File size: 92,163 Bytes
ff10712 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 |
# === Patch Pattern 0 stubs after class definitions ===
# ===================== PATRÓN 0: SEMILLA ONTOLÓGICA CANÓNICA =====================
import hashlib
import random
import itertools
from typing import List, Union, Optional, Tuple, Dict
PHI = 0.6180339887
def apply_ethical_constraint(vector, space_id, kb):
# Placeholder: fetch ethical rules from KB, default to [-1, -1, -1]
rules = getattr(kb, 'get_ethics', lambda sid: [-1, -1, -1])(space_id) or [-1, -1, -1]
return [v ^ r if r != -1 else v for v, r in zip(vector, rules)]
def compute_ethical_signature(cluster):
base = str([t.nivel_3[0] for t in cluster]).encode()
return hashlib.sha256(base).hexdigest()
def golden_ratio_select(N, seed):
step = int(max(1, round(N * PHI)))
return [(seed + i * step) % N for i in range(3)]
def pattern0_create_fractal_cluster(
*,
input_data=None,
space_id="default",
num_tensors=3,
context=None,
entropy_seed=PHI,
depth_max=3,
):
random.seed(entropy_seed * 1e9)
kb = FractalKnowledgeBase()
armonizador = Armonizador(knowledge_base=kb)
pool = TensorPoolManager()
# 1. Generación / Importación
tensors = []
for i in range(num_tensors):
if input_data and i < len(input_data):
vec = apply_ethical_constraint(input_data[i], space_id, kb)
tensor = FractalTensor(nivel_3=[vec])
else:
# If FractalTensor.random supports constraints, pass space_id; else fallback
try:
tensor = FractalTensor.random(space_constraints=space_id)
except TypeError:
tensor = FractalTensor.random()
tensors.append(tensor)
pool.add_tensor(tensor)
# 2. Armonización recursiva
def harmonize_fractal(t, depth=0):
if depth >= depth_max:
return t
t.nivel_3[0] = armonizador.harmonize(t.nivel_3[0], space_id=space_id)["output"]
# Recursively harmonize sublevels if method exists
if hasattr(t, 'get_sublevels'):
for sub in t.get_sublevels():
harmonize_fractal(sub, depth + 1)
return t
tensors = [harmonize_fractal(t) for t in tensors]
# 3. Selección de trío óptimo
idx = golden_ratio_select(len(tensors), int(entropy_seed * 1e6))
cluster = [tensors[i] for i in idx]
# 4. Registro en KB
signature = compute_ethical_signature(cluster)
if hasattr(kb, 'register_pattern0'):
kb.register_pattern0(
space_id=space_id,
cluster=cluster,
entropy_seed=entropy_seed,
ethical_hash=signature,
)
# Attach metadata to each tensor
for t in cluster:
if not hasattr(t, 'metadata') or t.metadata is None:
t.metadata = {}
t.metadata["ethical_hash"] = signature
t.metadata["entropy_seed"] = entropy_seed
t.metadata["space_id"] = space_id
return cluster
# --- STUBS for Pattern 0 integration (to be implemented in KB and FractalTensor) ---
def _stub_get_sublevels(self):
# Returns all sublevels (nivel_9 and nivel_27) as FractalTensor if possible
subs = []
if hasattr(self, 'nivel_9'):
subs.extend([FractalTensor(nivel_3=[v]) for v in self.nivel_9])
if hasattr(self, 'nivel_27'):
subs.extend([FractalTensor(nivel_3=[v]) for v in self.nivel_27])
return subs
def _stub_register_pattern0(self, space_id, cluster, entropy_seed, ethical_hash):
# Placeholder for registering Pattern 0 cluster in KB
if not hasattr(self, 'pattern0_registry'):
self.pattern0_registry = {}
self.pattern0_registry[space_id] = {
'cluster': cluster,
'entropy_seed': entropy_seed,
'ethical_hash': ethical_hash,
}
def _stub_get_ethics(self, space_id):
# Placeholder: return default ethical rules
return [-1, -1, -1]
# Patch stubs if not present
"""
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
'''
NO BORRAR ESTA NOTAS:
librereria trinity-3: Classes pare el nuecleo de modelo Aurora de inteligencia electronica
El nucleo hacer 3 operaciones fundamentales:
1. Obtner la inteligencia de la realcion entre los valores de las dimension de los tnensores fractales y su relacion con el contexto.
2. Almacenar la inteligencia como knowledge base que deber ser utilizar para de forma recursiva obtener la inteligencia de los tensores fractales.
3. Extender la inteligencia a nuevos tensores fractales y contextos en base a dinamicas y devolverlo como output al usuario.
PRINCIPIOS DE DESARROLLO:
1. Simplicidad, el codigo nunca debe basar en cadenas larga de if and else. Tienes que ser elegante y en todo caso bascar soluciones recusivas/Fracta.
2. Autosimilitud. El codigo debe buscar que todos los mecanimso de emergencia y aprendizaje de relgas sigan patrones similares en cada uno de sus componentes
3. Reversibilidad triple. El codigo de transcendiencia, extension y aprendizaje, debe tener la misma logica pero en direccion inversa.
