main thread.",
"Load it as a Worker from a separate Worker.");
}else if(!navigator?.storage?.getDirectory){
toss("This API requires navigator.storage.getDirectory.");
}
/**
Will hold state copied to this object from the synchronous side of
this API.
*/
const state = Object.create(null);
/**
verbose:
0 = no logging output
1 = only errors
2 = warnings and errors
3 = debug, warnings, and errors
*/
state.verbose = 1;
const loggers = {
0:console.error.bind(console),
1:console.warn.bind(console),
2:console.log.bind(console)
};
const logImpl = (level,...args)=>{
if(state.verbose>level) loggers[level]("OPFS asyncer:",...args);
};
const log = (...args)=>logImpl(2, ...args);
const warn = (...args)=>logImpl(1, ...args);
const error = (...args)=>logImpl(0, ...args);
/**
__openFiles is a map of sqlite3_file pointers (integers) to
metadata related to a given OPFS file handles. The pointers are, in
this side of the interface, opaque file handle IDs provided by the
synchronous part of this constellation. Each value is an object
with a structure demonstrated in the xOpen() impl.
*/
const __openFiles = Object.create(null);
/**
__implicitLocks is a Set of sqlite3_file pointers (integers) which were
"auto-locked". i.e. those for which we obtained a sync access
handle without an explicit xLock() call. Such locks will be
released during db connection idle time, whereas a sync access
handle obtained via xLock(), or subsequently xLock()'d after
auto-acquisition, will not be released until xUnlock() is called.
Maintenance reminder: if we relinquish auto-locks at the end of the
operation which acquires them, we pay a massive performance
penalty: speedtest1 benchmarks take up to 4x as long. By delaying
the lock release until idle time, the hit is negligible.
*/
const __implicitLocks = new Set();
/**
Expects an OPFS file path. It gets resolved, such that ".."
components are properly expanded, and returned. If the 2nd arg is
true, the result is returned as an array of path elements, else an
absolute path string is returned.
*/
const getResolvedPath = function(filename,splitIt){
const p = new URL(
filename, 'file://irrelevant'
).pathname;
return splitIt ? p.split('/').filter((v)=>!!v) : p;
};
/**
Takes the absolute path to a filesystem element. Returns an array
of [handleOfContainingDir, filename]. If the 2nd argument is truthy
then each directory element leading to the file is created along
the way. Throws if any creation or resolution fails.
*/
const getDirForFilename = async function f(absFilename, createDirs = false){
const path = getResolvedPath(absFilename, true);
const filename = path.pop();
let dh = state.rootDir;
for(const dirName of path){
if(dirName){
dh = await dh.getDirectoryHandle(dirName, {create: !!createDirs});
}
}
return [dh, filename];
};
/**
If the given file-holding object has a sync handle attached to it,
that handle is removed and asynchronously closed. Though it may
sound sensible to continue work as soon as the close() returns
(noting that it's asynchronous), doing so can cause operations
performed soon afterwards, e.g. a call to getSyncHandle(), to fail
because they may happen out of order from the close(). OPFS does
not guaranty that the actual order of operations is retained in
such cases. i.e. always "await" on the result of this function.
*/
const closeSyncHandle = async (fh)=>{
if(fh.syncHandle){
log("Closing sync handle for",fh.filenameAbs);
const h = fh.syncHandle;
delete fh.syncHandle;
delete fh.xLock;
__implicitLocks.delete(fh.fid);
return h.close();
}
};
/**
A proxy for closeSyncHandle() which is guaranteed to not throw.
This function is part of a lock/unlock step in functions which
require a sync access handle but may be called without xLock()
having been called first. Such calls need to release that
handle to avoid locking the file for all of time. This is an
_attempt_ at reducing cross-tab contention but it may prove
to be more of a problem than a solution and may need to be
removed.
*/
const closeSyncHandleNoThrow = async (fh)=>{
try{await closeSyncHandle(fh)}
catch(e){
warn("closeSyncHandleNoThrow() ignoring:",e,fh);
}
};
/* Release all auto-locks. */
const releaseImplicitLocks = async ()=>{
if(__implicitLocks.size){
/* Release all auto-locks. */
for(const fid of __implicitLocks){
const fh = __openFiles[fid];
await closeSyncHandleNoThrow(fh);
log("Auto-unlocked",fid,fh.filenameAbs);
}
}
};
/**
An experiment in improving concurrency by freeing up implicit locks
sooner. This is known to impact performance dramatically but it has
also shown to improve concurrency considerably.
