File size: 107,800 Bytes
7510827 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 |
/*
** 2002 February 23
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the C-language implementations for many of the SQL
** functions of SQLite. (Some function, and in particular the date and
** time functions, are implemented separately.)
*/
#include "sqliteInt.h"
#include <stdlib.h>
#include <assert.h>
#ifndef SQLITE_OMIT_FLOATING_POINT
#include <math.h>
#endif
#include "vdbeInt.h"
/*
** Return the collating function associated with a function.
*/
static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
VdbeOp *pOp;
assert( context->pVdbe!=0 );
pOp = &context->pVdbe->aOp[context->iOp-1];
assert( pOp->opcode==OP_CollSeq );
assert( pOp->p4type==P4_COLLSEQ );
return pOp->p4.pColl;
}
/*
** Indicate that the accumulator load should be skipped on this
** iteration of the aggregate loop.
*/
static void sqlite3SkipAccumulatorLoad(sqlite3_context *context){
assert( context->isError<=0 );
context->isError = -1;
context->skipFlag = 1;
}
/*
** Implementation of the non-aggregate min() and max() functions
*/
static void minmaxFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
int i;
int mask; /* 0 for min() or 0xffffffff for max() */
int iBest;
CollSeq *pColl;
assert( argc>1 );
mask = sqlite3_user_data(context)==0 ? 0 : -1;
pColl = sqlite3GetFuncCollSeq(context);
assert( pColl );
assert( mask==-1 || mask==0 );
iBest = 0;
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
for(i=1; i<argc; i++){
if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return;
if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){
testcase( mask==0 );
iBest = i;
}
}
sqlite3_result_value(context, argv[iBest]);
}
/*
** Return the type of the argument.
*/
static void typeofFunc(
sqlite3_context *context,
int NotUsed,
sqlite3_value **argv
){
static const char *azType[] = { "integer", "real", "text", "blob", "null" };
int i = sqlite3_value_type(argv[0]) - 1;
UNUSED_PARAMETER(NotUsed);
assert( i>=0 && i<ArraySize(azType) );
assert( SQLITE_INTEGER==1 );
assert( SQLITE_FLOAT==2 );
assert( SQLITE_TEXT==3 );
assert( SQLITE_BLOB==4 );
assert( SQLITE_NULL==5 );
/* EVIDENCE-OF: R-01470-60482 The sqlite3_value_type(V) interface returns
** the datatype code for the initial datatype of the sqlite3_value object
** V. The returned value is one of SQLITE_INTEGER, SQLITE_FLOAT,
** SQLITE_TEXT, SQLITE_BLOB, or SQLITE_NULL. */
sqlite3_result_text(context, azType[i], -1, SQLITE_STATIC);
}
/* subtype(X)
**
** Return the subtype of X
*/
static void subtypeFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
UNUSED_PARAMETER(argc);
sqlite3_result_int(context, sqlite3_value_subtype(argv[0]));
}
/*
** Implementation of the length() function
*/
static void lengthFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
assert( argc==1 );
UNUSED_PARAMETER(argc);
switch( sqlite3_value_type(argv[0]) ){
case SQLITE_BLOB:
case SQLITE_INTEGER:
case SQLITE_FLOAT: {
sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
break;
}
case SQLITE_TEXT: {
const unsigned char *z = sqlite3_value_text(argv[0]);
const unsigned char *z0;
unsigned char c;
if( z==0 ) return;
z0 = z;
while( (c = *z)!=0 ){
z++;
if( c>=0xc0 ){
while( (*z & 0xc0)==0x80 ){ z++; z0++; }
}
}
sqlite3_result_int(context, (int)(z-z0));
break;
}
default: {
sqlite3_result_null(context);
break;
}
}
}
/*
** Implementation of the octet_length() function
*/
static void bytelengthFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
assert( argc==1 );
UNUSED_PARAMETER(argc);
switch( sqlite3_value_type(argv[0]) ){
case SQLITE_BLOB: {
sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
break;
}
case SQLITE_INTEGER:
case SQLITE_FLOAT: {
i64 m = sqlite3_context_db_handle(context)->enc<=SQLITE_UTF8 ? 1 : 2;
sqlite3_result_int64(context, sqlite3_value_bytes(argv[0])*m);
break;
}
case SQLITE_TEXT: {
if( sqlite3_value_encoding(argv[0])<=SQLITE_UTF8 ){
sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
}else{
sqlite3_result_int(context, sqlite3_value_bytes16(argv[0]));
}
break;
}
default: {
sqlite3_result_null(context);
break;
}
}
}
/*
** Implementation of the abs() function.
**
** IMP: R-23979-26855 The abs(X) function returns the absolute value of
** the numeric argument X.
*/
static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
assert( argc==1 );
UNUSED_PARAMETER(argc);
switch( sqlite3_value_type(argv[0]) ){
case SQLITE_INTEGER: {
i64 iVal = sqlite3_value_int64(argv[0]);
if( iVal<0 ){
if( iVal==SMALLEST_INT64 ){
/* IMP: R-31676-45509 If X is the integer -9223372036854775808
** then abs(X) throws an integer overflow error since there is no
** equivalent positive 64-bit two complement value. */
sqlite3_result_error(context, "integer overflow", -1);
return;
}
iVal = -iVal;
}
sqlite3_result_int64(context, iVal);
break;
}
case SQLITE_NULL: {
/* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */
sqlite3_result_null(context);
break;
}
default: {
/* Because sqlite3_value_double() returns 0.0 if the argument is not
** something that can be converted into a number, we have:
** IMP: R-01992-00519 Abs(X) returns 0.0 if X is a string or blob
** that cannot be converted to a numeric value.
*/
double rVal = sqlite3_value_double(argv[0]);
if( rVal<0 ) rVal = -rVal;
sqlite3_result_double(context, rVal);
break;
}
}
}
/*
** Implementation of the instr() function.
**
** instr(haystack,needle) finds the first occurrence of needle
** in haystack and returns the number of previous characters plus 1,
** or 0 if needle does not occur within haystack.
**
** If both haystack and needle are BLOBs, then the result is one more than
** the number of bytes in haystack prior to the first occurrence of needle,
** or 0 if needle never occurs in haystack.
*/
static void instrFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
const unsigned char *zHaystack;
const unsigned char *zNeedle;
int nHaystack;
int nNeedle;
int typeHaystack, typeNeedle;
int N = 1;
int isText;
unsigned char firstChar;
sqlite3_value *pC1 = 0;
sqlite3_value *pC2 = 0;
UNUSED_PARAMETER(argc);
typeHaystack = sqlite3_value_type(argv[0]);
typeNeedle = sqlite3_value_type(argv[1]);
if( typeHaystack==SQLITE_NULL || typeNeedle==SQLITE_NULL ) return;
nHaystack = sqlite3_value_bytes(argv[0]);
nNeedle = sqlite3_value_bytes(argv[1]);
if( nNeedle>0 ){
if( typeHaystack==SQLITE_BLOB && typeNeedle==SQLITE_BLOB ){
zHaystack = sqlite3_value_blob(argv[0]);
zNeedle = sqlite3_value_blob(argv[1]);
isText = 0;
}else if( typeHaystack!=SQLITE_BLOB && typeNeedle!=SQLITE_BLOB ){
zHaystack = sqlite3_value_text(argv[0]);
zNeedle = sqlite3_value_text(argv[1]);
isText = 1;
}else{
pC1 = sqlite3_value_dup(argv[0]);
zHaystack = sqlite3_value_text(pC1);
if( zHaystack==0 ) goto endInstrOOM;
nHaystack = sqlite3_value_bytes(pC1);
pC2 = sqlite3_value_dup(argv[1]);
zNeedle = sqlite3_value_text(pC2);
if( zNeedle==0 ) goto endInstrOOM;
nNeedle = sqlite3_value_bytes(pC2);
isText = 1;
}
if( zNeedle==0 || (nHaystack && zHaystack==0) ) goto endInstrOOM;
firstChar = zNeedle[0];
while( nNeedle<=nHaystack
&& (zHaystack[0]!=firstChar || memcmp(zHaystack, zNeedle, nNeedle)!=0)
){
N++;
do{
nHaystack--;
zHaystack++;
}while( isText && (zHaystack[0]&0xc0)==0x80 );
}
if( nNeedle>nHaystack ) N = 0;
}
sqlite3_result_int(context, N);
endInstr:
sqlite3_value_free(pC1);
sqlite3_value_free(pC2);
return;
endInstrOOM:
sqlite3_result_error_nomem(context);
goto endInstr;
}
/*
** Implementation of the printf() (a.k.a. format()) SQL function.
*/
static void printfFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
PrintfArguments x;
StrAccum str;
const char *zFormat;
int n;
sqlite3 *db = sqlite3_context_db_handle(context);
if( argc>=1 && (zFormat = (const char*)sqlite3_value_text(argv[0]))!=0 ){
x.nArg = argc-1;
x.nUsed = 0;
x.apArg = argv+1;
sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
str.printfFlags = SQLITE_PRINTF_SQLFUNC;
sqlite3_str_appendf(&str, zFormat, &x);
n = str.nChar;
sqlite3_result_text(context, sqlite3StrAccumFinish(&str), n,
SQLITE_DYNAMIC);
}
}
/*
** Implementation of the substr() function.
**
** substr(x,p1,p2) returns p2 characters of x[] beginning with p1.
** p1 is 1-indexed. So substr(x,1,1) returns the first character
** of x. If x is text, then we actually count UTF-8 characters.
** If x is a blob, then we count bytes.
**
** If p1 is negative, then we begin abs(p1) from the end of x[].
**
** If p2 is negative, return the p2 characters preceding p1.
*/
static void substrFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
const unsigned char *z;
const unsigned char *z2;
int len;
int p0type;
i64 p1, p2;
assert( argc==3 || argc==2 );
p0type = sqlite3_value_type(argv[0]);
p1 = sqlite3_value_int64(argv[1]);
if( p0type==SQLITE_BLOB ){
len = sqlite3_value_bytes(argv[0]);
z = sqlite3_value_blob(argv[0]);
if( z==0 ) return;
assert( len==sqlite3_value_bytes(argv[0]) );
}else{
z = sqlite3_value_text(argv[0]);
if( z==0 ) return;
len = 0;
if( p1<0 ){
for(z2=z; *z2; len++){
SQLITE_SKIP_UTF8(z2);
}
}
}
if( argc==3 ){
p2 = sqlite3_value_int64(argv[2]);
if( p2==0 && sqlite3_value_type(argv[2])==SQLITE_NULL ) return;
}else{
p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH];
}
if( p1==0 ){
#ifdef SQLITE_SUBSTR_COMPATIBILITY
/* If SUBSTR_COMPATIBILITY is defined then substr(X,0,N) work the same as
** as substr(X,1,N) - it returns the first N characters of X. This
** is essentially a back-out of the bug-fix in check-in [5fc125d362df4b8]
** from 2009-02-02 for compatibility of applications that exploited the
** old buggy behavior. */
p1 = 1; /* <rdar://problem/6778339> */
#endif
if( sqlite3_value_type(argv[1])==SQLITE_NULL ) return;
}
if( p1<0 ){
p1 += len;
if( p1<0 ){
if( p2<0 ){
p2 = 0;
}else{
p2 += p1;
}
p1 = 0;
}
}else if( p1>0 ){
p1--;
}else if( p2>0 ){
p2--;
}
if( p2<0 ){
if( p2<-p1 ){
p2 = p1;
}else{
p2 = -p2;
}
p1 -= p2;
}
assert( p1>=0 && p2>=0 );
if( p0type!=SQLITE_BLOB ){
while( *z && p1 ){
SQLITE_SKIP_UTF8(z);
p1--;
}
for(z2=z; *z2 && p2; p2--){
SQLITE_SKIP_UTF8(z2);
}
sqlite3_result_text64(context, (char*)z, z2-z, SQLITE_TRANSIENT,
SQLITE_UTF8);
}else{
if( p1>=len ){
p1 = p2 = 0;
}else if( p2>len-p1 ){
p2 = len-p1;
assert( p2>0 );
}
sqlite3_result_blob64(context, (char*)&z[p1], (u64)p2, SQLITE_TRANSIENT);
}
}
/*
** Implementation of the round() function
*/
#ifndef SQLITE_OMIT_FLOATING_POINT
static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
i64 n = 0;
double r;
char *zBuf;
assert( argc==1 || argc==2 );
if( argc==2 ){
if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return;
n = sqlite3_value_int64(argv[1]);
if( n>30 ) n = 30;
if( n<0 ) n = 0;
}
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
r = sqlite3_value_double(argv[0]);
/* If Y==0 and X will fit in a 64-bit int,
** handle the rounding directly,
** otherwise use printf.
*/
if( r<-4503599627370496.0 || r>+4503599627370496.0 ){
/* The value has no fractional part so there is nothing to round */
}else if( n==0 ){
r = (double)((sqlite_int64)(r+(r<0?-0.5:+0.5)));
}else{
zBuf = sqlite3_mprintf("%!.*f",(int)n,r);
if( zBuf==0 ){
sqlite3_result_error_nomem(context);
return;
}
sqlite3AtoF(zBuf, &r, sqlite3Strlen30(zBuf), SQLITE_UTF8);
sqlite3_free(zBuf);
}
sqlite3_result_double(context, r);
}
#endif
/*
** Allocate nByte bytes of space using sqlite3Malloc(). If the
** allocation fails, call sqlite3_result_error_nomem() to notify
** the database handle that malloc() has failed and return NULL.
** If nByte is larger than the maximum string or blob length, then
** raise an SQLITE_TOOBIG exception and return NULL.
*/
static void *contextMalloc(sqlite3_context *context, i64 nByte){
char *z;
sqlite3 *db = sqlite3_context_db_handle(context);
assert( nByte>0 );
testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] );
testcase( nByte==(i64)db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
sqlite3_result_error_toobig(context);
z = 0;
}else{
z = sqlite3Malloc(nByte);
if( !z ){
sqlite3_result_error_nomem(context);
}
}
return z;