Cada uno de los elementos del sistema deber usar el trigate, como atomo fundamental de la logica ternaria.
Los tensores fractales son la entrada del sistema, se analizan desde el transcenders, se analizar tensores de 3 en tres que realiza una triple accion:
1. Obtiene la relacion entre los tensores fractales y su contexto.
2. Emerge los tensores fractales base a un nivel superior.
3. ?????
La informacion de relaciones obtenidas por el transceder pasa al extender que se encarga de reconstruir los tensores apartir de
Una vez el tensor llega al sinteizarse en un solo tensor, pasa al extender, que realiza la extension de los tensores fractales a partir de la informacion de la KB y el tensor sintetizado.
Una vez el ciclo esta completo, se puede realizar un test de integridad y coherencia del flujo de trabajo. De eso se encarga el armonizador, un comprobando que el sistema esta armonizado y los tenosres de salida so coherentes.
Si no es asi inicia un proces de correccion o armonizacion, en el que se incia un ciclo de recurisova de prueba hasta que el sistema es coherente:
1. En primer lugar busca una correccion de los tensores fractales.
2. Si no es posible, busca una correccion de las relaciones.
3. Si no es posible, busca una correccion de los valores del sistema.
Los tensores fractales son los que aportan la inteligencia al sistema. Esta formado por vectores ternarios de 3 dimensiones, que representan la relacion entre los valores de las dimensiones y su contexto.
Cada valor dimensional represnta la forma, la estructura y la funcion del vector.
Cada valor dimensional esta compuesto por 3trits (0, 1, None) que representan la relacion entre los valores de las dimensiones y su contexto.
Cada valor dimensional tiene una doble funcion: Por un lado representa el valor de la dimension y por otro identifica el espacion dimensional inferior.
Cada valor dimensional tiene asocidado se vector inferior. Los aximoas del espacio inferior depende de valor de la dimension superior.
La forma de tensor es 1 3 9 donde cada nivel es un vector de 3 dimensiones. Cada ima de las dimensione represtan la forma, la estructura y la funcion del elemento.
Documentacion extensas para seguir en : documentation/documentation.txt
'''
# === Reversibilidad completa en InverseEvolver (jerárquica) ===
class InverseEvolver:
# ...existing code...
def reconstruct_fractal(self, synthesized):
"""Reconstruye tres tensores fractales a partir de uno sintetizado (nivel 3, 9, 27)."""
ms_key = synthesized.nivel_3[0]
# Deducir A, B usando lógica inversa de Trigate (ejemplo simplificado)
A, B = self.reconstruct_vectors(ms_key) if hasattr(self, 'reconstruct_vectors') else (ms_key, ms_key)
C = [a ^ b if a is not None and b is not None else None for a, b in zip(A, B)]
# Para niveles superiores, aplicar recursividad similar si existen
return [FractalTensor(nivel_3=[A]), FractalTensor(nivel_3=[B]), FractalTensor(nivel_3=[C])]
# === Imputación contextual optimizada (ponderando niveles fractales) ===
def impute_none(vec, context, tensor=None):
from statistics import mode
result = []
for i, v in enumerate(vec):
if v is not None:
result.append(v)
else:
col = [c[i] for c in context if c[i] is not None]
# Añadir valores de niveles superiores si tensor está disponible
if tensor and hasattr(tensor, 'nivel_9') and tensor.nivel_9 and i < len(tensor.nivel_9[0]):
col.extend([x for x in tensor.nivel_9[i] if x is not None])
result.append(mode(col) if col else 0)
return result
# === Utilidad: Imputación contextual de None ===
from statistics import mode
def impute_none(vec, context):
"""Imputa None usando la moda de valores adyacentes en el contexto."""
result = []
for i, v in enumerate(vec):
if v is not None:
result.append(v)
else:
col = [c[i] for c in context if c[i] is not None]
result.append(mode(col) if col else 0)
return result
# === Validación centralizada de entradas ternarias ===
def validate_ternary_input(vec, expected_len=3, name="input"):
if not isinstance(vec, (list, tuple)) or len(vec) != expected_len:
print(f"Warning: Invalid {name}: {vec}, using default {[0]*expected_len}")
return [0] * expected_len
return [None if x is None else int(x) % 2 for x in vec]
# === Refactorización autosimilar del Armonizador ===
class AdjustmentStep:
def apply(self, vec, archetype, kb=None):
raise NotImplementedError
class MicroShift(AdjustmentStep):
def apply(self, vec, archetype, kb=None):
# Ejemplo: corrige un valor si difiere en 1 posición
return [a if v is None else v for v, a in zip(vec, archetype)]
class Regrewire(AdjustmentStep):
def apply(self, vec, archetype, kb=None):
# Ejemplo: fuerza coincidencia si hay 2/3 iguales
if sum(1 for v, a in zip(vec, archetype) if v == a) >= 2:
return list(archetype)
return vec
class Metatune(AdjustmentStep):
def apply(self, vec, archetype, kb=None):
# Ejemplo: si kb está presente, busca el arquetipo más cercano
if kb is not None:
matches = kb.find_archetype_by_ms(archetype)
if matches:
return matches[0]
return vec
# === Heurísticas de selección: Golden Ratio Skip y Fibonacci Stepping ===
import math
def golden_ratio_skip_indices(N, k, trios=3):
"""Devuelve una lista de índices para formar un trío usando saltos áureos."""