If fh.releaseImplicitLocks is truthy and fh is in __implicitLocks,
this routine returns closeSyncHandleNoThrow(), else it is a no-op.
*/
const releaseImplicitLock = async (fh)=>{
if(fh.releaseImplicitLocks && __implicitLocks.has(fh.fid)){
return closeSyncHandleNoThrow(fh);
}
};
/**
An error class specifically for use with getSyncHandle(), the goal
of which is to eventually be able to distinguish unambiguously
between locking-related failures and other types, noting that we
cannot currently do so because createSyncAccessHandle() does not
define its exceptions in the required level of detail.
2022-11-29: according to:
https://github.com/whatwg/fs/pull/21
NoModificationAllowedError will be the standard exception thrown
when acquisition of a sync access handle fails due to a locking
error. As of this writing, that error type is not visible in the
dev console in Chrome v109, nor is it documented in MDN, but an
error with that "name" property is being thrown from the OPFS
layer.
*/
class GetSyncHandleError extends Error {
constructor(errorObject, ...msg){
super([
...msg, ': '+errorObject.name+':',
errorObject.message
].join(' '), {
cause: errorObject
});
this.name = 'GetSyncHandleError';
}
};
/**
Attempts to find a suitable SQLITE_xyz result code for Error
object e. Returns either such a translation or rc if if it does
not know how to translate the exception.
*/
GetSyncHandleError.convertRc = (e,rc)=>{
if( e instanceof GetSyncHandleError ){
if( e.cause.name==='NoModificationAllowedError'
/* Inconsistent exception.name from Chrome/ium with the
same exception.message text: */
|| (e.cause.name==='DOMException'
&& 0===e.cause.message.indexOf('Access Handles cannot')) ){
return state.sq3Codes.SQLITE_BUSY;
}else if( 'NotFoundError'===e.cause.name ){
/**
Maintenance reminder: SQLITE_NOTFOUND, though it looks like
a good match, has different semantics than NotFoundError
and is not suitable here.
*/
return state.sq3Codes.SQLITE_CANTOPEN;
}
}else if( 'NotFoundError'===e?.name ){
return state.sq3Codes.SQLITE_CANTOPEN;
}
return rc;
};
/**
Returns the sync access handle associated with the given file
handle object (which must be a valid handle object, as created by
xOpen()), lazily opening it if needed.
In order to help alleviate cross-tab contention for a dabase, if
an exception is thrown while acquiring the handle, this routine
will wait briefly and try again, up to some fixed number of
times. If acquisition still fails at that point it will give up
and propagate the exception. Client-level code will see that as
an I/O error.
2024-06-12: there is a rare race condition here which has been
reported a single time:
https://sqlite.org/forum/forumpost/9ee7f5340802d600
What appears to be happening is that file we're waiting for a
lock on is deleted while we wait. What currently happens here is
that a locking exception is thrown but the exception type is
NotFoundError. In such cases, we very probably should attempt to
re-open/re-create the file an obtain the lock on it (noting that
there's another race condition there). That's easy to say but
creating a viable test for that condition has proven challenging
so far.
*/
const getSyncHandle = async (fh,opName)=>{
if(!fh.syncHandle){
const t = performance.now();
log("Acquiring sync handle for",fh.filenameAbs);
const maxTries = 6,
msBase = state.asyncIdleWaitTime * 2;
let i = 1, ms = msBase;
for(; true; ms = msBase * ++i){
try {
//if(i<3) toss("Just testing getSyncHandle() wait-and-retry.");
//TODO? A config option which tells it to throw here
//randomly every now and then, for testing purposes.
fh.syncHandle = await fh.fileHandle.createSyncAccessHandle();
break;
}catch(e){
if(i === maxTries){
throw new GetSyncHandleError(
e, "Error getting sync handle for",opName+"().",maxTries,
"attempts failed.",fh.filenameAbs
);
}
warn("Error getting sync handle for",opName+"(). Waiting",ms,
"ms and trying again.",fh.filenameAbs,e);
Atomics.wait(state.sabOPView, state.opIds.retry, 0, ms);
}
}
log("Got",opName+"() sync handle for",fh.filenameAbs,
'in',performance.now() - t,'ms');
if(!fh.xLock){
__implicitLocks.add(fh.fid);
log("Acquired implicit lock for",opName+"()",fh.fid,fh.filenameAbs);
}
}
return fh.syncHandle;
};
/**
Stores the given value at state.sabOPView[state.opIds.rc] and then
Atomics.notify()'s it.