}
/*
** Implementation of the upper() and lower() SQL functions.
*/
static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
char *z1;
const char *z2;
int i, n;
UNUSED_PARAMETER(argc);
z2 = (char*)sqlite3_value_text(argv[0]);
n = sqlite3_value_bytes(argv[0]);
/* Verify that the call to _bytes() does not invalidate the _text() pointer */
assert( z2==(char*)sqlite3_value_text(argv[0]) );
if( z2 ){
z1 = contextMalloc(context, ((i64)n)+1);
if( z1 ){
for(i=0; i<n; i++){
z1[i] = (char)sqlite3Toupper(z2[i]);
}
sqlite3_result_text(context, z1, n, sqlite3_free);
}
}
}
static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
char *z1;
const char *z2;
int i, n;
UNUSED_PARAMETER(argc);
z2 = (char*)sqlite3_value_text(argv[0]);
n = sqlite3_value_bytes(argv[0]);
/* Verify that the call to _bytes() does not invalidate the _text() pointer */
assert( z2==(char*)sqlite3_value_text(argv[0]) );
if( z2 ){
z1 = contextMalloc(context, ((i64)n)+1);
if( z1 ){
for(i=0; i<n; i++){
z1[i] = sqlite3Tolower(z2[i]);
}
sqlite3_result_text(context, z1, n, sqlite3_free);
}
}
}
/*
** Some functions like COALESCE() and IFNULL() and UNLIKELY() are implemented
** as VDBE code so that unused argument values do not have to be computed.
** However, we still need some kind of function implementation for this
** routines in the function table. The noopFunc macro provides this.
** noopFunc will never be called so it doesn't matter what the implementation
** is. We might as well use the "version()" function as a substitute.
*/
#define noopFunc versionFunc /* Substitute function - never called */
/*
** Implementation of random(). Return a random integer.
*/
static void randomFunc(
sqlite3_context *context,
int NotUsed,
sqlite3_value **NotUsed2
){
sqlite_int64 r;
UNUSED_PARAMETER2(NotUsed, NotUsed2);
sqlite3_randomness(sizeof(r), &r);
if( r<0 ){
/* We need to prevent a random number of 0x8000000000000000
** (or -9223372036854775808) since when you do abs() of that
** number of you get the same value back again. To do this
** in a way that is testable, mask the sign bit off of negative
** values, resulting in a positive value. Then take the
** 2s complement of that positive value. The end result can
** therefore be no less than -9223372036854775807.
*/
r = -(r & LARGEST_INT64);
}
sqlite3_result_int64(context, r);
}
/*
** Implementation of randomblob(N). Return a random blob
** that is N bytes long.
*/
static void randomBlob(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
sqlite3_int64 n;
unsigned char *p;
assert( argc==1 );
UNUSED_PARAMETER(argc);
n = sqlite3_value_int64(argv[0]);
if( n<1 ){
n = 1;
}
p = contextMalloc(context, n);
if( p ){
sqlite3_randomness(n, p);
sqlite3_result_blob(context, (char*)p, n, sqlite3_free);
}
}
/*
** Implementation of the last_insert_rowid() SQL function. The return
** value is the same as the sqlite3_last_insert_rowid() API function.
*/
static void last_insert_rowid(
sqlite3_context *context,
int NotUsed,
sqlite3_value **NotUsed2
){
sqlite3 *db = sqlite3_context_db_handle(context);
UNUSED_PARAMETER2(NotUsed, NotUsed2);
/* IMP: R-51513-12026 The last_insert_rowid() SQL function is a
** wrapper around the sqlite3_last_insert_rowid() C/C++ interface
** function. */
sqlite3_result_int64(context, sqlite3_last_insert_rowid(db));
}
/*
** Implementation of the changes() SQL function.
**
** IMP: R-32760-32347 The changes() SQL function is a wrapper
** around the sqlite3_changes64() C/C++ function and hence follows the
** same rules for counting changes.
*/
static void changes(
sqlite3_context *context,
int NotUsed,
sqlite3_value **NotUsed2
){
sqlite3 *db = sqlite3_context_db_handle(context);
UNUSED_PARAMETER2(NotUsed, NotUsed2);
sqlite3_result_int64(context, sqlite3_changes64(db));
}
/*
** Implementation of the total_changes() SQL function. The return value is
** the same as the sqlite3_total_changes64() API function.
*/
static void total_changes(
sqlite3_context *context,
int NotUsed,
sqlite3_value **NotUsed2
){
sqlite3 *db = sqlite3_context_db_handle(context);
UNUSED_PARAMETER2(NotUsed, NotUsed2);
/* IMP: R-11217-42568 This function is a wrapper around the
** sqlite3_total_changes64() C/C++ interface. */
sqlite3_result_int64(context, sqlite3_total_changes64(db));
}
/*
** A structure defining how to do GLOB-style comparisons.
*/
struct compareInfo {
u8 matchAll; /* "*" or "%" */
u8 matchOne; /* "?" or "_" */
u8 matchSet; /* "[" or 0 */
u8 noCase; /* true to ignore case differences */
};
/*
** For LIKE and GLOB matching on EBCDIC machines, assume that every
** character is exactly one byte in size. Also, provide the Utf8Read()
** macro for fast reading of the next character in the common case where
** the next character is ASCII.
*/
#if defined(SQLITE_EBCDIC)
# define sqlite3Utf8Read(A) (*((*A)++))
# define Utf8Read(A) (*(A++))
#else
# define Utf8Read(A) (A[0]<0x80?*(A++):sqlite3Utf8Read(&A))
#endif
static const struct compareInfo globInfo = { '*', '?', '[', 0 };
/* The correct SQL-92 behavior is for the LIKE operator to ignore
** case. Thus 'a' LIKE 'A' would be true. */
static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 };
/* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
** is case sensitive causing 'a' LIKE 'A' to be false */
static const struct compareInfo likeInfoAlt = { '%', '_', 0, 0 };
/*
** Possible error returns from patternMatch()
*/
#define SQLITE_MATCH 0
#define SQLITE_NOMATCH 1
#define SQLITE_NOWILDCARDMATCH 2
/*
** Compare two UTF-8 strings for equality where the first string is
** a GLOB or LIKE expression. Return values:
**
** SQLITE_MATCH: Match
** SQLITE_NOMATCH: No match
** SQLITE_NOWILDCARDMATCH: No match in spite of having * or % wildcards.
**
** Globbing rules:
**
** '*' Matches any sequence of zero or more characters.
**
** '?' Matches exactly one character.
**
** [...] Matches one character from the enclosed list of
** characters.
**
** [^...] Matches one character not in the enclosed list.
**
** With the [...] and [^...] matching, a ']' character can be included
** in the list by making it the first character after '[' or '^'. A
** range of characters can be specified using '-'. Example:
** "[a-z]" matches any single lower-case letter. To match a '-', make
** it the last character in the list.
**
** Like matching rules:
**
** '%' Matches any sequence of zero or more characters
**
*** '_' Matches any one character
**
** Ec Where E is the "esc" character and c is any other
** character, including '%', '_', and esc, match exactly c.
**
** The comments within this routine usually assume glob matching.
**
** This routine is usually quick, but can be N**2 in the worst case.
*/
static int patternCompare(
const u8 *zPattern, /* The glob pattern */
const u8 *zString, /* The string to compare against the glob */
const struct compareInfo *pInfo, /* Information about how to do the compare */
u32 matchOther /* The escape char (LIKE) or '[' (GLOB) */
){
u32 c, c2; /* Next pattern and input string chars */
u32 matchOne = pInfo->matchOne; /* "?" or "_" */
u32 matchAll = pInfo->matchAll; /* "*" or "%" */
u8 noCase = pInfo->noCase; /* True if uppercase==lowercase */
const u8 *zEscaped = 0; /* One past the last escaped input char */
while( (c = Utf8Read(zPattern))!=0 ){
if( c==matchAll ){ /* Match "*" */
/* Skip over multiple "*" characters in the pattern. If there
** are also "?" characters, skip those as well, but consume a
** single character of the input string for each "?" skipped */
while( (c=Utf8Read(zPattern)) == matchAll
|| (c == matchOne && matchOne!=0) ){
if( c==matchOne && sqlite3Utf8Read(&zString)==0 ){
return SQLITE_NOWILDCARDMATCH;
}
}
if( c==0 ){
return SQLITE_MATCH; /* "*" at the end of the pattern matches */
}else if( c==matchOther ){
if( pInfo->matchSet==0 ){
c = sqlite3Utf8Read(&zPattern);
if( c==0 ) return SQLITE_NOWILDCARDMATCH;
}else{
/* "[...]" immediately follows the "*". We have to do a slow
** recursive search in this case, but it is an unusual case. */
assert( matchOther<0x80 ); /* '[' is a single-byte character */
while( *zString ){
int bMatch = patternCompare(&zPattern[-1],zString,pInfo,matchOther);
if( bMatch!=SQLITE_NOMATCH ) return bMatch;
SQLITE_SKIP_UTF8(zString);
}
return SQLITE_NOWILDCARDMATCH;
}
}
/* At this point variable c contains the first character of the
** pattern string past the "*". Search in the input string for the
** first matching character and recursively continue the match from
** that point.
**
** For a case-insensitive search, set variable cx to be the same as
** c but in the other case and search the input string for either
** c or cx.
*/
if( c<0x80 ){
char zStop[3];
int bMatch;
if( noCase ){
zStop[0] = sqlite3Toupper(c);
zStop[1] = sqlite3Tolower(c);
zStop[2] = 0;
}else{
zStop[0] = c;
zStop[1] = 0;
}
while(1){
zString += strcspn((const char*)zString, zStop);
if( zString[0]==0 ) break;
zString++;
bMatch = patternCompare(zPattern,zString,pInfo,matchOther);
if( bMatch!=SQLITE_NOMATCH ) return bMatch;
}
}else{
int bMatch;
while( (c2 = Utf8Read(zString))!=0 ){
if( c2!=c ) continue;
bMatch = patternCompare(zPattern,zString,pInfo,matchOther);
if( bMatch!=SQLITE_NOMATCH ) return bMatch;
}
}
return SQLITE_NOWILDCARDMATCH;
}
if( c==matchOther ){
if( pInfo->matchSet==0 ){
c = sqlite3Utf8Read(&zPattern);
if( c==0 ) return SQLITE_NOMATCH;
zEscaped = zPattern;
}else{
u32 prior_c = 0;
int seen = 0;
int invert = 0;
c = sqlite3Utf8Read(&zString);
if( c==0 ) return SQLITE_NOMATCH;
c2 = sqlite3Utf8Read(&zPattern);
if( c2=='^' ){
invert = 1;
c2 = sqlite3Utf8Read(&zPattern);
}
if( c2==']' ){
if( c==']' ) seen = 1;
c2 = sqlite3Utf8Read(&zPattern);
}
while( c2 && c2!=']' ){
if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){
c2 = sqlite3Utf8Read(&zPattern);
if( c>=prior_c && c<=c2 ) seen = 1;
prior_c = 0;
}else{
if( c==c2 ){
seen = 1;
}
prior_c = c2;
}
c2 = sqlite3Utf8Read(&zPattern);
}
if( c2==0 || (seen ^ invert)==0 ){
return SQLITE_NOMATCH;
}
continue;
}
}
c2 = Utf8Read(zString);
if( c==c2 ) continue;
if( noCase && sqlite3Tolower(c)==sqlite3Tolower(c2) && c<0x80 && c2<0x80 ){
continue;
}
if( c==matchOne && zPattern!=zEscaped && c2!=0 ) continue;
return SQLITE_NOMATCH;
}
return *zString==0 ? SQLITE_MATCH : SQLITE_NOMATCH;
}
/*
** The sqlite3_strglob() interface. Return 0 on a match (like strcmp()) and
** non-zero if there is no match.
*/
int sqlite3_strglob(const char *zGlobPattern, const char *zString){
if( zString==0 ){
return zGlobPattern!=0;
}else if( zGlobPattern==0 ){
return 1;
}else {
return patternCompare((u8*)zGlobPattern, (u8*)zString, &globInfo, '[');
}
}
/*
** The sqlite3_strlike() interface. Return 0 on a match and non-zero for
** a miss - like strcmp().
*/
int sqlite3_strlike(const char *zPattern, const char *zStr, unsigned int esc){
if( zStr==0 ){
return zPattern!=0;
}else if( zPattern==0 ){
return 1;
}else{
return patternCompare((u8*)zPattern, (u8*)zStr, &likeInfoNorm, esc);
}
}
/*
** Count the number of times that the LIKE operator (or GLOB which is
** just a variation of LIKE) gets called. This is used for testing
** only.
*/
#ifdef SQLITE_TEST
int sqlite3_like_count = 0;
#endif
/*
** Implementation of the like() SQL function. This function implements
** the built-in LIKE operator. The first argument to the function is the
** pattern and the second argument is the string. So, the SQL statements:
**
** A LIKE B
**
** is implemented as like(B,A).
**
** This same function (with a different compareInfo structure) computes
** the GLOB operator.
*/
static void likeFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
const unsigned char *zA, *zB;
u32 escape;
int nPat;
sqlite3 *db = sqlite3_context_db_handle(context);
struct compareInfo *pInfo = sqlite3_user_data(context);
struct compareInfo backupInfo;
#ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
if( sqlite3_value_type(argv[0])==SQLITE_BLOB
|| sqlite3_value_type(argv[1])==SQLITE_BLOB
){
#ifdef SQLITE_TEST
sqlite3_like_count++;
#endif
sqlite3_result_int(context, 0);
return;
}
#endif
/* Limit the length of the LIKE or GLOB pattern to avoid problems
** of deep recursion and N*N behavior in patternCompare().
*/
nPat = sqlite3_value_bytes(argv[0]);
testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] );
testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]+1 );
if( nPat > db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){
sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
return;
}
if( argc==3 ){
/* The escape character string must consist of a single UTF-8 character.