phi = (1 + math.sqrt(5)) / 2
skip = max(1, int(N / phi))
indices = []
idx = k
for _ in range(trios):
indices.append(idx % N)
idx = (idx + skip) % N
return indices
def fibonacci(n):
a, b = 1, 1
for _ in range(n):
a, b = b, a + b
return a
def fibonacci_stepping_indices(N, k, trios=3, start_step=0):
"""Devuelve una lista de índices para formar un trío usando pasos de Fibonacci."""
indices = []
idx = k
for i in range(start_step, start_step + trios):
step = fibonacci(i)
indices.append(idx % N)
idx = (idx + step) % N
return indices
# === Ejemplo de uso: formación de tríos con heurística ===
def formar_trio_golden(tensores, k):
N = len(tensores)
idxs = golden_ratio_skip_indices(N, k)
return [tensores[i] for i in idxs]
def formar_trio_fibonacci(tensores, k, start_step=0):
N = len(tensores)
idxs = fibonacci_stepping_indices(N, k, start_step=start_step)
return [tensores[i] for i in idxs]
# --- Dependencias globales ---
import numpy as np
# ===================== TRIAGE FUNCIONAL AURORA: COMPOSICIÓN Y REVERSIBILIDAD =====================
import operator
# === HOT-FIX: Utilidades de validación robusta para vectores y secuencias funcionales ===
def normalize_ternary_vector(vec, default=[0, 0, 0]):
"""Normaliza un vector a ternario de longitud 3."""
if not isinstance(vec, (list, tuple)):
return default.copy()
return [
None if x is None else int(x) if x in (0, 1) else 0
for x in list(vec)[:3]
] + [0] * (3 - len(vec))
def validate_function_sequence(M, allowed_functions, max_len=2):
"""Valida que M sea una lista de listas de funciones permitidas."""
if not isinstance(M, (list, tuple)) or len(M) != 3:
return [[f_id] for _ in range(3)]
return [
list(seq)[:max_len] if isinstance(seq, (list, tuple)) and all(f in allowed_functions for f in seq) else [f_id]
for seq in M[:3]
] + [[f_id]] * (3 - len(M))
def aurora_apply_sequence(val, sequence):
"""Aplica una secuencia de funciones a un valor."""
for func in sequence:
val = func(val)
return val
def aurora_triage_inferencia(A, B, M):
"""Inferencia: Aplica la composición M a A y/o B y retorna el resultado emergente."""
logger.info("Iniciando inferencia funcional", extra={'stage': 'inferencia', 'ambiguity': 0})
allowed_functions = [f_not, f_inc, f_id]
A = normalize_ternary_vector(A)
B = normalize_ternary_vector(B)
M = validate_function_sequence(M, allowed_functions)
R = []
for i in range(3):
rA = aurora_apply_sequence(A[i], M[i])
rB = aurora_apply_sequence(B[i], M[i])
if rA is not None and rB is not None:
R.append(rA + rB)
else:
R.append(0)
logger.info(f"Inferencia completada: R={R}", extra={'stage': 'inferencia', 'ambiguity': R.count(None)})
return R
def aurora_triage_aprendizaje(A, B, R, funciones_permitidas, max_len=2):
"""Aprendizaje: Busca una composición de funciones (por bit) que aplicada a A y B da R."""
logger.info("Iniciando aprendizaje funcional", extra={'stage': 'aprendizaje', 'ambiguity': 0})
import itertools
A = normalize_ternary_vector(A)
B = normalize_ternary_vector(B)
R = normalize_ternary_vector(R)
M = []
for i in range(3):
found = False
for l in range(1, max_len+1):
for seq in itertools.product(funciones_permitidas, repeat=l):
rA = aurora_apply_sequence(A[i], seq)
rB = aurora_apply_sequence(B[i], seq)
if rA is not None and rB is not None and rA + rB == R[i]:
M.append(list(seq))
found = True
break
if found:
break
if not found:
M.append([f_id])
logger.warning(f"No se encontró secuencia para bit {i}, usando identidad", extra={'stage': 'aprendizaje', 'ambiguity': 1})
logger.info(f"Aprendizaje completado: M={M}", extra={'stage': 'aprendizaje', 'ambiguity': sum(len(m) for m in M)})
return M
def aurora_triage_deduccion(M, R, known, known_is_A=True):
"""Deducción: Dado M, R y A (o B), deduce B (o A) aplicando las inversas."""