*/
const storeAndNotify = (opName, value)=>{
log(opName+"() => notify(",value,")");
Atomics.store(state.sabOPView, state.opIds.rc, value);
Atomics.notify(state.sabOPView, state.opIds.rc);
};
/**
Throws if fh is a file-holding object which is flagged as read-only.
*/
const affirmNotRO = function(opName,fh){
if(fh.readOnly) toss(opName+"(): File is read-only: "+fh.filenameAbs);
};
/**
Gets set to true by the 'opfs-async-shutdown' command to quit the
wait loop. This is only intended for debugging purposes: we cannot
inspect this file's state while the tight waitLoop() is running and
need a way to stop that loop for introspection purposes.
*/
let flagAsyncShutdown = false;
/**
Asynchronous wrappers for sqlite3_vfs and sqlite3_io_methods
methods, as well as helpers like mkdir().
*/
const vfsAsyncImpls = {
'opfs-async-shutdown': async ()=>{
flagAsyncShutdown = true;
storeAndNotify('opfs-async-shutdown', 0);
},
mkdir: async (dirname)=>{
let rc = 0;
try {
await getDirForFilename(dirname+"/filepart", true);
}catch(e){
state.s11n.storeException(2,e);
rc = state.sq3Codes.SQLITE_IOERR;
}
storeAndNotify('mkdir', rc);
},
xAccess: async (filename)=>{
/* OPFS cannot support the full range of xAccess() queries
sqlite3 calls for. We can essentially just tell if the file
is accessible, but if it is then it's automatically writable
(unless it's locked, which we cannot(?) know without trying
to open it). OPFS does not have the notion of read-only.
The return semantics of this function differ from sqlite3's
xAccess semantics because we are limited in what we can
communicate back to our synchronous communication partner: 0 =
accessible, non-0 means not accessible.
*/
let rc = 0;
try{
const [dh, fn] = await getDirForFilename(filename);
await dh.getFileHandle(fn);
}catch(e){
state.s11n.storeException(2,e);
rc = state.sq3Codes.SQLITE_IOERR;
}
storeAndNotify('xAccess', rc);
},
xClose: async function(fid/*sqlite3_file pointer*/){
const opName = 'xClose';
__implicitLocks.delete(fid);
const fh = __openFiles[fid];
let rc = 0;
if(fh){
delete __openFiles[fid];
await closeSyncHandle(fh);
if(fh.deleteOnClose){
try{ await fh.dirHandle.removeEntry(fh.filenamePart) }
catch(e){ warn("Ignoring dirHandle.removeEntry() failure of",fh,e) }
}
}else{
state.s11n.serialize();
rc = state.sq3Codes.SQLITE_NOTFOUND;
}
storeAndNotify(opName, rc);
},
xDelete: async function(...args){
const rc = await vfsAsyncImpls.xDeleteNoWait(...args);
storeAndNotify('xDelete', rc);
},
xDeleteNoWait: async function(filename, syncDir = 0, recursive = false){
/* The syncDir flag is, for purposes of the VFS API's semantics,
ignored here. However, if it has the value 0x1234 then: after
deleting the given file, recursively try to delete any empty
directories left behind in its wake (ignoring any errors and
stopping at the first failure).
That said: we don't know for sure that removeEntry() fails if
the dir is not empty because the API is not documented. It has,
however, a "recursive" flag which defaults to false, so
presumably it will fail if the dir is not empty and that flag
is false.