** Otherwise, return an error.
*/
const unsigned char *zEsc = sqlite3_value_text(argv[2]);
if( zEsc==0 ) return;
if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
sqlite3_result_error(context,
"ESCAPE expression must be a single character", -1);
return;
}
escape = sqlite3Utf8Read(&zEsc);
if( escape==pInfo->matchAll || escape==pInfo->matchOne ){
memcpy(&backupInfo, pInfo, sizeof(backupInfo));
pInfo = &backupInfo;
if( escape==pInfo->matchAll ) pInfo->matchAll = 0;
if( escape==pInfo->matchOne ) pInfo->matchOne = 0;
}
}else{
escape = pInfo->matchSet;
}
zB = sqlite3_value_text(argv[0]);
zA = sqlite3_value_text(argv[1]);
if( zA && zB ){
#ifdef SQLITE_TEST
sqlite3_like_count++;
#endif
sqlite3_result_int(context,
patternCompare(zB, zA, pInfo, escape)==SQLITE_MATCH);
}
}
/*
** Implementation of the NULLIF(x,y) function. The result is the first
** argument if the arguments are different. The result is NULL if the
** arguments are equal to each other.
*/
static void nullifFunc(
sqlite3_context *context,
int NotUsed,
sqlite3_value **argv
){
CollSeq *pColl = sqlite3GetFuncCollSeq(context);
UNUSED_PARAMETER(NotUsed);
if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
sqlite3_result_value(context, argv[0]);
}
}
/*
** Implementation of the sqlite_version() function. The result is the version
** of the SQLite library that is running.
*/
static void versionFunc(
sqlite3_context *context,
int NotUsed,
sqlite3_value **NotUsed2
){
UNUSED_PARAMETER2(NotUsed, NotUsed2);
/* IMP: R-48699-48617 This function is an SQL wrapper around the
** sqlite3_libversion() C-interface. */
sqlite3_result_text(context, sqlite3_libversion(), -1, SQLITE_STATIC);
}
/*
** Implementation of the sqlite_source_id() function. The result is a string
** that identifies the particular version of the source code used to build
** SQLite.
*/
static void sourceidFunc(
sqlite3_context *context,
int NotUsed,
sqlite3_value **NotUsed2
){
UNUSED_PARAMETER2(NotUsed, NotUsed2);
/* IMP: R-24470-31136 This function is an SQL wrapper around the
** sqlite3_sourceid() C interface. */
sqlite3_result_text(context, sqlite3_sourceid(), -1, SQLITE_STATIC);
}
/*
** Implementation of the sqlite_log() function. This is a wrapper around
** sqlite3_log(). The return value is NULL. The function exists purely for
** its side-effects.
*/
static void errlogFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
UNUSED_PARAMETER(argc);
UNUSED_PARAMETER(context);
sqlite3_log(sqlite3_value_int(argv[0]), "%s", sqlite3_value_text(argv[1]));
}
/*
** Implementation of the sqlite_compileoption_used() function.
** The result is an integer that identifies if the compiler option
** was used to build SQLite.
*/
#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
static void compileoptionusedFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
const char *zOptName;
assert( argc==1 );
UNUSED_PARAMETER(argc);
/* IMP: R-39564-36305 The sqlite_compileoption_used() SQL
** function is a wrapper around the sqlite3_compileoption_used() C/C++
** function.
*/
if( (zOptName = (const char*)sqlite3_value_text(argv[0]))!=0 ){
sqlite3_result_int(context, sqlite3_compileoption_used(zOptName));
}
}
#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
/*
** Implementation of the sqlite_compileoption_get() function.
** The result is a string that identifies the compiler options
** used to build SQLite.
*/
#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
static void compileoptiongetFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
int n;
assert( argc==1 );
UNUSED_PARAMETER(argc);
/* IMP: R-04922-24076 The sqlite_compileoption_get() SQL function
** is a wrapper around the sqlite3_compileoption_get() C/C++ function.
*/
n = sqlite3_value_int(argv[0]);
sqlite3_result_text(context, sqlite3_compileoption_get(n), -1, SQLITE_STATIC);
}
#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
/* Array for converting from half-bytes (nybbles) into ASCII hex
** digits. */
static const char hexdigits[] = {
'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
};
/*
** Append to pStr text that is the SQL literal representation of the
** value contained in pValue.
*/
void sqlite3QuoteValue(StrAccum *pStr, sqlite3_value *pValue, int bEscape){
/* As currently implemented, the string must be initially empty.
** we might relax this requirement in the future, but that will
** require enhancements to the implementation. */
assert( pStr!=0 && pStr->nChar==0 );
switch( sqlite3_value_type(pValue) ){
case SQLITE_FLOAT: {
double r1, r2;
const char *zVal;
r1 = sqlite3_value_double(pValue);
sqlite3_str_appendf(pStr, "%!0.15g", r1);
zVal = sqlite3_str_value(pStr);
if( zVal ){
sqlite3AtoF(zVal, &r2, pStr->nChar, SQLITE_UTF8);
if( r1!=r2 ){
sqlite3_str_reset(pStr);
sqlite3_str_appendf(pStr, "%!0.20e", r1);
}
}
break;
}
case SQLITE_INTEGER: {
sqlite3_str_appendf(pStr, "%lld", sqlite3_value_int64(pValue));
break;
}
case SQLITE_BLOB: {
char const *zBlob = sqlite3_value_blob(pValue);
i64 nBlob = sqlite3_value_bytes(pValue);
assert( zBlob==sqlite3_value_blob(pValue) ); /* No encoding change */
sqlite3StrAccumEnlarge(pStr, nBlob*2 + 4);
if( pStr->accError==0 ){
char *zText = pStr->zText;
int i;
for(i=0; i<nBlob; i++){
zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F];
zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F];
}
zText[(nBlob*2)+2] = '\'';
zText[(nBlob*2)+3] = '\0';
zText[0] = 'X';
zText[1] = '\'';
pStr->nChar = nBlob*2 + 3;
}
break;
}
case SQLITE_TEXT: {
const unsigned char *zArg = sqlite3_value_text(pValue);
sqlite3_str_appendf(pStr, bEscape ? "%#Q" : "%Q", zArg);
break;
}
default: {
assert( sqlite3_value_type(pValue)==SQLITE_NULL );
sqlite3_str_append(pStr, "NULL", 4);
break;
}
}
}
/*
** Return true if z[] begins with N hexadecimal digits, and write
** a decoding of those digits into *pVal. Or return false if any
** one of the first N characters in z[] is not a hexadecimal digit.
*/
static int isNHex(const char *z, int N, u32 *pVal){
int i;
u32 v = 0;
for(i=0; i<N; i++){
if( !sqlite3Isxdigit(z[i]) ) return 0;
v = (v<<4) + sqlite3HexToInt(z[i]);
}
*pVal = v;
return 1;
}
/*
** Implementation of the UNISTR() function.
**
** This is intended to be a work-alike of the UNISTR() function in
** PostgreSQL. Quoting from the PG documentation (PostgreSQL 17 -
** scraped on 2025-02-22):
**
** Evaluate escaped Unicode characters in the argument. Unicode
** characters can be specified as \XXXX (4 hexadecimal digits),
** \+XXXXXX (6 hexadecimal digits), \uXXXX (4 hexadecimal digits),
** or \UXXXXXXXX (8 hexadecimal digits). To specify a backslash,
** write two backslashes. All other characters are taken literally.
*/
static void unistrFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
char *zOut;
const char *zIn;
int nIn;
int i, j, n;
u32 v;
assert( argc==1 );
UNUSED_PARAMETER( argc );
zIn = (const char*)sqlite3_value_text(argv[0]);
if( zIn==0 ) return;
nIn = sqlite3_value_bytes(argv[0]);
zOut = sqlite3_malloc64(nIn+1);
if( zOut==0 ){
sqlite3_result_error_nomem(context);
return;
}
i = j = 0;
while( i<nIn ){
char *z = strchr(&zIn[i],'\\');
if( z==0 ){
n = nIn - i;
memmove(&zOut[j], &zIn[i], n);
j += n;
break;
}
n = z - &zIn[i];
if( n>0 ){
memmove(&zOut[j], &zIn[i], n);
j += n;
i += n;
}
if( zIn[i+1]=='\\' ){
i += 2;
zOut[j++] = '\\';
}else if( sqlite3Isxdigit(zIn[i+1]) ){
if( !isNHex(&zIn[i+1], 4, &v) ) goto unistr_error;
i += 5;
j += sqlite3AppendOneUtf8Character(&zOut[j], v);
}else if( zIn[i+1]=='+' ){
if( !isNHex(&zIn[i+2], 6, &v) ) goto unistr_error;
i += 8;
j += sqlite3AppendOneUtf8Character(&zOut[j], v);
}else if( zIn[i+1]=='u' ){
if( !isNHex(&zIn[i+2], 4, &v) ) goto unistr_error;
i += 6;
j += sqlite3AppendOneUtf8Character(&zOut[j], v);
}else if( zIn[i+1]=='U' ){
if( !isNHex(&zIn[i+2], 8, &v) ) goto unistr_error;
i += 10;
j += sqlite3AppendOneUtf8Character(&zOut[j], v);
}else{
goto unistr_error;
}
}
zOut[j] = 0;
sqlite3_result_text64(context, zOut, j, sqlite3_free, SQLITE_UTF8);
return;
unistr_error:
sqlite3_free(zOut);
sqlite3_result_error(context, "invalid Unicode escape", -1);
return;
}
/*
** Implementation of the QUOTE() function.
**
** The quote(X) function returns the text of an SQL literal which is the
** value of its argument suitable for inclusion into an SQL statement.
** Strings are surrounded by single-quotes with escapes on interior quotes
** as needed. BLOBs are encoded as hexadecimal literals. Strings with
** embedded NUL characters cannot be represented as string literals in SQL
** and hence the returned string literal is truncated prior to the first NUL.
**
** If sqlite3_user_data() is non-zero, then the UNISTR_QUOTE() function is
** implemented instead. The difference is that UNISTR_QUOTE() uses the
** UNISTR() function to escape control characters.
*/
static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
sqlite3_str str;
sqlite3 *db = sqlite3_context_db_handle(context);
assert( argc==1 );
UNUSED_PARAMETER(argc);
sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
sqlite3QuoteValue(&str,argv[0],SQLITE_PTR_TO_INT(sqlite3_user_data(context)));
sqlite3_result_text(context, sqlite3StrAccumFinish(&str), str.nChar,
SQLITE_DYNAMIC);
if( str.accError!=SQLITE_OK ){
sqlite3_result_null(context);
sqlite3_result_error_code(context, str.accError);
}
}
/*
** The unicode() function. Return the integer unicode code-point value
** for the first character of the input string.
*/
static void unicodeFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
const unsigned char *z = sqlite3_value_text(argv[0]);
(void)argc;
if( z && z[0] ) sqlite3_result_int(context, sqlite3Utf8Read(&z));
}
/*
** The char() function takes zero or more arguments, each of which is
** an integer. It constructs a string where each character of the string
** is the unicode character for the corresponding integer argument.
*/
static void charFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
unsigned char *z, *zOut;
int i;
zOut = z = sqlite3_malloc64( argc*4+1 );
if( z==0 ){
sqlite3_result_error_nomem(context);
return;
}
for(i=0; i<argc; i++){
sqlite3_int64 x;
unsigned c;
x = sqlite3_value_int64(argv[i]);
if( x<0 || x>0x10ffff ) x = 0xfffd;
c = (unsigned)(x & 0x1fffff);
if( c<0x00080 ){
*zOut++ = (u8)(c&0xFF);
}else if( c<0x00800 ){
*zOut++ = 0xC0 + (u8)((c>>6)&0x1F);
*zOut++ = 0x80 + (u8)(c & 0x3F);
}else if( c<0x10000 ){
*zOut++ = 0xE0 + (u8)((c>>12)&0x0F);
*zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
*zOut++ = 0x80 + (u8)(c & 0x3F);
}else{
*zOut++ = 0xF0 + (u8)((c>>18) & 0x07);
*zOut++ = 0x80 + (u8)((c>>12) & 0x3F);
*zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
*zOut++ = 0x80 + (u8)(c & 0x3F);
} \
}
*zOut = 0;
sqlite3_result_text64(context, (char*)z, zOut-z, sqlite3_free, SQLITE_UTF8);
}
/*
** The hex() function. Interpret the argument as a blob. Return
** a hexadecimal rendering as text.
*/
static void hexFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
int i, n;
const unsigned char *pBlob;
char *zHex, *z;
assert( argc==1 );
UNUSED_PARAMETER(argc);
pBlob = sqlite3_value_blob(argv[0]);
n = sqlite3_value_bytes(argv[0]);
assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
z = zHex = contextMalloc(context, ((i64)n)*2 + 1);
if( zHex ){
for(i=0; i<n; i++, pBlob++){
unsigned char c = *pBlob;
*(z++) = hexdigits[(c>>4)&0xf];
*(z++) = hexdigits[c&0xf];
}
*z = 0;
sqlite3_result_text64(context, zHex, (u64)(z-zHex),
sqlite3_free, SQLITE_UTF8);
}
}
/*
** Buffer zStr contains nStr bytes of utf-8 encoded text. Return 1 if zStr
** contains character ch, or 0 if it does not.
*/
static int strContainsChar(const u8 *zStr, int nStr, u32 ch){
const u8 *zEnd = &zStr[nStr];
const u8 *z = zStr;
while( z<zEnd ){
u32 tst = Utf8Read(z);
if( tst==ch ) return 1;
}
return 0;