logger.info("Iniciando deducción funcional", extra={'stage': 'deduccion', 'ambiguity': 0})
allowed_functions = [f_not, f_inc, f_id]
R = normalize_ternary_vector(R)
known = normalize_ternary_vector(known)
M = validate_function_sequence(M, allowed_functions)
deduced = []
for i in range(3):
val = R[i] - aurora_apply_sequence(known[i], M[i]) if R[i] is not None and known[i] is not None else 0
for func in reversed(M[i]):
if hasattr(func, 'inverse'):
val = func.inverse(val)
else:
logger.warning(f"No hay inversa para función en bit {i}, asumiendo identidad", extra={'stage': 'deduccion', 'ambiguity': 1})
deduced.append(val if val in (0, 1, None) else 0)
logger.info(f"Deducción completada: {deduced}", extra={'stage': 'deduccion', 'ambiguity': deduced.count(None)})
return deduced
# Ejemplo de funciones ternarias simples con inversa
def f_not(x):
return 1 - x if x in (0, 1) else 0
def f_not_inv(x):
return 1 - x if x in (0, 1) else 0
f_not.inverse = f_not_inv
def f_inc(x):
return (x + 1) % 2 if x in (0, 1) else 0
def f_inc_inv(x):
return (x - 1) % 2 if x in (0, 1) else 0
f_inc.inverse = f_inc_inv
def f_id(x):
return x
f_id.inverse = f_id
# Ejemplo de uso experimental:
# A = [1, 0, 1]
# B = [0, 1, 1]
# M = [[f_not, f_inc], [f_inc], [f_id]]
# R = aurora_triage_inferencia(A, B, M)
# M_learned = aurora_triage_aprendizaje(A, B, R, [f_not, f_inc, f_id])
# B_deduced = aurora_triage_deduccion(M, R, A, known_is_A=True)
# ===================== AUTOCURACIÓN: HOT-FIX, REAXIOMATIZACIÓN Y CONSEJO TERNARIO =====================
# Mini-test para ExpertRelator tuple return
def test_relator_returns_tuple():
kb = FractalKnowledgeBase()
ext = Extender(kb)
ok, rel = ext.relator.contextualizar([1,0,1], 'default')
assert isinstance(ok, bool)
assert ok is False and rel is None # vacío porque la KB está vacía
# ===============================================================================
# IMPORTS AGRUPADOS
# ===============================================================================
import random
import time
import warnings
import copy
import math
from typing import List, Dict, Any, Tuple, Optional
# === NOTA SOBRE TESTS Y CONCURRENCIA ===
# Para concurrencia real, proteger la KB con locks o usar una base de datos transaccional.
# Añadir casos de prueba unitarios (ejemplo: PyTest) para cada clase principal.
# ===============================================================================
# AURORA TRINITY-3 - ARQUITECTURA CANÓNICA COMPLETA Y REFACTORIZADA
################################################################################
# AURORA – Módulo Armonizador ##################################################
################################################################################
"""
Armonizador
===========
Complemento autosimilar para Aurora Trinity‑3 que afina
coherencia y corrige ambigüedades a tres escalones:
1. *Vector* – Micro‑ajusta las coordenadas Ss/Ms/MetaM.
2. *Regla* – Re‑encamina entradas en LUT / Knowledge‑Base.
3. *Valor* – Sintoniza parámetros globales (umbral, pesos…).
El módulo está pensado como *post‑hook* del `Extender`;
llámese después de cada reconstrucción para garantizar
consonancia.
"""
from typing import List, Tuple, Dict, Any, Optional
import itertools
import warnings
import logging
# Logger central para Aurora
logger = logging.getLogger("aurora.arq")
if not logger.hasHandlers():
handler = logging.StreamHandler()
formatter = logging.Formatter('[%(levelname)s][%(stage)s][ambig=%(ambiguity)s] %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel(logging.INFO)
Vector = List[Optional[int]] # Ternary value: 0 | 1 | None
class AmbiguityScore(int):
"""Int sub‑class → permite añadir meta‑datos si hiciera falta."""
pass
class Armonizador:
"""Afinador jerárquico que aplica **MicroShift → RegRewire → MetaTune**."""
def __init__(self, knowledge_base=None, *,
tau_1: int = 1, tau_2: int = 2, tau_3: int = 3):
self.kb = knowledge_base # Puede ser None si sólo MicroShift
self.tau_1, self.tau_2, self.tau_3 = tau_1, tau_2, tau_3
@staticmethod
def ambiguity_score(t: Vector, a: Vector) -> AmbiguityScore:
"""Suma de diferencias ternarias *ignorando* `None`."""
if len(t) != len(a):
raise ValueError("Vector size mismatch in ambiguity check")
score = 0
for x, y in zip(t, a):
if x is None or y is None:
score += 1
elif x != y:
score += 1
return AmbiguityScore(score)
_neighbor_mask_cache = {}
def _microshift(self, vec: Vector, archetype: Vector) -> Vector:
"""
Microshift recursivo con poda inteligente y logging estructurado.
Explora vecinos ternarios de vec, buscando el de menor ambigüedad respecto a archetype.
Early exit si score==0. Usa un set para evitar repeticiones.
Cachea los masks de vecinos por longitud y solo explora ±1 donde hay NULLs.