*/
let rc = 0;
try {
while(filename){
const [hDir, filenamePart] = await getDirForFilename(filename, false);
if(!filenamePart) break;
await hDir.removeEntry(filenamePart, {recursive});
if(0x1234 !== syncDir) break;
recursive = false;
filename = getResolvedPath(filename, true);
filename.pop();
filename = filename.join('/');
}
}catch(e){
state.s11n.storeException(2,e);
rc = state.sq3Codes.SQLITE_IOERR_DELETE;
}
return rc;
},
xFileSize: async function(fid/*sqlite3_file pointer*/){
const fh = __openFiles[fid];
let rc = 0;
try{
const sz = await (await getSyncHandle(fh,'xFileSize')).getSize();
state.s11n.serialize(Number(sz));
}catch(e){
state.s11n.storeException(1,e);
rc = GetSyncHandleError.convertRc(e,state.sq3Codes.SQLITE_IOERR);
}
await releaseImplicitLock(fh);
storeAndNotify('xFileSize', rc);
},
xLock: async function(fid/*sqlite3_file pointer*/,
lockType/*SQLITE_LOCK_...*/){
const fh = __openFiles[fid];
let rc = 0;
const oldLockType = fh.xLock;
fh.xLock = lockType;
if( !fh.syncHandle ){
try {
await getSyncHandle(fh,'xLock');
__implicitLocks.delete(fid);
}catch(e){
state.s11n.storeException(1,e);
rc = GetSyncHandleError.convertRc(e,state.sq3Codes.SQLITE_IOERR_LOCK);
fh.xLock = oldLockType;
}
}
storeAndNotify('xLock',rc);
},
xOpen: async function(fid/*sqlite3_file pointer*/, filename,
flags/*SQLITE_OPEN_...*/,
opfsFlags/*OPFS_...*/){
const opName = 'xOpen';
const create = (state.sq3Codes.SQLITE_OPEN_CREATE & flags);
try{
let hDir, filenamePart;
try {
[hDir, filenamePart] = await getDirForFilename(filename, !!create);
}catch(e){
state.s11n.storeException(1,e);
storeAndNotify(opName, state.sq3Codes.SQLITE_NOTFOUND);
return;
}
if( state.opfsFlags.OPFS_UNLINK_BEFORE_OPEN & opfsFlags ){
try{
await hDir.removeEntry(filenamePart);
}catch(e){
/* ignoring */
//warn("Ignoring failed Unlink of",filename,":",e);
}
}
const hFile = await hDir.getFileHandle(filenamePart, {create});
const fh = Object.assign(Object.create(null),{
fid: fid,
filenameAbs: filename,
filenamePart: filenamePart,
dirHandle: hDir,
fileHandle: hFile,
sabView: state.sabFileBufView,
readOnly: !create && !!(state.sq3Codes.SQLITE_OPEN_READONLY & flags),
deleteOnClose: !!(state.sq3Codes.SQLITE_OPEN_DELETEONCLOSE & flags)
});
fh.releaseImplicitLocks =
(opfsFlags & state.opfsFlags.OPFS_UNLOCK_ASAP)
|| state.opfsFlags.defaultUnlockAsap;
__openFiles[fid] = fh;
storeAndNotify(opName, 0);
}catch(e){
error(opName,e);
state.s11n.storeException(1,e);
storeAndNotify(opName, state.sq3Codes.SQLITE_IOERR);
}
},
xRead: async function(fid/*sqlite3_file pointer*/,n,offset64){
let rc = 0, nRead;
const fh = __openFiles[fid];
try{
nRead = (await getSyncHandle(fh,'xRead')).read(
fh.sabView.subarray(0, n),
{at: Number(offset64)}
);
if(nRead < n){/* Zero-fill remaining bytes */
fh.sabView.fill(0, nRead, n);
rc = state.sq3Codes.SQLITE_IOERR_SHORT_READ;
}
}catch(e){
error("xRead() failed",e,fh);
state.s11n.storeException(1,e);
rc = GetSyncHandleError.convertRc(e,state.sq3Codes.SQLITE_IOERR_READ);
}
await releaseImplicitLock(fh);
storeAndNotify('xRead',rc);
},
xSync: async function(fid/*sqlite3_file pointer*/,flags/*ignored*/){
const fh = __openFiles[fid];
let rc = 0;
if(!fh.readOnly && fh.syncHandle){
try {
await fh.syncHandle.flush();
}catch(e){
state.s11n.storeException(2,e);
rc = state.sq3Codes.SQLITE_IOERR_FSYNC;
}
}
storeAndNotify('xSync',rc);
},
xTruncate: async function(fid/*sqlite3_file pointer*/,size){
let rc = 0;
const fh = __openFiles[fid];
try{
affirmNotRO('xTruncate', fh);
await (await getSyncHandle(fh,'xTruncate')).truncate(size);
}catch(e){
error("xTruncate():",e,fh);
state.s11n.storeException(2,e);