}
/*
** The unhex() function. This function may be invoked with either one or
** two arguments. In both cases the first argument is interpreted as text
** a text value containing a set of pairs of hexadecimal digits which are
** decoded and returned as a blob.
**
** If there is only a single argument, then it must consist only of an
** even number of hexadecimal digits. Otherwise, return NULL.
**
** Or, if there is a second argument, then any character that appears in
** the second argument is also allowed to appear between pairs of hexadecimal
** digits in the first argument. If any other character appears in the
** first argument, or if one of the allowed characters appears between
** two hexadecimal digits that make up a single byte, NULL is returned.
**
** The following expressions are all true:
**
** unhex('ABCD') IS x'ABCD'
** unhex('AB CD') IS NULL
** unhex('AB CD', ' ') IS x'ABCD'
** unhex('A BCD', ' ') IS NULL
*/
static void unhexFunc(
sqlite3_context *pCtx,
int argc,
sqlite3_value **argv
){
const u8 *zPass = (const u8*)"";
int nPass = 0;
const u8 *zHex = sqlite3_value_text(argv[0]);
int nHex = sqlite3_value_bytes(argv[0]);
#ifdef SQLITE_DEBUG
const u8 *zEnd = zHex ? &zHex[nHex] : 0;
#endif
u8 *pBlob = 0;
u8 *p = 0;
assert( argc==1 || argc==2 );
if( argc==2 ){
zPass = sqlite3_value_text(argv[1]);
nPass = sqlite3_value_bytes(argv[1]);
}
if( !zHex || !zPass ) return;
p = pBlob = contextMalloc(pCtx, (nHex/2)+1);
if( pBlob ){
u8 c; /* Most significant digit of next byte */
u8 d; /* Least significant digit of next byte */
while( (c = *zHex)!=0x00 ){
while( !sqlite3Isxdigit(c) ){
u32 ch = Utf8Read(zHex);
assert( zHex<=zEnd );
if( !strContainsChar(zPass, nPass, ch) ) goto unhex_null;
c = *zHex;
if( c==0x00 ) goto unhex_done;
}
zHex++;
assert( *zEnd==0x00 );
assert( zHex<=zEnd );
d = *(zHex++);
if( !sqlite3Isxdigit(d) ) goto unhex_null;
*(p++) = (sqlite3HexToInt(c)<<4) | sqlite3HexToInt(d);
}
}
unhex_done:
sqlite3_result_blob(pCtx, pBlob, (p - pBlob), sqlite3_free);
return;
unhex_null:
sqlite3_free(pBlob);
return;
}
/*
** The zeroblob(N) function returns a zero-filled blob of size N bytes.
*/
static void zeroblobFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
i64 n;
int rc;
assert( argc==1 );
UNUSED_PARAMETER(argc);
n = sqlite3_value_int64(argv[0]);
if( n<0 ) n = 0;
rc = sqlite3_result_zeroblob64(context, n); /* IMP: R-00293-64994 */
if( rc ){
sqlite3_result_error_code(context, rc);
}
}
/*
** The replace() function. Three arguments are all strings: call
** them A, B, and C. The result is also a string which is derived
** from A by replacing every occurrence of B with C. The match
** must be exact. Collating sequences are not used.
*/
static void replaceFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
const unsigned char *zStr; /* The input string A */
const unsigned char *zPattern; /* The pattern string B */
const unsigned char *zRep; /* The replacement string C */
unsigned char *zOut; /* The output */
int nStr; /* Size of zStr */
int nPattern; /* Size of zPattern */
int nRep; /* Size of zRep */
i64 nOut; /* Maximum size of zOut */
int loopLimit; /* Last zStr[] that might match zPattern[] */
int i, j; /* Loop counters */
unsigned cntExpand; /* Number zOut expansions */
sqlite3 *db = sqlite3_context_db_handle(context);
assert( argc==3 );
UNUSED_PARAMETER(argc);
zStr = sqlite3_value_text(argv[0]);
if( zStr==0 ) return;
nStr = sqlite3_value_bytes(argv[0]);
assert( zStr==sqlite3_value_text(argv[0]) ); /* No encoding change */
zPattern = sqlite3_value_text(argv[1]);
if( zPattern==0 ){
assert( sqlite3_value_type(argv[1])==SQLITE_NULL
|| sqlite3_context_db_handle(context)->mallocFailed );
return;
}
if( zPattern[0]==0 ){
assert( sqlite3_value_type(argv[1])!=SQLITE_NULL );
sqlite3_result_text(context, (const char*)zStr, nStr, SQLITE_TRANSIENT);
return;
}
nPattern = sqlite3_value_bytes(argv[1]);
assert( zPattern==sqlite3_value_text(argv[1]) ); /* No encoding change */
zRep = sqlite3_value_text(argv[2]);
if( zRep==0 ) return;
nRep = sqlite3_value_bytes(argv[2]);
assert( zRep==sqlite3_value_text(argv[2]) );
nOut = nStr + 1;
assert( nOut<SQLITE_MAX_LENGTH );
zOut = contextMalloc(context, nOut);
if( zOut==0 ){
return;
}
loopLimit = nStr - nPattern;
cntExpand = 0;
for(i=j=0; i<=loopLimit; i++){
if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){
zOut[j++] = zStr[i];
}else{
if( nRep>nPattern ){
nOut += nRep - nPattern;
testcase( nOut-1==db->aLimit[SQLITE_LIMIT_LENGTH] );
testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] );
if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
sqlite3_result_error_toobig(context);
sqlite3_free(zOut);
return;
}
cntExpand++;
if( (cntExpand&(cntExpand-1))==0 ){
/* Grow the size of the output buffer only on substitutions
** whose index is a power of two: 1, 2, 4, 8, 16, 32, ... */
u8 *zOld;
zOld = zOut;
zOut = sqlite3Realloc(zOut, (int)nOut + (nOut - nStr - 1));
if( zOut==0 ){
sqlite3_result_error_nomem(context);
sqlite3_free(zOld);
return;
}
}
}
memcpy(&zOut[j], zRep, nRep);
j += nRep;
i += nPattern-1;
}
}
assert( j+nStr-i+1<=nOut );
memcpy(&zOut[j], &zStr[i], nStr-i);
j += nStr - i;
assert( j<=nOut );
zOut[j] = 0;
sqlite3_result_text(context, (char*)zOut, j, sqlite3_free);
}
/*
** Implementation of the TRIM(), LTRIM(), and RTRIM() functions.
** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both.
*/
static void trimFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
const unsigned char *zIn; /* Input string */
const unsigned char *zCharSet; /* Set of characters to trim */
unsigned int nIn; /* Number of bytes in input */
int flags; /* 1: trimleft 2: trimright 3: trim */
int i; /* Loop counter */
unsigned int *aLen = 0; /* Length of each character in zCharSet */
unsigned char **azChar = 0; /* Individual characters in zCharSet */
int nChar; /* Number of characters in zCharSet */
if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
return;
}
zIn = sqlite3_value_text(argv[0]);
if( zIn==0 ) return;
nIn = (unsigned)sqlite3_value_bytes(argv[0]);
assert( zIn==sqlite3_value_text(argv[0]) );
if( argc==1 ){
static const unsigned lenOne[] = { 1 };
static unsigned char * const azOne[] = { (u8*)" " };
nChar = 1;
aLen = (unsigned*)lenOne;
azChar = (unsigned char **)azOne;
zCharSet = 0;
}else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){
return;
}else{
const unsigned char *z;
for(z=zCharSet, nChar=0; *z; nChar++){
SQLITE_SKIP_UTF8(z);
}
if( nChar>0 ){
azChar = contextMalloc(context,
((i64)nChar)*(sizeof(char*)+sizeof(unsigned)));
if( azChar==0 ){
return;
}
aLen = (unsigned*)&azChar[nChar];
for(z=zCharSet, nChar=0; *z; nChar++){
azChar[nChar] = (unsigned char *)z;
SQLITE_SKIP_UTF8(z);
aLen[nChar] = (unsigned)(z - azChar[nChar]);
}
}
}
if( nChar>0 ){
flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context));
if( flags & 1 ){
while( nIn>0 ){
unsigned int len = 0;
for(i=0; i<nChar; i++){
len = aLen[i];
if( len<=nIn && memcmp(zIn, azChar[i], len)==0 ) break;
}
if( i>=nChar ) break;
zIn += len;
nIn -= len;
}
}
if( flags & 2 ){
while( nIn>0 ){
unsigned int len = 0;
for(i=0; i<nChar; i++){
len = aLen[i];
if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break;
}
if( i>=nChar ) break;
nIn -= len;
}
}
if( zCharSet ){
sqlite3_free(azChar);
}
}
sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT);
}
/* The core implementation of the CONCAT(...) and CONCAT_WS(SEP,...)
** functions.
**
** Return a string value that is the concatenation of all non-null
** entries in argv[]. Use zSep as the separator.
*/
static void concatFuncCore(
sqlite3_context *context,
int argc,
sqlite3_value **argv,
int nSep,
const char *zSep
){
i64 j, n = 0;
int i;
int bNotNull = 0; /* True after at least NOT NULL argument seen */
char *z;
for(i=0; i<argc; i++){
n += sqlite3_value_bytes(argv[i]);
}
n += (argc-1)*(i64)nSep;
z = sqlite3_malloc64(n+1);
if( z==0 ){
sqlite3_result_error_nomem(context);
return;
}
j = 0;
for(i=0; i<argc; i++){
if( sqlite3_value_type(argv[i])!=SQLITE_NULL ){
int k = sqlite3_value_bytes(argv[i]);
const char *v = (const char*)sqlite3_value_text(argv[i]);
if( v!=0 ){
if( bNotNull && nSep>0 ){
memcpy(&z[j], zSep, nSep);
j += nSep;
}
memcpy(&z[j], v, k);
j += k;
bNotNull = 1;
}
}
}
z[j] = 0;
assert( j<=n );
sqlite3_result_text64(context, z, j, sqlite3_free, SQLITE_UTF8);
}
/*
** The CONCAT(...) function. Generate a string result that is the
** concatentation of all non-null arguments.
*/
static void concatFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
concatFuncCore(context, argc, argv, 0, "");
}
/*
** The CONCAT_WS(separator, ...) function.
**
** Generate a string that is the concatenation of 2nd through the Nth
** argument. Use the first argument (which must be non-NULL) as the
** separator.
*/
static void concatwsFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
int nSep = sqlite3_value_bytes(argv[0]);
const char *zSep = (const char*)sqlite3_value_text(argv[0]);
if( zSep==0 ) return;
concatFuncCore(context, argc-1, argv+1, nSep, zSep);
}
#ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
/*
** The "unknown" function is automatically substituted in place of
** any unrecognized function name when doing an EXPLAIN or EXPLAIN QUERY PLAN
** when the SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION compile-time option is used.
** When the "sqlite3" command-line shell is built using this functionality,
** that allows an EXPLAIN or EXPLAIN QUERY PLAN for complex queries
** involving application-defined functions to be examined in a generic
** sqlite3 shell.
*/
static void unknownFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
/* no-op */
(void)context;
(void)argc;
(void)argv;
}
#endif /*SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION*/
/* IMP: R-25361-16150 This function is omitted from SQLite by default. It
** is only available if the SQLITE_SOUNDEX compile-time option is used
** when SQLite is built.
*/
#ifdef SQLITE_SOUNDEX
/*
** Compute the soundex encoding of a word.
**
** IMP: R-59782-00072 The soundex(X) function returns a string that is the
** soundex encoding of the string X.
*/
static void soundexFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
char zResult[8];
const u8 *zIn;
int i, j;
static const unsigned char iCode[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
};
assert( argc==1 );
zIn = (u8*)sqlite3_value_text(argv[0]);
if( zIn==0 ) zIn = (u8*)"";
for(i=0; zIn[i] && !sqlite3Isalpha(zIn[i]); i++){}
if( zIn[i] ){
u8 prevcode = iCode[zIn[i]&0x7f];
zResult[0] = sqlite3Toupper(zIn[i]);
for(j=1; j<4 && zIn[i]; i++){
int code = iCode[zIn[i]&0x7f];
if( code>0 ){
if( code!=prevcode ){
prevcode = code;
zResult[j++] = code + '0';
}
}else{
prevcode = 0;
}
}
while( j<4 ){
zResult[j++] = '0';
}
zResult[j] = 0;
sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
}else{
/* IMP: R-64894-50321 The string "?000" is returned if the argument
** is NULL or contains no ASCII alphabetic characters. */
sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
}
}
#endif /* SQLITE_SOUNDEX */
#ifndef SQLITE_OMIT_LOAD_EXTENSION
/*
** A function that loads a shared-library extension then returns NULL.
*/
static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
const char *zFile = (const char *)sqlite3_value_text(argv[0]);
const char *zProc;
sqlite3 *db = sqlite3_context_db_handle(context);
char *zErrMsg = 0;
/* Disallow the load_extension() SQL function unless the SQLITE_LoadExtFunc
** flag is set. See the sqlite3_enable_load_extension() API.
*/
if( (db->flags & SQLITE_LoadExtFunc)==0 ){
sqlite3_result_error(context, "not authorized", -1);
return;
}
if( argc==2 ){
zProc = (const char *)sqlite3_value_text(argv[1]);
}else{
zProc = 0;
}
if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){
sqlite3_result_error(context, zErrMsg, -1);
sqlite3_free(zErrMsg);
}
}
#endif
/*
** An instance of the following structure holds the context of a
** sum() or avg() aggregate computation.
*/
typedef struct SumCtx SumCtx;
struct SumCtx {
double rSum; /* Running sum as as a double */
double rErr; /* Error term for Kahan-Babushka-Neumaier summation */
i64 iSum; /* Running sum as a signed integer */
i64 cnt; /* Number of elements summed */
u8 approx; /* True if any non-integer value was input to the sum */
u8 ovrfl; /* Integer overflow seen */
};
/*
** Do one step of the Kahan-Babushka-Neumaier summation.
**
** https://en.wikipedia.org/wiki/Kahan_summation_algorithm
**
** Variables are marked "volatile" to defeat c89 x86 floating point
** optimizations can mess up this algorithm.
*/
static void kahanBabuskaNeumaierStep(
volatile SumCtx *pSum,
volatile double r
){
volatile double s = pSum->rSum;
volatile double t = s + r;
if( fabs(s) > fabs(r) ){
pSum->rErr += (s - t) + r;
}else{
pSum->rErr += (r - t) + s;
}
pSum->rSum = t;