"""
seen = set()
best = vec
best_score = self.ambiguity_score(vec, archetype)
def neighbor_masks(length):
if length not in self._neighbor_mask_cache:
masks = []
for i in range(length):
mask = [0]*length
mask[i] = 1
masks.append(mask)
self._neighbor_mask_cache[length] = masks
return self._neighbor_mask_cache[length]
def dfs(v):
nonlocal best, best_score
v_tuple = tuple(v)
if v_tuple in seen:
return
seen.add(v_tuple)
score = self.ambiguity_score(v, archetype)
logger.debug(f"Vecino: {v} | Score: {score}", extra={'stage':'microshift','ambiguity':score})
if score < best_score:
best, best_score = v.copy(), score
if best_score == 0:
return
# Solo explora ±1 donde hay None
for i in range(len(v)):
if v[i] is not None:
continue
for delta in (-1, 1):
nv = v.copy()
nv[i] = 0 if delta == -1 else 1
dfs(nv)
dfs(list(vec))
logger.info(f"Microshift final: {best} | Score: {best_score}", extra={'stage':'microshift','ambiguity':best_score})
return best
def _regrewire(self, vec: Vector, space_id: str = "default") -> Vector:
"""Busca todos los arquetipos candidatos y selecciona el más cercano por ambigüedad (nivel_3[0])."""
if self.kb is None:
return vec
matches = self.kb._get_space(space_id).find_archetype_by_ms(vec)
if matches:
best_entry = min(matches, key=lambda e: self.ambiguity_score(vec, e.nivel_3[0]))
return best_entry.nivel_3[0]
return vec
def _metatune(self, vec: Vector) -> Vector:
"""Ajuste grosero: si continúa ambigüedad, aplica heurística φ."""
phi = (1 + 5 ** 0.5) / 2
tuned = []
for v in vec:
if v is None:
tuned.append(None)
else:
tuned.append(int(round(v / phi)) % 2)
return tuned
def harmonize(self, tensor: Vector, *, archetype: Vector | None = None,
space_id: str = "default") -> Dict[str, Any]:
"""Afinado completo. Devuelve dict con info para tracing."""
if archetype is None:
if self.kb is not None:
entries = self.kb._get_space(space_id).find_archetype_by_ms(tensor)
if entries:
if isinstance(entries, list):
archetype = entries[0].nivel_3[0]
elif hasattr(entries, 'nivel_3'):
archetype = entries.nivel_3[0]
archetype = archetype or tensor
vec_step1 = self._microshift(tensor, archetype)
score1 = self.ambiguity_score(vec_step1, archetype)
if score1 <= self.tau_1:
return {
"output": vec_step1,
"stage": "vector",
"ambiguity": int(score1),
}
vec_step2 = self._regrewire(vec_step1, space_id=space_id)
score2 = self.ambiguity_score(vec_step2, archetype)
if score2 <= self.tau_2:
return {
"output": vec_step2,
"stage": "regla",
"ambiguity": int(score2),
}
vec_step3 = self._metatune(vec_step2)
score3 = self.ambiguity_score(vec_step3, archetype)
if score3 <= self.tau_3:
stage = "valor"
else:
stage = "falla_critica"
warnings.warn("Armonizador: falla crítica – no se pudo reducir ambigüedad")
return {
"output": vec_step3,
"stage": stage,
"ambiguity": int(score3),
}
'''
Muy imporante:
Principios que se deben aplicar para el desarrollo de esta libreria:
Simplicidad, el codigo nunca debe basar en cadenas larga de if and else. Tienes que ser elegante y en todo caso bascar soluciones recusivas.
Autosimilitud. El codigo debe buscar que todos los mecanimso de emergencia y aprendizaje de relgas sigan patrones similares en cada uno de sus componentes
Solucion inversa. El codigo de transcendiencia y extension debe tener la misma logica pero en direccion inversa.
'''
# ===============================================================================
# NIVEL 1: LÓGICA FUNDAMENTAL
# ===============================================================================
class TernaryLogic:
"""
Lógica ternaria Aurora con manejo correcto de incertidumbre.
Implementa Honestidad Computacional propagando NULL apropiadamente.
"""
NULL = None # Representación canónica de NULL en Aurora
@staticmethod
def ternary_xor(a: Optional[int], b: Optional[int]) -> Optional[int]:
"""XOR ternario con propagación de NULL."""
if a is TernaryLogic.NULL or b is TernaryLogic.NULL:
return TernaryLogic.NULL
return a ^ b
@staticmethod
def ternary_xnor(a: Optional[int], b: Optional[int]) -> Optional[int]:
"""XNOR ternario con propagación de NULL."""
if a is TernaryLogic.NULL or b is TernaryLogic.NULL:
return TernaryLogic.NULL
return 1 if a == b else 0
# ===============================================================================
# NIVEL 2: COMPONENTES BÁSICOS DE PROCESAMIENTO
# ===============================================================================
# Inicializar las LUTs una sola vez al cargar el script
# Trigate se inicializa más adelante en el archivo
class Transcender:
def relate_vectors(self, A: list, B: list, context: dict = None) -> list:
"""
Calcula un vector de relación Aurora-native entre A y B, incorporando ventana de contexto y relaciones cruzadas si se proveen.