rc = GetSyncHandleError.convertRc(e,state.sq3Codes.SQLITE_IOERR_TRUNCATE);
}
await releaseImplicitLock(fh);
storeAndNotify('xTruncate',rc);
},
xUnlock: async function(fid/*sqlite3_file pointer*/,
lockType/*SQLITE_LOCK_...*/){
let rc = 0;
const fh = __openFiles[fid];
if( fh.syncHandle
&& state.sq3Codes.SQLITE_LOCK_NONE===lockType
/* Note that we do not differentiate between lock types in
this VFS. We're either locked or unlocked. */ ){
try { await closeSyncHandle(fh) }
catch(e){
state.s11n.storeException(1,e);
rc = state.sq3Codes.SQLITE_IOERR_UNLOCK;
}
}
storeAndNotify('xUnlock',rc);
},
xWrite: async function(fid/*sqlite3_file pointer*/,n,offset64){
let rc;
const fh = __openFiles[fid];
try{
affirmNotRO('xWrite', fh);
rc = (
n === (await getSyncHandle(fh,'xWrite'))
.write(fh.sabView.subarray(0, n),
{at: Number(offset64)})
) ? 0 : state.sq3Codes.SQLITE_IOERR_WRITE;
}catch(e){
error("xWrite():",e,fh);
state.s11n.storeException(1,e);
rc = GetSyncHandleError.convertRc(e,state.sq3Codes.SQLITE_IOERR_WRITE);
}
await releaseImplicitLock(fh);
storeAndNotify('xWrite',rc);
}
}/*vfsAsyncImpls*/;
const initS11n = ()=>{
/**
ACHTUNG: this code is 100% duplicated in the other half of this
proxy! The documentation is maintained in the "synchronous half".
*/
if(state.s11n) return state.s11n;
const textDecoder = new TextDecoder(),
textEncoder = new TextEncoder('utf-8'),
viewU8 = new Uint8Array(state.sabIO, state.sabS11nOffset, state.sabS11nSize),
viewDV = new DataView(state.sabIO, state.sabS11nOffset, state.sabS11nSize);
state.s11n = Object.create(null);
const TypeIds = Object.create(null);
TypeIds.number = { id: 1, size: 8, getter: 'getFloat64', setter: 'setFloat64' };
TypeIds.bigint = { id: 2, size: 8, getter: 'getBigInt64', setter: 'setBigInt64' };
TypeIds.boolean = { id: 3, size: 4, getter: 'getInt32', setter: 'setInt32' };
TypeIds.string = { id: 4 };
const getTypeId = (v)=>(
TypeIds[typeof v]
|| toss("Maintenance required: this value type cannot be serialized.",v)
);
const getTypeIdById = (tid)=>{
switch(tid){
case TypeIds.number.id: return TypeIds.number;
case TypeIds.bigint.id: return TypeIds.bigint;
case TypeIds.boolean.id: return TypeIds.boolean;
case TypeIds.string.id: return TypeIds.string;
default: toss("Invalid type ID:",tid);
}
};
state.s11n.deserialize = function(clear=false){
const argc = viewU8[0];
const rc = argc ? [] : null;
if(argc){
const typeIds = [];
let offset = 1, i, n, v;
for(i = 0; i < argc; ++i, ++offset){
typeIds.push(getTypeIdById(viewU8[offset]));
}
for(i = 0; i < argc; ++i){
const t = typeIds[i];
if(t.getter){
v = viewDV[t.getter](offset, state.littleEndian);
offset += t.size;
}else{/*String*/
n = viewDV.getInt32(offset, state.littleEndian);
offset += 4;
v = textDecoder.decode(viewU8.slice(offset, offset+n));
offset += n;
}
rc.push(v);
}
}
if(clear) viewU8[0] = 0;
//log("deserialize:",argc, rc);
return rc;
};
state.s11n.serialize = function(...args){
if(args.length){
//log("serialize():",args);
const typeIds = [];
let i = 0, offset = 1;
viewU8[0] = args.length & 0xff /* header = # of args */;
for(; i < args.length; ++i, ++offset){
/* Write the TypeIds.id value into the next args.length
bytes. */
typeIds.push(getTypeId(args[i]));
viewU8[offset] = typeIds[i].id;
}
for(i = 0; i < args.length; ++i) {
/* Deserialize the following bytes based on their
corresponding TypeIds.id from the header. */
const t = typeIds[i];
if(t.setter){
viewDV[t.setter](offset, args[i], state.littleEndian);
offset += t.size;
}else{/*String*/
const s = textEncoder.encode(args[i]);
viewDV.setInt32(offset, s.byteLength, state.littleEndian);
offset += 4;
viewU8.set(s, offset);