}
/*
** Add a (possibly large) integer to the running sum.
*/
static void kahanBabuskaNeumaierStepInt64(volatile SumCtx *pSum, i64 iVal){
if( iVal<=-4503599627370496LL || iVal>=+4503599627370496LL ){
i64 iBig, iSm;
iSm = iVal % 16384;
iBig = iVal - iSm;
kahanBabuskaNeumaierStep(pSum, iBig);
kahanBabuskaNeumaierStep(pSum, iSm);
}else{
kahanBabuskaNeumaierStep(pSum, (double)iVal);
}
}
/*
** Initialize the Kahan-Babaska-Neumaier sum from a 64-bit integer
*/
static void kahanBabuskaNeumaierInit(
volatile SumCtx *p,
i64 iVal
){
if( iVal<=-4503599627370496LL || iVal>=+4503599627370496LL ){
i64 iSm = iVal % 16384;
p->rSum = (double)(iVal - iSm);
p->rErr = (double)iSm;
}else{
p->rSum = (double)iVal;
p->rErr = 0.0;
}
}
/*
** Routines used to compute the sum, average, and total.
**
** The SUM() function follows the (broken) SQL standard which means
** that it returns NULL if it sums over no inputs. TOTAL returns
** 0.0 in that case. In addition, TOTAL always returns a float where
** SUM might return an integer if it never encounters a floating point
** value. TOTAL never fails, but SUM might throw an exception if
** it overflows an integer.
*/
static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){
SumCtx *p;
int type;
assert( argc==1 );
UNUSED_PARAMETER(argc);
p = sqlite3_aggregate_context(context, sizeof(*p));
type = sqlite3_value_numeric_type(argv[0]);
if( p && type!=SQLITE_NULL ){
p->cnt++;
if( p->approx==0 ){
if( type!=SQLITE_INTEGER ){
kahanBabuskaNeumaierInit(p, p->iSum);
p->approx = 1;
kahanBabuskaNeumaierStep(p, sqlite3_value_double(argv[0]));
}else{
i64 x = p->iSum;
if( sqlite3AddInt64(&x, sqlite3_value_int64(argv[0]))==0 ){
p->iSum = x;
}else{
p->ovrfl = 1;
kahanBabuskaNeumaierInit(p, p->iSum);
p->approx = 1;
kahanBabuskaNeumaierStepInt64(p, sqlite3_value_int64(argv[0]));
}
}
}else{
if( type==SQLITE_INTEGER ){
kahanBabuskaNeumaierStepInt64(p, sqlite3_value_int64(argv[0]));
}else{
p->ovrfl = 0;
kahanBabuskaNeumaierStep(p, sqlite3_value_double(argv[0]));
}
}
}
}
#ifndef SQLITE_OMIT_WINDOWFUNC
static void sumInverse(sqlite3_context *context, int argc, sqlite3_value**argv){
SumCtx *p;
int type;
assert( argc==1 );
UNUSED_PARAMETER(argc);
p = sqlite3_aggregate_context(context, sizeof(*p));
type = sqlite3_value_numeric_type(argv[0]);
/* p is always non-NULL because sumStep() will have been called first
** to initialize it */
if( ALWAYS(p) && type!=SQLITE_NULL ){
assert( p->cnt>0 );
p->cnt--;
if( !p->approx ){
if( sqlite3SubInt64(&p->iSum, sqlite3_value_int64(argv[0])) ){
p->ovrfl = 1;
p->approx = 1;
}
}else if( type==SQLITE_INTEGER ){
i64 iVal = sqlite3_value_int64(argv[0]);
if( iVal!=SMALLEST_INT64 ){
kahanBabuskaNeumaierStepInt64(p, -iVal);
}else{
kahanBabuskaNeumaierStepInt64(p, LARGEST_INT64);
kahanBabuskaNeumaierStepInt64(p, 1);
}
}else{
kahanBabuskaNeumaierStep(p, -sqlite3_value_double(argv[0]));
}
}
}
#else
# define sumInverse 0
#endif /* SQLITE_OMIT_WINDOWFUNC */
static void sumFinalize(sqlite3_context *context){
SumCtx *p;
p = sqlite3_aggregate_context(context, 0);
if( p && p->cnt>0 ){
if( p->approx ){
if( p->ovrfl ){
sqlite3_result_error(context,"integer overflow",-1);
}else if( !sqlite3IsOverflow(p->rErr) ){
sqlite3_result_double(context, p->rSum+p->rErr);
}else{
sqlite3_result_double(context, p->rSum);
}
}else{
sqlite3_result_int64(context, p->iSum);
}
}
}
static void avgFinalize(sqlite3_context *context){
SumCtx *p;
p = sqlite3_aggregate_context(context, 0);
if( p && p->cnt>0 ){
double r;
if( p->approx ){
r = p->rSum;
if( !sqlite3IsOverflow(p->rErr) ) r += p->rErr;
}else{
r = (double)(p->iSum);
}
sqlite3_result_double(context, r/(double)p->cnt);
}
}
static void totalFinalize(sqlite3_context *context){
SumCtx *p;
double r = 0.0;
p = sqlite3_aggregate_context(context, 0);
if( p ){
if( p->approx ){
r = p->rSum;
if( !sqlite3IsOverflow(p->rErr) ) r += p->rErr;
}else{
r = (double)(p->iSum);
}
}
sqlite3_result_double(context, r);
}
/*
** The following structure keeps track of state information for the
** count() aggregate function.
*/
typedef struct CountCtx CountCtx;
struct CountCtx {
i64 n;
#ifdef SQLITE_DEBUG
int bInverse; /* True if xInverse() ever called */
#endif
};
/*
** Routines to implement the count() aggregate function.
*/
static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){
CountCtx *p;
p = sqlite3_aggregate_context(context, sizeof(*p));
if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){
p->n++;
}
#ifndef SQLITE_OMIT_DEPRECATED
/* The sqlite3_aggregate_count() function is deprecated. But just to make
** sure it still operates correctly, verify that its count agrees with our
** internal count when using count(*) and when the total count can be
** expressed as a 32-bit integer. */
assert( argc==1 || p==0 || p->n>0x7fffffff || p->bInverse
|| p->n==sqlite3_aggregate_count(context) );
#endif
}
static void countFinalize(sqlite3_context *context){
CountCtx *p;
p = sqlite3_aggregate_context(context, 0);
sqlite3_result_int64(context, p ? p->n : 0);
}
#ifndef SQLITE_OMIT_WINDOWFUNC
static void countInverse(sqlite3_context *ctx, int argc, sqlite3_value **argv){
CountCtx *p;
p = sqlite3_aggregate_context(ctx, sizeof(*p));
/* p is always non-NULL since countStep() will have been called first */
if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && ALWAYS(p) ){
p->n--;
#ifdef SQLITE_DEBUG
p->bInverse = 1;
#endif
}
}
#else
# define countInverse 0
#endif /* SQLITE_OMIT_WINDOWFUNC */
/*
** Routines to implement min() and max() aggregate functions.
*/
static void minmaxStep(
sqlite3_context *context,
int NotUsed,
sqlite3_value **argv
){
Mem *pArg = (Mem *)argv[0];
Mem *pBest;
UNUSED_PARAMETER(NotUsed);
pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest));
if( !pBest ) return;
if( sqlite3_value_type(pArg)==SQLITE_NULL ){
if( pBest->flags ) sqlite3SkipAccumulatorLoad(context);
}else if( pBest->flags ){
int max;
int cmp;
CollSeq *pColl = sqlite3GetFuncCollSeq(context);
/* This step function is used for both the min() and max() aggregates,
** the only difference between the two being that the sense of the
** comparison is inverted. For the max() aggregate, the
** sqlite3_user_data() function returns (void *)-1. For min() it
** returns (void *)db, where db is the sqlite3* database pointer.
** Therefore the next statement sets variable 'max' to 1 for the max()
** aggregate, or 0 for min().
*/
max = sqlite3_user_data(context)!=0;
cmp = sqlite3MemCompare(pBest, pArg, pColl);
if( (max && cmp<0) || (!max && cmp>0) ){
sqlite3VdbeMemCopy(pBest, pArg);
}else{
sqlite3SkipAccumulatorLoad(context);
}
}else{
pBest->db = sqlite3_context_db_handle(context);
sqlite3VdbeMemCopy(pBest, pArg);
}
}
static void minMaxValueFinalize(sqlite3_context *context, int bValue){
sqlite3_value *pRes;
pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
if( pRes ){
if( pRes->flags ){
sqlite3_result_value(context, pRes);
}
if( bValue==0 ) sqlite3VdbeMemRelease(pRes);
}
}
#ifndef SQLITE_OMIT_WINDOWFUNC
static void minMaxValue(sqlite3_context *context){
minMaxValueFinalize(context, 1);
}
#else
# define minMaxValue 0
#endif /* SQLITE_OMIT_WINDOWFUNC */
static void minMaxFinalize(sqlite3_context *context){
minMaxValueFinalize(context, 0);
}
/*
** group_concat(EXPR, ?SEPARATOR?)
** string_agg(EXPR, SEPARATOR)
**
** Content is accumulated in GroupConcatCtx.str with the SEPARATOR
** coming before the EXPR value, except for the first entry which
** omits the SEPARATOR.
**
** It is tragic that the SEPARATOR goes before the EXPR string. The
** groupConcatInverse() implementation would have been easier if the
** SEPARATOR were appended after EXPR. And the order is undocumented,
** so we could change it, in theory. But the old behavior has been
** around for so long that we dare not, for fear of breaking something.
*/
typedef struct {
StrAccum str; /* The accumulated concatenation */
#ifndef SQLITE_OMIT_WINDOWFUNC
int nAccum; /* Number of strings presently concatenated */
int nFirstSepLength; /* Used to detect separator length change */
/* If pnSepLengths!=0, refs an array of inter-string separator lengths,
** stored as actually incorporated into presently accumulated result.
** (Hence, its slots in use number nAccum-1 between method calls.)
** If pnSepLengths==0, nFirstSepLength is the length used throughout.
*/
int *pnSepLengths;
#endif
} GroupConcatCtx;
static void groupConcatStep(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
const char *zVal;
GroupConcatCtx *pGCC;
const char *zSep;
int nVal, nSep;
assert( argc==1 || argc==2 );
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
pGCC = (GroupConcatCtx*)sqlite3_aggregate_context(context, sizeof(*pGCC));
if( pGCC ){
sqlite3 *db = sqlite3_context_db_handle(context);
int firstTerm = pGCC->str.mxAlloc==0;
pGCC->str.mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH];
if( argc==1 ){
if( !firstTerm ){
sqlite3_str_appendchar(&pGCC->str, 1, ',');
}
#ifndef SQLITE_OMIT_WINDOWFUNC
else{
pGCC->nFirstSepLength = 1;
}
#endif
}else if( !firstTerm ){
zSep = (char*)sqlite3_value_text(argv[1]);
nSep = sqlite3_value_bytes(argv[1]);
if( zSep ){
sqlite3_str_append(&pGCC->str, zSep, nSep);
}
#ifndef SQLITE_OMIT_WINDOWFUNC
else{
nSep = 0;
}
if( nSep != pGCC->nFirstSepLength || pGCC->pnSepLengths != 0 ){
int *pnsl = pGCC->pnSepLengths;
if( pnsl == 0 ){
/* First separator length variation seen, start tracking them. */
pnsl = (int*)sqlite3_malloc64((pGCC->nAccum+1) * sizeof(int));
if( pnsl!=0 ){
int i = 0, nA = pGCC->nAccum-1;
while( i<nA ) pnsl[i++] = pGCC->nFirstSepLength;
}
}else{
pnsl = (int*)sqlite3_realloc64(pnsl, pGCC->nAccum * sizeof(int));
}
if( pnsl!=0 ){
if( ALWAYS(pGCC->nAccum>0) ){
pnsl[pGCC->nAccum-1] = nSep;
}
pGCC->pnSepLengths = pnsl;
}else{
sqlite3StrAccumSetError(&pGCC->str, SQLITE_NOMEM);
}
}
#endif
}
#ifndef SQLITE_OMIT_WINDOWFUNC
else{
pGCC->nFirstSepLength = sqlite3_value_bytes(argv[1]);
}
pGCC->nAccum += 1;
#endif
zVal = (char*)sqlite3_value_text(argv[0]);
nVal = sqlite3_value_bytes(argv[0]);
if( zVal ) sqlite3_str_append(&pGCC->str, zVal, nVal);
}
}
#ifndef SQLITE_OMIT_WINDOWFUNC
static void groupConcatInverse(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
GroupConcatCtx *pGCC;
assert( argc==1 || argc==2 );
(void)argc; /* Suppress unused parameter warning */
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
pGCC = (GroupConcatCtx*)sqlite3_aggregate_context(context, sizeof(*pGCC));
/* pGCC is always non-NULL since groupConcatStep() will have always
** run first to initialize it */
if( ALWAYS(pGCC) ){
int nVS; /* Number of characters to remove */
/* Must call sqlite3_value_text() to convert the argument into text prior
** to invoking sqlite3_value_bytes(), in case the text encoding is UTF16 */
(void)sqlite3_value_text(argv[0]);
nVS = sqlite3_value_bytes(argv[0]);
pGCC->nAccum -= 1;
if( pGCC->pnSepLengths!=0 ){
assert(pGCC->nAccum >= 0);
if( pGCC->nAccum>0 ){
nVS += *pGCC->pnSepLengths;
memmove(pGCC->pnSepLengths, pGCC->pnSepLengths+1,
(pGCC->nAccum-1)*sizeof(int));
}
}else{
/* If removing single accumulated string, harmlessly over-do. */
nVS += pGCC->nFirstSepLength;
}
if( nVS>=(int)pGCC->str.nChar ){
pGCC->str.nChar = 0;
}else{
pGCC->str.nChar -= nVS;
memmove(pGCC->str.zText, &pGCC->str.zText[nVS], pGCC->str.nChar);
}
if( pGCC->str.nChar==0 ){
pGCC->str.mxAlloc = 0;
sqlite3_free(pGCC->pnSepLengths);
pGCC->pnSepLengths = 0;
}
}
}
#else
# define groupConcatInverse 0
#endif /* SQLITE_OMIT_WINDOWFUNC */
static void groupConcatFinalize(sqlite3_context *context){
GroupConcatCtx *pGCC
= (GroupConcatCtx*)sqlite3_aggregate_context(context, 0);
if( pGCC ){
sqlite3ResultStrAccum(context, &pGCC->str);
#ifndef SQLITE_OMIT_WINDOWFUNC
sqlite3_free(pGCC->pnSepLengths);
#endif
}
}
#ifndef SQLITE_OMIT_WINDOWFUNC
static void groupConcatValue(sqlite3_context *context){
GroupConcatCtx *pGCC
= (GroupConcatCtx*)sqlite3_aggregate_context(context, 0);
if( pGCC ){
StrAccum *pAccum = &pGCC->str;
if( pAccum->accError==SQLITE_TOOBIG ){
sqlite3_result_error_toobig(context);
}else if( pAccum->accError==SQLITE_NOMEM ){
sqlite3_result_error_nomem(context);
}else if( pGCC->nAccum>0 && pAccum->nChar==0 ){
sqlite3_result_text(context, "", 1, SQLITE_STATIC);
}else{
const char *zText = sqlite3_str_value(pAccum);
sqlite3_result_text(context, zText, pAccum->nChar, SQLITE_TRANSIENT);