"""
if len(A) != len(B):
return [0, 0, 0]
diff_vector = []
for i in range(len(A)):
a_val = A[i] if A[i] is not None else 0
b_val = B[i] if B[i] is not None else 0
diff = b_val - a_val
# Normalize to ternary: 1 if diff > 0, 0 if diff == 0, None if diff < 0
if diff > 0:
diff_vector.append(1)
elif diff == 0:
diff_vector.append(0)
else:
diff_vector.append(None)
# --- Aurora-native: ventana de contexto y relaciones cruzadas ---
# Si context contiene 'prev' y 'next', añade relaciones cruzadas
if context and 'prev' in context and 'next' in context:
v_prev = context['prev']
v_next = context['next']
rel_cross = []
for vp, vn in zip(v_prev, v_next):
vp_val = vp if vp is not None else 0
vn_val = vn if vn is not None else 0
diff_cross = vp_val - vn_val
if diff_cross > 0:
rel_cross.append(1)
elif diff_cross == 0:
rel_cross.append(0)
else:
rel_cross.append(None)
# Concatenar: [diff_vector, rel_cross, A, B]
return list(diff_vector) + list(rel_cross) + list(A) + list(B)
return diff_vector
"""
Componente de síntesis que implementa la síntesis jerárquica
de Tensores Fractales completos.
"""
def __init__(self, fractal_vector: Optional[List[int]] = None):
self.trigate = Trigate()
# Se guarda por si algún test antiguo lo inspecciona,
# pero NO es obligatorio para el funcionamiento.
self.seed_vector = fractal_vector
def compute_vector_trio(self, A: List[int], B: List[int], C: List[int]) -> Dict[str, Any]:
"""Procesa un trío de vectores simples (operación base)."""
M_AB, _ = self.trigate.synthesize(A, B)
M_BC, _ = self.trigate.synthesize(B, C)
M_CA, _ = self.trigate.synthesize(C, A)
M_emergent, _ = self.trigate.synthesize(M_AB, M_BC)
M_intermediate, _ = self.trigate.synthesize(M_emergent, M_CA)
MetaM = [TernaryLogic.ternary_xor(a, b) for a, b in zip(M_intermediate, M_emergent)]
return {'M_emergent': M_emergent, 'MetaM': MetaM}
# ------------------------------------------------------------------
# MODO “DEEP LEARNING” (compatibilidad con suites heredadas)
# ------------------------------------------------------------------
def deep_learning(
self,
A: List[int],
B: List[int],
C: List[int],
M_emergent: Optional[List[int]] = None
) -> Dict[str, Any]:
"""
• Calcula M_emergent y MetaM tal como exige el modelo Trinity-3.
• Genera R_hipotesis = Trigate.infer(A, B, M_emergent).
• Devuelve un diccionario con claves que los tests integrales esperan.
"""
trio = self.compute_vector_trio(A, B, C)
# Si el caller no aporta M_emergent, usa el calculado.
if M_emergent is None:
M_emergent = trio["M_emergent"]
R_hipotesis = self.trigate.infer(A, B, M_emergent)
return {
"M_emergent": M_emergent,
"MetaM": trio["MetaM"],
"R_hipotesis": R_hipotesis,
}
def compute_full_fractal(self, A: 'FractalTensor', B: 'FractalTensor', C: 'FractalTensor') -> 'FractalTensor':
"""
Sintetiza tres tensores fractales en uno, de manera jerárquica y elegante.
Prioriza una raíz de entrada válida por encima de la síntesis.
"""
out = FractalTensor.neutral()
def synthesize_trio(vectors: list) -> list:
# Only use first 3 elements of each vector
while len(vectors) < 3:
vectors.append([0, 0, 0])
trimmed = [v[:3] if isinstance(v, (list, tuple)) else [0,0,0] for v in vectors[:3]]
r = self.compute_vector_trio(*trimmed)
m_emergent = r.get('M_emergent', [0, 0, 0])
return [bit if bit is not None else 0 for bit in m_emergent[:3]]
inter_from_27 = []
for i in range(27):
context = {'prev': A.nivel_27[i - 1] if i > 0 else [0,0,0], 'next': A.nivel_27[i + 1] if i < 26 else [0,0,0]}
enriched_a = self.relate_vectors(A.nivel_27[i], B.nivel_27[i], context)[:3]
enriched_b = self.relate_vectors(B.nivel_27[i], C.nivel_27[i], context)[:3]
enriched_c = self.relate_vectors(C.nivel_27[i], A.nivel_27[i], context)[:3]
inter_from_27.append(synthesize_trio([enriched_a, enriched_b, enriched_c]))
out.nivel_27 = inter_from_27
inter_from_9 = [synthesize_trio(inter_from_27[i:i+3]) for i in range(0, 27, 3)]
out.nivel_9 = inter_from_9
out.nivel_3 = [synthesize_trio(inter_from_9[i:i+3]) for i in range(0, 9, 3)]
# Ensure all nivel_3 vectors are length 3
out.nivel_3 = [v[:3] if isinstance(v, (list, tuple)) else [0,0,0] for v in out.nivel_3]
input_roots = [t.nivel_3[0] for t in (A, B, C) if hasattr(t, 'nivel_3') and t.nivel_3 and t.nivel_3[0] and len(t.nivel_3[0]) == 3]
valid_roots = [r for r in input_roots if all(bit is not None for bit in r)]
if valid_roots:
final_root = [0, 0, 0]
for i in range(3):
votes = [r[i] for r in valid_roots]
final_root[i] = 1 if votes.count(1) > votes.count(0) else 0
out.nivel_3[0] = final_root
out.Ms = final_root
return out
# ===============================================================================
# NIVEL 3: ESTRUCTURAS DE DATOS Y CONOCIMIENTO
# ===============================================================================
class FractalTensor:
"""
Representa un tensor fractal con 3 niveles de profundidad (3, 9, 27).