offset += s.byteLength;
}
}
//log("serialize() result:",viewU8.slice(0,offset));
}else{
viewU8[0] = 0;
}
};
state.s11n.storeException = state.asyncS11nExceptions
? ((priority,e)=>{
if(priority<=state.asyncS11nExceptions){
state.s11n.serialize([e.name,': ',e.message].join(""));
}
})
: ()=>{};
return state.s11n;
}/*initS11n()*/;
const waitLoop = async function f(){
const opHandlers = Object.create(null);
for(let k of Object.keys(state.opIds)){
const vi = vfsAsyncImpls[k];
if(!vi) continue;
const o = Object.create(null);
opHandlers[state.opIds[k]] = o;
o.key = k;
o.f = vi;
}
while(!flagAsyncShutdown){
try {
if('not-equal'!==Atomics.wait(
state.sabOPView, state.opIds.whichOp, 0, state.asyncIdleWaitTime
)){
/* Maintenance note: we compare against 'not-equal' because
https://github.com/tomayac/sqlite-wasm/issues/12
is reporting that this occasionally, under high loads,
returns 'ok', which leads to the whichOp being 0 (which
isn't a valid operation ID and leads to an exception,
along with a corresponding ugly console log
message). Unfortunately, the conditions for that cannot
be reliably reproduced. The only place in our code which
writes a 0 to the state.opIds.whichOp SharedArrayBuffer
index is a few lines down from here, and that instance
is required in order for clear communication between
the sync half of this proxy and this half.
*/
await releaseImplicitLocks();
continue;
}
const opId = Atomics.load(state.sabOPView, state.opIds.whichOp);
Atomics.store(state.sabOPView, state.opIds.whichOp, 0);
const hnd = opHandlers[opId] ?? toss("No waitLoop handler for whichOp #",opId);
const args = state.s11n.deserialize(
true /* clear s11n to keep the caller from confusing this with
an exception string written by the upcoming
operation */
) || [];
//warn("waitLoop() whichOp =",opId, hnd, args);
if(hnd.f) await hnd.f(...args);
else error("Missing callback for opId",opId);
}catch(e){
error('in waitLoop():',e);
}
}
};
navigator.storage.getDirectory().then(function(d){
state.rootDir = d;
globalThis.onmessage = function({data}){
switch(data.type){
case 'opfs-async-init':{
/* Receive shared state from synchronous partner */
const opt = data.args;
for(const k in opt) state[k] = opt[k];
state.verbose = opt.verbose ?? 1;
state.sabOPView = new Int32Array(state.sabOP);
state.sabFileBufView = new Uint8Array(state.sabIO, 0, state.fileBufferSize);
state.sabS11nView = new Uint8Array(state.sabIO, state.sabS11nOffset, state.sabS11nSize);
Object.keys(vfsAsyncImpls).forEach((k)=>{
if(!Number.isFinite(state.opIds[k])){
toss("Maintenance required: missing state.opIds[",k,"]");
}
});
initS11n();
log("init state",state);
wPost('opfs-async-inited');
waitLoop();
break;
}
case 'opfs-async-restart':
if(flagAsyncShutdown){
warn("Restarting after opfs-async-shutdown. Might or might not work.");
flagAsyncShutdown = false;
waitLoop();
}
break;
}
};
wPost('opfs-async-loaded');
}).catch((e)=>error("error initializing OPFS asyncer:",e));
}/*installAsyncProxy()*/;
if(!globalThis.SharedArrayBuffer){
wPost('opfs-unavailable', "Missing SharedArrayBuffer API.",
"The server must emit the COOP/COEP response headers to enable that.");
}else if(!globalThis.Atomics){
wPost('opfs-unavailable', "Missing Atomics API.",
"The server must emit the COOP/COEP response headers to enable that.");
}else if(!globalThis.FileSystemHandle ||
!globalThis.FileSystemDirectoryHandle ||
!globalThis.FileSystemFileHandle ||
!globalThis.FileSystemFileHandle.prototype.createSyncAccessHandle ||
!navigator?.storage?.getDirectory){
wPost('opfs-unavailable',"Missing required OPFS APIs.");
}else{
installAsyncProxy();
}
|