}
}
}
#else
# define groupConcatValue 0
#endif /* SQLITE_OMIT_WINDOWFUNC */
/*
** This routine does per-connection function registration. Most
** of the built-in functions above are part of the global function set.
** This routine only deals with those that are not global.
*/
void sqlite3RegisterPerConnectionBuiltinFunctions(sqlite3 *db){
int rc = sqlite3_overload_function(db, "MATCH", 2);
assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
if( rc==SQLITE_NOMEM ){
sqlite3OomFault(db);
}
}
/*
** Re-register the built-in LIKE functions. The caseSensitive
** parameter determines whether or not the LIKE operator is case
** sensitive.
*/
void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){
FuncDef *pDef;
struct compareInfo *pInfo;
int flags;
int nArg;
if( caseSensitive ){
pInfo = (struct compareInfo*)&likeInfoAlt;
flags = SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE;
}else{
pInfo = (struct compareInfo*)&likeInfoNorm;
flags = SQLITE_FUNC_LIKE;
}
for(nArg=2; nArg<=3; nArg++){
sqlite3CreateFunc(db, "like", nArg, SQLITE_UTF8, pInfo, likeFunc,
0, 0, 0, 0, 0);
pDef = sqlite3FindFunction(db, "like", nArg, SQLITE_UTF8, 0);
pDef->funcFlags |= flags;
pDef->funcFlags &= ~SQLITE_FUNC_UNSAFE;
}
}
/*
** pExpr points to an expression which implements a function. If
** it is appropriate to apply the LIKE optimization to that function
** then set aWc[0] through aWc[2] to the wildcard characters and the
** escape character and then return TRUE. If the function is not a
** LIKE-style function then return FALSE.
**
** The expression "a LIKE b ESCAPE c" is only considered a valid LIKE
** operator if c is a string literal that is exactly one byte in length.
** That one byte is stored in aWc[3]. aWc[3] is set to zero if there is
** no ESCAPE clause.
**
** *pIsNocase is set to true if uppercase and lowercase are equivalent for
** the function (default for LIKE). If the function makes the distinction
** between uppercase and lowercase (as does GLOB) then *pIsNocase is set to
** false.
*/
int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
FuncDef *pDef;
int nExpr;
assert( pExpr!=0 );
assert( pExpr->op==TK_FUNCTION );
assert( ExprUseXList(pExpr) );
if( !pExpr->x.pList ){
return 0;
}
nExpr = pExpr->x.pList->nExpr;
assert( !ExprHasProperty(pExpr, EP_IntValue) );
pDef = sqlite3FindFunction(db, pExpr->u.zToken, nExpr, SQLITE_UTF8, 0);
#ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
if( pDef==0 ) return 0;
#endif
if( NEVER(pDef==0) || (pDef->funcFlags & SQLITE_FUNC_LIKE)==0 ){
return 0;
}
/* The memcpy() statement assumes that the wildcard characters are
** the first three statements in the compareInfo structure. The
** asserts() that follow verify that assumption
*/
memcpy(aWc, pDef->pUserData, 3);
assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll );
assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne );
assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet );
if( nExpr<3 ){
aWc[3] = 0;
}else{
Expr *pEscape = pExpr->x.pList->a[2].pExpr;
char *zEscape;
if( pEscape->op!=TK_STRING ) return 0;
assert( !ExprHasProperty(pEscape, EP_IntValue) );
zEscape = pEscape->u.zToken;
if( zEscape[0]==0 || zEscape[1]!=0 ) return 0;
if( zEscape[0]==aWc[0] ) return 0;
if( zEscape[0]==aWc[1] ) return 0;
aWc[3] = zEscape[0];
}
*pIsNocase = (pDef->funcFlags & SQLITE_FUNC_CASE)==0;
return 1;
}
/* Mathematical Constants */
#ifndef M_PI
# define M_PI 3.141592653589793238462643383279502884
#endif
#ifndef M_LN10
# define M_LN10 2.302585092994045684017991454684364208
#endif
#ifndef M_LN2
# define M_LN2 0.693147180559945309417232121458176568
#endif
/* Extra math functions that require linking with -lm
*/
#ifdef SQLITE_ENABLE_MATH_FUNCTIONS
/*
** Implementation SQL functions:
**
** ceil(X)
** ceiling(X)
** floor(X)
**
** The sqlite3_user_data() pointer is a pointer to the libm implementation
** of the underlying C function.
*/
static void ceilingFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
assert( argc==1 );
switch( sqlite3_value_numeric_type(argv[0]) ){
case SQLITE_INTEGER: {
sqlite3_result_int64(context, sqlite3_value_int64(argv[0]));
break;
}
case SQLITE_FLOAT: {
double (*x)(double) = (double(*)(double))sqlite3_user_data(context);
sqlite3_result_double(context, x(sqlite3_value_double(argv[0])));
break;
}
default: {
break;
}
}
}
/*
** On some systems, ceil() and floor() are intrinsic function. You are
** unable to take a pointer to these functions. Hence, we here wrap them
** in our own actual functions.
*/
static double xCeil(double x){ return ceil(x); }
static double xFloor(double x){ return floor(x); }
/*
** Some systems do not have log2() and log10() in their standard math
** libraries.
*/
#if defined(HAVE_LOG10) && HAVE_LOG10==0
# define log10(X) (0.4342944819032517867*log(X))
#endif
#if defined(HAVE_LOG2) && HAVE_LOG2==0
# define log2(X) (1.442695040888963456*log(X))
#endif
/*
** Implementation of SQL functions:
**
** ln(X) - natural logarithm
** log(X) - log X base 10
** log10(X) - log X base 10
** log(B,X) - log X base B
*/
static void logFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
double x, b, ans;
assert( argc==1 || argc==2 );
switch( sqlite3_value_numeric_type(argv[0]) ){
case SQLITE_INTEGER:
case SQLITE_FLOAT:
x = sqlite3_value_double(argv[0]);
if( x<=0.0 ) return;
break;
default:
return;
}
if( argc==2 ){
switch( sqlite3_value_numeric_type(argv[0]) ){
case SQLITE_INTEGER:
case SQLITE_FLOAT:
b = log(x);
if( b<=0.0 ) return;
x = sqlite3_value_double(argv[1]);
if( x<=0.0 ) return;
break;
default:
return;
}
ans = log(x)/b;
}else{
switch( SQLITE_PTR_TO_INT(sqlite3_user_data(context)) ){
case 1:
ans = log10(x);
break;
case 2:
ans = log2(x);
break;
default:
ans = log(x);
break;
}
}
sqlite3_result_double(context, ans);
}
/*
** Functions to converts degrees to radians and radians to degrees.
*/
static double degToRad(double x){ return x*(M_PI/180.0); }
static double radToDeg(double x){ return x*(180.0/M_PI); }
/*
** Implementation of 1-argument SQL math functions:
**
** exp(X) - Compute e to the X-th power
*/
static void math1Func(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
int type0;
double v0, ans;
double (*x)(double);
assert( argc==1 );
type0 = sqlite3_value_numeric_type(argv[0]);
if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return;
v0 = sqlite3_value_double(argv[0]);
x = (double(*)(double))sqlite3_user_data(context);
ans = x(v0);
sqlite3_result_double(context, ans);
}
/*
** Implementation of 2-argument SQL math functions:
**
** power(X,Y) - Compute X to the Y-th power
*/
static void math2Func(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
int type0, type1;
double v0, v1, ans;
double (*x)(double,double);
assert( argc==2 );
type0 = sqlite3_value_numeric_type(argv[0]);
if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return;
type1 = sqlite3_value_numeric_type(argv[1]);
if( type1!=SQLITE_INTEGER && type1!=SQLITE_FLOAT ) return;
v0 = sqlite3_value_double(argv[0]);
v1 = sqlite3_value_double(argv[1]);
x = (double(*)(double,double))sqlite3_user_data(context);
ans = x(v0, v1);
sqlite3_result_double(context, ans);
}
/*
** Implementation of 0-argument pi() function.
*/
static void piFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
assert( argc==0 );
(void)argv;
sqlite3_result_double(context, M_PI);
}
#endif /* SQLITE_ENABLE_MATH_FUNCTIONS */
/*
** Implementation of sign(X) function.
*/
static void signFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
int type0;
double x;
UNUSED_PARAMETER(argc);
assert( argc==1 );
type0 = sqlite3_value_numeric_type(argv[0]);
if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return;
x = sqlite3_value_double(argv[0]);
sqlite3_result_int(context, x<0.0 ? -1 : x>0.0 ? +1 : 0);
}
#if defined(SQLITE_ENABLE_PERCENTILE)
/***********************************************************************
** This section implements the percentile(Y,P) SQL function and similar.
** Requirements:
**
** (1) The percentile(Y,P) function is an aggregate function taking
** exactly two arguments.
**
** (2) If the P argument to percentile(Y,P) is not the same for every
** row in the aggregate then an error is thrown. The word "same"
** in the previous sentence means that the value differ by less
** than 0.001.
**
** (3) If the P argument to percentile(Y,P) evaluates to anything other
** than a number in the range of 0.0 to 100.0 inclusive then an
** error is thrown.
**
** (4) If any Y argument to percentile(Y,P) evaluates to a value that
** is not NULL and is not numeric then an error is thrown.
**
** (5) If any Y argument to percentile(Y,P) evaluates to plus or minus
** infinity then an error is thrown. (SQLite always interprets NaN
** values as NULL.)
**
** (6) Both Y and P in percentile(Y,P) can be arbitrary expressions,
** including CASE WHEN expressions.
**
** (7) The percentile(Y,P) aggregate is able to handle inputs of at least
** one million (1,000,000) rows.
**
** (8) If there are no non-NULL values for Y, then percentile(Y,P)
** returns NULL.
**
** (9) If there is exactly one non-NULL value for Y, the percentile(Y,P)
** returns the one Y value.
**
** (10) If there N non-NULL values of Y where N is two or more and
** the Y values are ordered from least to greatest and a graph is
** drawn from 0 to N-1 such that the height of the graph at J is
** the J-th Y value and such that straight lines are drawn between
** adjacent Y values, then the percentile(Y,P) function returns
** the height of the graph at P*(N-1)/100.
**
** (11) The percentile(Y,P) function always returns either a floating
** point number or NULL.
**
** (12) The percentile(Y,P) is implemented as a single C99 source-code
** file that compiles into a shared-library or DLL that can be loaded
** into SQLite using the sqlite3_load_extension() interface.
**
** (13) A separate median(Y) function is the equivalent percentile(Y,50).
**
** (14) A separate percentile_cont(Y,P) function is equivalent to
** percentile(Y,P/100.0). In other words, the fraction value in
** the second argument is in the range of 0 to 1 instead of 0 to 100.
**
** (15) A separate percentile_disc(Y,P) function is like
** percentile_cont(Y,P) except that instead of returning the weighted
** average of the nearest two input values, it returns the next lower
** value. So the percentile_disc(Y,P) will always return a value
** that was one of the inputs.
**
** (16) All of median(), percentile(Y,P), percentile_cont(Y,P) and
** percentile_disc(Y,P) can be used as window functions.
**
** Differences from standard SQL:
**
** * The percentile_cont(X,P) function is equivalent to the following in
** standard SQL:
**
** (percentile_cont(P) WITHIN GROUP (ORDER BY X))
**
** The SQLite syntax is much more compact. The standard SQL syntax
** is also supported if SQLite is compiled with the
** -DSQLITE_ENABLE_ORDERED_SET_AGGREGATES option.
**
** * No median(X) function exists in the SQL standard. App developers
** are expected to write "percentile_cont(0.5)WITHIN GROUP(ORDER BY X)".
**
** * No percentile(Y,P) function exists in the SQL standard. Instead of
** percential(Y,P), developers must write this:
** "percentile_cont(P/100.0) WITHIN GROUP (ORDER BY Y)". Note that
** the fraction parameter to percentile() goes from 0 to 100 whereas
** the fraction parameter in SQL standard percentile_cont() goes from
** 0 to 1.
**
** Implementation notes as of 2024-08-31:
**
** * The regular aggregate-function versions of these routines work
** by accumulating all values in an array of doubles, then sorting
** that array using quicksort before computing the answer. Thus
** the runtime is O(NlogN) where N is the number of rows of input.
**
** * For the window-function versions of these routines, the array of
** inputs is sorted as soon as the first value is computed. Thereafter,
** the array is kept in sorted order using an insert-sort. This
** results in O(N*K) performance where K is the size of the window.
** One can imagine alternative implementations that give O(N*logN*logK)
** performance, but they require more complex logic and data structures.
** The developers have elected to keep the asymptotically slower
** algorithm for now, for simplicity, under the theory that window
** functions are seldom used and when they are, the window size K is
** often small. The developers might revisit that decision later,
** should the need arise.
*/
/* The following object is the group context for a single percentile()