"""
def __init__(
self,
nivel_3=None,
nivel_9=None,
nivel_27=None,
*,
Ms=None,
Ss=None,
dMs=None
):
def norm3(v):
# Normalize a vector to length 3, fill with 0 if needed
if not isinstance(v, (list, tuple)):
return [0, 0, 0]
return [(0 if x is None else int(x) if x in (0, 1) else 0) for x in list(v)[:3]] + [0] * (3 - len(v))
def expand_nivel_3(n3):
# Always returns a list of 3 vectors of length 3
if not isinstance(n3, (list, tuple)) or len(n3) == 0:
return [[0, 0, 0] for _ in range(3)]
if len(n3) == 1 and isinstance(n3[0], (list, tuple)) and len(n3[0]) == 3:
# If only one vector, repeat it
return [list(n3[0]) for _ in range(3)]
return [norm3(v) for v in list(n3)[:3]] + [[0, 0, 0]] * (3 - len(n3))
def expand_nivel_9(n9):
# Always returns a list of 9 vectors of length 3
if not isinstance(n9, (list, tuple)) or len(n9) == 0:
return [[0, 0, 0] for _ in range(9)]
# If only one vector, repeat it
if len(n9) == 1 and isinstance(n9[0], (list, tuple)) and len(n9[0]) == 3:
return [list(n9[0]) for _ in range(9)]
return [norm3(v) for v in list(n9)[:9]] + [[0, 0, 0]] * (9 - len(n9))
def expand_nivel_27(n27):
# Always returns a list of 27 vectors of length 3
if not isinstance(n27, (list, tuple)) or len(n27) == 0:
return [[0, 0, 0] for _ in range(27)]
if len(n27) == 1 and isinstance(n27[0], (list, tuple)) and len(n27[0]) == 3:
return [list(n27[0]) for _ in range(27)]
return [norm3(v) for v in list(n27)[:27]] + [[0, 0, 0]] * (27 - len(n27))
# If only nivel_3 is provided, expand to all levels
if nivel_3 is not None and (nivel_9 is None and nivel_27 is None):
n3 = expand_nivel_3(nivel_3)
n9 = [list(n3[i // 3]) for i in range(9)]
n27 = [list(n3[i // 9]) for i in range(27)]
elif nivel_9 is not None and nivel_27 is None:
n9 = expand_nivel_9(nivel_9)
n3 = [list(n9[i * 3]) for i in range(3)]
n27 = [list(n9[i // 3]) for i in range(27)]
elif nivel_27 is not None:
n27 = expand_nivel_27(nivel_27)
n9 = [list(n27[i * 3]) for i in range(9)]
n3 = [list(n27[i * 9]) for i in range(3)]
else:
n3 = expand_nivel_3(nivel_3)
n9 = expand_nivel_9(nivel_9)
n27 = expand_nivel_27(nivel_27)
self.nivel_3 = n3
self.nivel_9 = n9
self.nivel_27 = n27
self.Ms = Ms if Ms is not None else (self.nivel_3[0] if self.nivel_3 and isinstance(self.nivel_3[0], (list, tuple)) and len(self.nivel_3[0]) == 3 else [0,0,0])
self.Ss = Ss
self.dMs = dMs
@staticmethod
def random():
"""Crea un FractalTensor aleatorio."""
rand_vec = lambda: [random.choice([0, 1]) for _ in range(3)]
return FractalTensor(
nivel_3=[rand_vec() for _ in range(3)],
nivel_9=[rand_vec() for _ in range(9)],
nivel_27=[rand_vec() for _ in range(27)]
)
@staticmethod
def neutral():
"""Crea un FractalTensor neutro (ceros)."""
zero_vec = lambda: [0, 0, 0]
return FractalTensor(
nivel_3=[zero_vec() for _ in range(3)],
nivel_9=[zero_vec() for _ in range(9)],
nivel_27=[zero_vec() for _ in range(27)]
)
def __repr__(self):
def short(vs):
return vs[:2] + ['...'] if len(vs) > 2 else vs
return (f"FT(root={self.nivel_3}, "
f"mid={short(self.nivel_9)}, "
f"detail={short(self.nivel_27)})")
# ===============================================================================
# NIVEL 4: MOTOR DE ABSTRACCIÓN Y APRENDIZAJE (EVOLVER)
# ===============================================================================
class Evolver:
"""
Motor de visión fractal unificada para Arquetipos, Dinámicas y Relatores.
"""
def __init__(self):
self.base_transcender = Transcender()
def _perform_full_tensor_synthesis(self, tensors: List["FractalTensor"]) -> "FractalTensor":
"""
Motor de síntesis fractal: reduce una lista de tensores a uno solo.