** aggregate. Remember all input Y values until the very end.
** Those values are accumulated in the Percentile.a[] array.
*/
typedef struct Percentile Percentile;
struct Percentile {
u64 nAlloc; /* Number of slots allocated for a[] */
u64 nUsed; /* Number of slots actually used in a[] */
char bSorted; /* True if a[] is already in sorted order */
char bKeepSorted; /* True if advantageous to keep a[] sorted */
char bPctValid; /* True if rPct is valid */
double rPct; /* Fraction. 0.0 to 1.0 */
double *a; /* Array of Y values */
};
/*
** Return TRUE if the input floating-point number is an infinity.
*/
static int percentIsInfinity(double r){
sqlite3_uint64 u;
assert( sizeof(u)==sizeof(r) );
memcpy(&u, &r, sizeof(u));
return ((u>>52)&0x7ff)==0x7ff;
}
/*
** Return TRUE if two doubles differ by 0.001 or less.
*/
static int percentSameValue(double a, double b){
a -= b;
return a>=-0.001 && a<=0.001;
}
/*
** Search p (which must have p->bSorted) looking for an entry with
** value y. Return the index of that entry.
**
** If bExact is true, return -1 if the entry is not found.
**
** If bExact is false, return the index at which a new entry with
** value y should be insert in order to keep the values in sorted
** order. The smallest return value in this case will be 0, and
** the largest return value will be p->nUsed.
*/
static i64 percentBinarySearch(Percentile *p, double y, int bExact){
i64 iFirst = 0; /* First element of search range */
i64 iLast = (i64)p->nUsed - 1; /* Last element of search range */
while( iLast>=iFirst ){
i64 iMid = (iFirst+iLast)/2;
double x = p->a[iMid];
if( x<y ){
iFirst = iMid + 1;
}else if( x>y ){
iLast = iMid - 1;
}else{
return iMid;
}
}
if( bExact ) return -1;
return iFirst;
}
/*
** Generate an error for a percentile function.
**
** The error format string must have exactly one occurrence of "%%s()"
** (with two '%' characters). That substring will be replaced by the name
** of the function.
*/
static void percentError(sqlite3_context *pCtx, const char *zFormat, ...){
char *zMsg1;
char *zMsg2;
va_list ap;
va_start(ap, zFormat);
zMsg1 = sqlite3_vmprintf(zFormat, ap);
va_end(ap);
zMsg2 = zMsg1 ? sqlite3_mprintf(zMsg1, sqlite3VdbeFuncName(pCtx)) : 0;
sqlite3_result_error(pCtx, zMsg2, -1);
sqlite3_free(zMsg1);
sqlite3_free(zMsg2);
}
/*
** The "step" function for percentile(Y,P) is called once for each
** input row.
*/
static void percentStep(sqlite3_context *pCtx, int argc, sqlite3_value **argv){
Percentile *p;
double rPct;
int eType;
double y;
assert( argc==2 || argc==1 );
if( argc==1 ){
/* Requirement 13: median(Y) is the same as percentile(Y,50). */
rPct = 0.5;
}else{
/* P must be a number between 0 and 100 for percentile() or between
** 0.0 and 1.0 for percentile_cont() and percentile_disc().
**
** The user-data is an integer which is 10 times the upper bound.
*/
double mxFrac = (SQLITE_PTR_TO_INT(sqlite3_user_data(pCtx))&2)? 100.0 : 1.0;
eType = sqlite3_value_numeric_type(argv[1]);
rPct = sqlite3_value_double(argv[1])/mxFrac;
if( (eType!=SQLITE_INTEGER && eType!=SQLITE_FLOAT)
|| rPct<0.0 || rPct>1.0
){
percentError(pCtx, "the fraction argument to %%s()"
" is not between 0.0 and %.1f",
(double)mxFrac);
return;
}
}
/* Allocate the session context. */
p = (Percentile*)sqlite3_aggregate_context(pCtx, sizeof(*p));
if( p==0 ) return;
/* Remember the P value. Throw an error if the P value is different
** from any prior row, per Requirement (2). */
if( !p->bPctValid ){
p->rPct = rPct;
p->bPctValid = 1;
}else if( !percentSameValue(p->rPct,rPct) ){
percentError(pCtx, "the fraction argument to %%s()"
" is not the same for all input rows");
return;
}
/* Ignore rows for which Y is NULL */
eType = sqlite3_value_type(argv[0]);
if( eType==SQLITE_NULL ) return;
/* If not NULL, then Y must be numeric. Otherwise throw an error.
** Requirement 4 */
if( eType!=SQLITE_INTEGER && eType!=SQLITE_FLOAT ){
percentError(pCtx, "input to %%s() is not numeric");
return;
}
/* Throw an error if the Y value is infinity or NaN */
y = sqlite3_value_double(argv[0]);
if( percentIsInfinity(y) ){
percentError(pCtx, "Inf input to %%s()");
return;
}
/* Allocate and store the Y */
if( p->nUsed>=p->nAlloc ){
u64 n = p->nAlloc*2 + 250;
double *a = sqlite3_realloc64(p->a, sizeof(double)*n);
if( a==0 ){
sqlite3_free(p->a);
memset(p, 0, sizeof(*p));
sqlite3_result_error_nomem(pCtx);
return;
}
p->nAlloc = n;
p->a = a;
}
if( p->nUsed==0 ){
p->a[p->nUsed++] = y;
p->bSorted = 1;
}else if( !p->bSorted || y>=p->a[p->nUsed-1] ){
p->a[p->nUsed++] = y;
}else if( p->bKeepSorted ){
i64 i;
i = percentBinarySearch(p, y, 0);
if( i<(int)p->nUsed ){
memmove(&p->a[i+1], &p->a[i], (p->nUsed-i)*sizeof(p->a[0]));
}
p->a[i] = y;
p->nUsed++;
}else{
p->a[p->nUsed++] = y;
p->bSorted = 0;
}
}
/*
** Interchange two doubles.
*/
#define SWAP_DOUBLE(X,Y) {double ttt=(X);(X)=(Y);(Y)=ttt;}
/*
** Sort an array of doubles.
**
** Algorithm: quicksort
**
** This is implemented separately rather than using the qsort() routine
** from the standard library because:
**
** (1) To avoid a dependency on qsort()
** (2) To avoid the function call to the comparison routine for each
** comparison.
*/
static void percentSort(double *a, unsigned int n){
int iLt; /* Entries before a[iLt] are less than rPivot */
int iGt; /* Entries at or after a[iGt] are greater than rPivot */
int i; /* Loop counter */
double rPivot; /* The pivot value */
assert( n>=2 );
if( a[0]>a[n-1] ){
SWAP_DOUBLE(a[0],a[n-1])
}
if( n==2 ) return;
iGt = n-1;
i = n/2;
if( a[0]>a[i] ){
SWAP_DOUBLE(a[0],a[i])
}else if( a[i]>a[iGt] ){
SWAP_DOUBLE(a[i],a[iGt])
}
if( n==3 ) return;
rPivot = a[i];
iLt = i = 1;
do{
if( a[i]<rPivot ){
if( i>iLt ) SWAP_DOUBLE(a[i],a[iLt])
iLt++;
i++;
}else if( a[i]>rPivot ){
do{
iGt--;
}while( iGt>i && a[iGt]>rPivot );
SWAP_DOUBLE(a[i],a[iGt])
}else{
i++;
}
}while( i<iGt );
if( iLt>=2 ) percentSort(a, iLt);
if( n-iGt>=2 ) percentSort(a+iGt, n-iGt);
/* Uncomment for testing */
#if 0
for(i=0; i<n-1; i++){
assert( a[i]<=a[i+1] );
}
#endif
}
/*
** The "inverse" function for percentile(Y,P) is called to remove a
** row that was previously inserted by "step".
*/
static void percentInverse(sqlite3_context *pCtx,int argc,sqlite3_value **argv){
Percentile *p;
int eType;
double y;
i64 i;
assert( argc==2 || argc==1 );
/* Allocate the session context. */
p = (Percentile*)sqlite3_aggregate_context(pCtx, sizeof(*p));
assert( p!=0 );
/* Ignore rows for which Y is NULL */
eType = sqlite3_value_type(argv[0]);
if( eType==SQLITE_NULL ) return;
/* If not NULL, then Y must be numeric. Otherwise throw an error.
** Requirement 4 */
if( eType!=SQLITE_INTEGER && eType!=SQLITE_FLOAT ){
return;
}
/* Ignore the Y value if it is infinity or NaN */
y = sqlite3_value_double(argv[0]);
if( percentIsInfinity(y) ){
return;
}
if( p->bSorted==0 ){
assert( p->nUsed>1 );
percentSort(p->a, p->nUsed);
p->bSorted = 1;
}
p->bKeepSorted = 1;
/* Find and remove the row */
i = percentBinarySearch(p, y, 1);
if( i>=0 ){
p->nUsed--;
if( i<(int)p->nUsed ){
memmove(&p->a[i], &p->a[i+1], (p->nUsed - i)*sizeof(p->a[0]));
}
}
}
/*
** Compute the final output of percentile(). Clean up all allocated
** memory if and only if bIsFinal is true.
*/
static void percentCompute(sqlite3_context *pCtx, int bIsFinal){
Percentile *p;
int settings = SQLITE_PTR_TO_INT(sqlite3_user_data(pCtx))&1; /* Discrete? */
unsigned i1, i2;
double v1, v2;
double ix, vx;
p = (Percentile*)sqlite3_aggregate_context(pCtx, 0);
if( p==0 ) return;
if( p->a==0 ) return;
if( p->nUsed ){
if( p->bSorted==0 ){
assert( p->nUsed>1 );
percentSort(p->a, p->nUsed);
p->bSorted = 1;
}
ix = p->rPct*(p->nUsed-1);
i1 = (unsigned)ix;
if( settings & 1 ){
vx = p->a[i1];
}else{
i2 = ix==(double)i1 || i1==p->nUsed-1 ? i1 : i1+1;
v1 = p->a[i1];
v2 = p->a[i2];
vx = v1 + (v2-v1)*(ix-i1);
}
sqlite3_result_double(pCtx, vx);
}
if( bIsFinal ){
sqlite3_free(p->a);
memset(p, 0, sizeof(*p));
}else{
p->bKeepSorted = 1;
}
}
static void percentFinal(sqlite3_context *pCtx){
percentCompute(pCtx, 1);
}
static void percentValue(sqlite3_context *pCtx){
percentCompute(pCtx, 0);
}
/****** End of percentile family of functions ******/
#endif /* SQLITE_ENABLE_PERCENTILE */
#if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_FILESTAT)
/*
** Implementation of sqlite_filestat(SCHEMA).
**
** Return JSON text that describes low-level debug/diagnostic information
** about the sqlite3_file object associated with SCHEMA.
*/
static void filestatFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
sqlite3 *db = sqlite3_context_db_handle(context);
const char *zDbName;
sqlite3_str *pStr;
Btree *pBtree;
zDbName = (const char*)sqlite3_value_text(argv[0]);
pBtree = sqlite3DbNameToBtree(db, zDbName);
if( pBtree ){
Pager *pPager;
sqlite3_file *fd;
int rc;
sqlite3BtreeEnter(pBtree);
pPager = sqlite3BtreePager(pBtree);
assert( pPager!=0 );
fd = sqlite3PagerFile(pPager);
pStr = sqlite3_str_new(db);
if( pStr==0 ){
sqlite3_result_error_nomem(context);
}else{
sqlite3_str_append(pStr, "{\"db\":", 6);
rc = sqlite3OsFileControl(fd, SQLITE_FCNTL_FILESTAT, pStr);
if( rc ) sqlite3_str_append(pStr, "null", 4);
fd = sqlite3PagerJrnlFile(pPager);
if( fd && fd->pMethods!=0 ){
sqlite3_str_appendall(pStr, ",\"journal\":");
rc = sqlite3OsFileControl(fd, SQLITE_FCNTL_FILESTAT, pStr);
if( rc ) sqlite3_str_append(pStr, "null", 4);
}
sqlite3_str_append(pStr, "}", 1);
sqlite3_result_text(context, sqlite3_str_finish(pStr), -1,
sqlite3_free);
}
sqlite3BtreeLeave(pBtree);
}else{
sqlite3_result_text(context, "{}", 2, SQLITE_STATIC);
}
}
#endif /* SQLITE_DEBUG || SQLITE_ENABLE_FILESTAT */
#ifdef SQLITE_DEBUG
/*
** Implementation of fpdecode(x,y,z) function.
**
** x is a real number that is to be decoded. y is the precision.
** z is the maximum real precision. Return a string that shows the
** results of the sqlite3FpDecode() function.
**
** Used for testing and debugging only, specifically testing and debugging
** of the sqlite3FpDecode() function. This SQL function does not appear
** in production builds. This function is not an API and is subject to
** modification or removal in future versions of SQLite.
*/
static void fpdecodeFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
FpDecode s;
double x;
int y, z;
char zBuf[100];
UNUSED_PARAMETER(argc);
assert( argc==3 );
x = sqlite3_value_double(argv[0]);
y = sqlite3_value_int(argv[1]);
z = sqlite3_value_int(argv[2]);
if( z<=0 ) z = 1;
sqlite3FpDecode(&s, x, y, z);
if( s.isSpecial==2 ){
sqlite3_snprintf(sizeof(zBuf), zBuf, "NaN");
}else{
sqlite3_snprintf(sizeof(zBuf), zBuf, "%c%.*s/%d", s.sign, s.n, s.z, s.iDP);
}
sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
}
#endif /* SQLITE_DEBUG */
#ifdef SQLITE_DEBUG
/*
** Implementation of parseuri(uri,flags) function.
**
** Required Arguments:
** "uri" The URI to parse.
** "flags" Bitmask of flags, as if to sqlite3_open_v2().
**
** Additional arguments beyond the first two make calls to
** sqlite3_uri_key() for integers and sqlite3_uri_parameter for
** anything else.
**
** The result is a string showing the results of calling sqlite3ParseUri().
**
** Used for testing and debugging only, specifically testing and debugging
** of the sqlite3ParseUri() function. This SQL function does not appear
** in production builds. This function is not an API and is subject to
** modification or removal in future versions of SQLite.
*/
static void parseuriFunc(
sqlite3_context *ctx,
int argc,
sqlite3_value **argv
){
sqlite3_str *pResult;
const char *zVfs;
const char *zUri;
unsigned int flgs;
int rc;
sqlite3_vfs *pVfs = 0;
char *zFile = 0;
char *zErr = 0;
if( argc<2 ) return;
pVfs = sqlite3_vfs_find(0);
assert( pVfs );
zVfs = pVfs->zName;
zUri = (const char*)sqlite3_value_text(argv[0]);
if( zUri==0 ) return;
flgs = (unsigned int)sqlite3_value_int(argv[1]);
rc = sqlite3ParseUri(zVfs, zUri, &flgs, &pVfs, &zFile, &zErr);
pResult = sqlite3_str_new(0);
if( pResult ){
int i;
sqlite3_str_appendf(pResult, "rc=%d", rc);
sqlite3_str_appendf(pResult, ", flags=0x%x", flgs);
sqlite3_str_appendf(pResult, ", vfs=%Q", pVfs ? pVfs->zName: 0);
sqlite3_str_appendf(pResult, ", err=%Q", zErr);
sqlite3_str_appendf(pResult, ", file=%Q", zFile);
if( zFile ){
const char *z = zFile;
z += sqlite3Strlen30(z)+1;
while( z[0] ){
sqlite3_str_appendf(pResult, ", %Q", z);
z += sqlite3Strlen30(z)+1;
}
for(i=2; i<argc; i++){
const char *zArg;
if( sqlite3_value_type(argv[i])==SQLITE_INTEGER ){
int k = sqlite3_value_int(argv[i]);
sqlite3_str_appendf(pResult, ", '%d:%q'",k,sqlite3_uri_key(zFile, k));
}else if( (zArg = (const char*)sqlite3_value_text(argv[i]))!=0 ){
sqlite3_str_appendf(pResult, ", '%q:%q'",
zArg, sqlite3_uri_parameter(zFile,zArg));
}else{
sqlite3_str_appendf(pResult, ", NULL");
}
}
}
sqlite3_result_text(ctx, sqlite3_str_finish(pResult), -1, sqlite3_free);
}
sqlite3_free_filename(zFile);
sqlite3_free(zErr);
}
#endif /* SQLITE_DEBUG */
/*
** All of the FuncDef structures in the aBuiltinFunc[] array above
** to the global function hash table. This occurs at start-time (as
** a consequence of calling sqlite3_initialize()).
**
** After this routine runs
*/
void sqlite3RegisterBuiltinFunctions(void){
/*
** The following array holds FuncDef structures for all of the functions
** defined in this file.
**
** The array cannot be constant since changes are made to the
** FuncDef.pHash elements at start-time. The elements of this array
** are read-only after initialization is complete.
**
** For peak efficiency, put the most frequently used function last.
*/
static FuncDef aBuiltinFunc[] = {
/***** Functions only available with SQLITE_TESTCTRL_INTERNAL_FUNCTIONS *****/
#if !defined(SQLITE_UNTESTABLE)
TEST_FUNC(implies_nonnull_row, 2, INLINEFUNC_implies_nonnull_row, 0),
TEST_FUNC(expr_compare, 2, INLINEFUNC_expr_compare, 0),
TEST_FUNC(expr_implies_expr, 2, INLINEFUNC_expr_implies_expr, 0),
TEST_FUNC(affinity, 1, INLINEFUNC_affinity, 0),
#endif /* !defined(SQLITE_UNTESTABLE) */
/***** Regular functions *****/
#ifdef SQLITE_SOUNDEX
FUNCTION(soundex, 1, 0, 0, soundexFunc ),
#endif
#ifndef SQLITE_OMIT_LOAD_EXTENSION
SFUNCTION(load_extension, 1, 0, 0, loadExt ),
SFUNCTION(load_extension, 2, 0, 0, loadExt ),
#endif
#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
DFUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc ),
DFUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc ),
#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
INLINE_FUNC(unlikely, 1, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY),
INLINE_FUNC(likelihood, 2, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY),
INLINE_FUNC(likely, 1, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY),
#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
INLINE_FUNC(sqlite_offset, 1, INLINEFUNC_sqlite_offset, 0 ),
#endif
#if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_FILESTAT)
FUNCTION(sqlite_filestat, 1, 0, 0, filestatFunc ),
#endif
FUNCTION(ltrim, 1, 1, 0, trimFunc ),
FUNCTION(ltrim, 2, 1, 0, trimFunc ),
FUNCTION(rtrim, 1, 2, 0, trimFunc ),
FUNCTION(rtrim, 2, 2, 0, trimFunc ),
FUNCTION(trim, 1, 3, 0, trimFunc ),
FUNCTION(trim, 2, 3, 0, trimFunc ),
FUNCTION(min, -3, 0, 1, minmaxFunc ),
WAGGREGATE(min, 1, 0, 1, minmaxStep, minMaxFinalize, minMaxValue, 0,
SQLITE_FUNC_MINMAX|SQLITE_FUNC_ANYORDER ),
FUNCTION(max, -3, 1, 1, minmaxFunc ),
WAGGREGATE(max, 1, 1, 1, minmaxStep, minMaxFinalize, minMaxValue, 0,
SQLITE_FUNC_MINMAX|SQLITE_FUNC_ANYORDER ),
FUNCTION2(typeof, 1, 0, 0, typeofFunc, SQLITE_FUNC_TYPEOF),
FUNCTION2(subtype, 1, 0, 0, subtypeFunc,
SQLITE_FUNC_TYPEOF|SQLITE_SUBTYPE),
FUNCTION2(length, 1, 0, 0, lengthFunc, SQLITE_FUNC_LENGTH),
FUNCTION2(octet_length, 1, 0, 0, bytelengthFunc,SQLITE_FUNC_BYTELEN),
FUNCTION(instr, 2, 0, 0, instrFunc ),
FUNCTION(printf, -1, 0, 0, printfFunc ),
FUNCTION(format, -1, 0, 0, printfFunc ),
FUNCTION(unicode, 1, 0, 0, unicodeFunc ),
FUNCTION(char, -1, 0, 0, charFunc ),
FUNCTION(abs, 1, 0, 0, absFunc ),
#ifdef SQLITE_DEBUG
FUNCTION(fpdecode, 3, 0, 0, fpdecodeFunc ),
FUNCTION(parseuri, -1, 0, 0, parseuriFunc ),
#endif
#ifndef SQLITE_OMIT_FLOATING_POINT
FUNCTION(round, 1, 0, 0, roundFunc ),
FUNCTION(round, 2, 0, 0, roundFunc ),
#endif
FUNCTION(upper, 1, 0, 0, upperFunc ),
FUNCTION(lower, 1, 0, 0, lowerFunc ),
FUNCTION(hex, 1, 0, 0, hexFunc ),
FUNCTION(unhex, 1, 0, 0, unhexFunc ),
FUNCTION(unhex, 2, 0, 0, unhexFunc ),
FUNCTION(concat, -3, 0, 0, concatFunc ),
FUNCTION(concat_ws, -4, 0, 0, concatwsFunc ),
INLINE_FUNC(ifnull, 2, INLINEFUNC_coalesce, 0 ),
VFUNCTION(random, 0, 0, 0, randomFunc ),
VFUNCTION(randomblob, 1, 0, 0, randomBlob ),
FUNCTION(nullif, 2, 0, 1, nullifFunc ),
DFUNCTION(sqlite_version, 0, 0, 0, versionFunc ),
DFUNCTION(sqlite_source_id, 0, 0, 0, sourceidFunc ),
FUNCTION(sqlite_log, 2, 0, 0, errlogFunc ),
FUNCTION(unistr, 1, 0, 0, unistrFunc ),
FUNCTION(quote, 1, 0, 0, quoteFunc ),
FUNCTION(unistr_quote, 1, 1, 0, quoteFunc ),
VFUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid),
VFUNCTION(changes, 0, 0, 0, changes ),
VFUNCTION(total_changes, 0, 0, 0, total_changes ),
FUNCTION(replace, 3, 0, 0, replaceFunc ),
FUNCTION(zeroblob, 1, 0, 0, zeroblobFunc ),
FUNCTION(substr, 2, 0, 0, substrFunc ),
FUNCTION(substr, 3, 0, 0, substrFunc ),
FUNCTION(substring, 2, 0, 0, substrFunc ),
FUNCTION(substring, 3, 0, 0, substrFunc ),
WAGGREGATE(sum, 1,0,0, sumStep, sumFinalize, sumFinalize, sumInverse, 0),
WAGGREGATE(total, 1,0,0, sumStep,totalFinalize,totalFinalize,sumInverse, 0),
WAGGREGATE(avg, 1,0,0, sumStep, avgFinalize, avgFinalize, sumInverse, 0),
WAGGREGATE(count, 0,0,0, countStep,
countFinalize, countFinalize, countInverse,
SQLITE_FUNC_COUNT|SQLITE_FUNC_ANYORDER ),
WAGGREGATE(count, 1,0,0, countStep,
countFinalize, countFinalize, countInverse, SQLITE_FUNC_ANYORDER ),
WAGGREGATE(group_concat, 1, 0, 0, groupConcatStep,
groupConcatFinalize, groupConcatValue, groupConcatInverse, 0),
WAGGREGATE(group_concat, 2, 0, 0, groupConcatStep,
groupConcatFinalize, groupConcatValue, groupConcatInverse, 0),
WAGGREGATE(string_agg, 2, 0, 0, groupConcatStep,
groupConcatFinalize, groupConcatValue, groupConcatInverse, 0),
#ifdef SQLITE_ENABLE_PERCENTILE
WAGGREGATE(median, 1, 0,0, percentStep,
percentFinal, percentValue, percentInverse,
SQLITE_INNOCUOUS|SQLITE_SELFORDER1),
WAGGREGATE(percentile, 2, 0x2,0, percentStep,
percentFinal, percentValue, percentInverse,
SQLITE_INNOCUOUS|SQLITE_SELFORDER1),
WAGGREGATE(percentile_cont, 2, 0,0, percentStep,
percentFinal, percentValue, percentInverse,
SQLITE_INNOCUOUS|SQLITE_SELFORDER1),
WAGGREGATE(percentile_disc, 2, 0x1,0, percentStep,
percentFinal, percentValue, percentInverse,
SQLITE_INNOCUOUS|SQLITE_SELFORDER1),
#endif /* SQLITE_ENABLE_PERCENTILE */
LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
#ifdef SQLITE_CASE_SENSITIVE_LIKE
LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
LIKEFUNC(like, 3, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
#else
LIKEFUNC(like, 2, &likeInfoNorm, SQLITE_FUNC_LIKE),
LIKEFUNC(like, 3, &likeInfoNorm, SQLITE_FUNC_LIKE),
#endif
#ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
FUNCTION(unknown, -1, 0, 0, unknownFunc ),
#endif
#ifdef SQLITE_ENABLE_MATH_FUNCTIONS
MFUNCTION(ceil, 1, xCeil, ceilingFunc ),
MFUNCTION(ceiling, 1, xCeil, ceilingFunc ),
MFUNCTION(floor, 1, xFloor, ceilingFunc ),
#if SQLITE_HAVE_C99_MATH_FUNCS
MFUNCTION(trunc, 1, trunc, ceilingFunc ),
#endif
FUNCTION(ln, 1, 0, 0, logFunc ),
FUNCTION(log, 1, 1, 0, logFunc ),
FUNCTION(log10, 1, 1, 0, logFunc ),
FUNCTION(log2, 1, 2, 0, logFunc ),
FUNCTION(log, 2, 0, 0, logFunc ),
MFUNCTION(exp, 1, exp, math1Func ),
MFUNCTION(pow, 2, pow, math2Func ),
MFUNCTION(power, 2, pow, math2Func ),
MFUNCTION(mod, 2, fmod, math2Func ),
MFUNCTION(acos, 1, acos, math1Func ),
MFUNCTION(asin, 1, asin, math1Func ),
MFUNCTION(atan, 1, atan, math1Func ),
MFUNCTION(atan2, 2, atan2, math2Func ),
MFUNCTION(cos, 1, cos, math1Func ),
MFUNCTION(sin, 1, sin, math1Func ),
MFUNCTION(tan, 1, tan, math1Func ),
MFUNCTION(cosh, 1, cosh, math1Func ),
MFUNCTION(sinh, 1, sinh, math1Func ),
MFUNCTION(tanh, 1, tanh, math1Func ),
#if SQLITE_HAVE_C99_MATH_FUNCS
MFUNCTION(acosh, 1, acosh, math1Func ),
MFUNCTION(asinh, 1, asinh, math1Func ),
MFUNCTION(atanh, 1, atanh, math1Func ),
#endif
MFUNCTION(sqrt, 1, sqrt, math1Func ),
MFUNCTION(radians, 1, degToRad, math1Func ),
MFUNCTION(degrees, 1, radToDeg, math1Func ),
MFUNCTION(pi, 0, 0, piFunc ),
#endif /* SQLITE_ENABLE_MATH_FUNCTIONS */
FUNCTION(sign, 1, 0, 0, signFunc ),
INLINE_FUNC(coalesce, -4, INLINEFUNC_coalesce, 0 ),
INLINE_FUNC(iif, -4, INLINEFUNC_iif, 0 ),
INLINE_FUNC(if, -4, INLINEFUNC_iif, 0 ),
};
#ifndef SQLITE_OMIT_ALTERTABLE
sqlite3AlterFunctions();
#endif
sqlite3WindowFunctions();
sqlite3RegisterDateTimeFunctions();
sqlite3RegisterJsonFunctions();
sqlite3InsertBuiltinFuncs(aBuiltinFunc, ArraySize(aBuiltinFunc));
#if 0 /* Enable to print out how the built-in functions are hashed */
{
int i;
FuncDef *p;
for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){
printf("FUNC-HASH %02d:", i);
for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash){
int n = sqlite3Strlen30(p->zName);
int h = p->zName[0] + n;
assert( p->funcFlags & SQLITE_FUNC_BUILTIN );
printf(" %s(%d)", p->zName, h);
}
printf("\n");
}
}
#endif
}
|