"""
if not tensors:
return FractalTensor.neutral()
current_level_tensors = list(tensors)
while len(current_level_tensors) > 1:
next_level_tensors = []
for i in range(0, len(current_level_tensors), 3):
trio = current_level_tensors[i:i+3]
while len(trio) < 3:
trio.append(FractalTensor.neutral())
synthesized_tensor = self.base_transcender.compute_full_fractal(*trio)
next_level_tensors.append(synthesized_tensor)
current_level_tensors = next_level_tensors
return current_level_tensors[0]
def compute_fractal_archetype(self, tensor_family: List["FractalTensor"]) -> "FractalTensor":
"""Perspectiva de ARQUETIPO: Destila la esencia de una familia de conceptos."""
if len(tensor_family) < 2:
warnings.warn("Se requieren al menos 2 tensores para computar un arquetipo.")
return FractalTensor.neutral() if not tensor_family else tensor_family[0]
return self._perform_full_tensor_synthesis(tensor_family)
def analyze_fractal_dynamics(
self,
temporal_sequence: List["FractalTensor"]
) -> "FractalTensor":
"""
Perspectiva de DINÁMICA: Sintetiza el patrón de evolución de una secuencia
y calcula el gradiente lógico dMs = Ms_fin XOR Ms_ini.
"""
if len(temporal_sequence) < 2:
warnings.warn(
"Se requiere una secuencia de al menos 2 tensores para analizar dinámicas."
)
return (
FractalTensor.neutral()
if not temporal_sequence
else temporal_sequence[0]
)
# ---------- síntesis de la secuencia (lo que ya hacías) ----------
tensor_dyn = self._perform_full_tensor_synthesis(temporal_sequence)
# ---------- ➊ nuevo: calcular y guardar dMs ----------
Ms_ini = temporal_sequence[0].Ms or temporal_sequence[0].nivel_3[0]
Ms_fin = temporal_sequence[-1].Ms or temporal_sequence[-1].nivel_3[0]
dMs = [a ^ b for a, b in zip(Ms_ini, Ms_fin)]
tensor_dyn.dMs = dMs # gradiente temporal
tensor_dyn.Ms = Ms_fin # Ms más reciente
tensor_dyn.nivel_3[0] = Ms_fin # coherencia con la raíz
return tensor_dyn
def analyze_fractal_relations(self, contextual_cluster: List["FractalTensor"]) -> "FractalTensor":
"""Perspectiva de RELATOR: Obtiene el mapa conceptual de un clúster."""
if len(contextual_cluster) < 2:
warnings.warn("Se requieren al menos 2 tensores para el análisis relacional.")
return FractalTensor.neutral() if not contextual_cluster else contextual_cluster[0]
return self._perform_full_tensor_synthesis(contextual_cluster)
@staticmethod
def fractal_relate(tensor_group: List["FractalTensor"], level: int = 27) -> Optional[List[List[Optional[int]]]]:
"""
Calcula una firma relacional por mayoría de votos entre un grupo de tensores.
"""
if not tensor_group:
return None
# Seleccionar el nivel correcto del tensor
try:
dim_vectors = [getattr(t, f'nivel_{level}') for t in tensor_group]
except AttributeError:
raise ValueError(f"El nivel {level} no es válido. Debe ser 3, 9 o 27.")
num_vectors = len(dim_vectors[0])
signature = []
for pos in range(num_vectors):
bit_result = []
for bit in range(3): # Asume vectores de 3 bits
bit_vals = [t[pos][bit] for t in dim_vectors if t and t[pos] and t[pos][bit] is not None]
if not bit_vals:
bit_result.append(None)
continue
# Lógica de mayoría ternaria
count_1 = bit_vals.count(1)
count_0 = bit_vals.count(0)
if count_1 > count_0: bit_result.append(1)
elif count_0 > count_1: bit_result.append(0)
else: bit_result.append(None)
signature.append(bit_result)
return signature
# ===============================================================================
# NIVEL 5: BASE DE CONOCIMIENTO Y EXTENSIÓN
# ===============================================================================
class _SingleUniverseKB:
"""Gestiona el conocimiento de un único espacio lógico (universo)."""
def __init__(self):
self.archetypes = []
self.ms_index = {}
self.name_index = {}
self.coherence_violations = 0
self.ss_index = {}
self.models = {} # Nuevo: modelos genéricos
def store_model(self, model_name: str, model_data: dict):
"""Almacena un modelo de decisión genérico en este universo."""
self.models[model_name] = model_data
return True
def get_model(self, model_name: str) -> Optional[dict]:
"""Recupera un modelo de decisión."""
return self.models.get(model_name)
def add_archetype(self, archetype_tensor: "FractalTensor", Ss: List[int], name: Optional[str] = None, **kwargs) -> bool:
"""Añade un arquetipo (Tensor Fractal) al universo, almacenando Ss (memoria factual)."""
if not isinstance(archetype_tensor, FractalTensor):
raise ValueError("La entrada debe ser un objeto FractalTensor.")
# Normalize keys to int(0 if x is None else x) for robust lookup
ms_key = tuple(int(0 if x is None else x) for x in archetype_tensor.nivel_3[0][:3])
# Robustly flatten Ss if it is a list of lists (e.g., [[0,1,1], ...])
ss_source = Ss
if isinstance(Ss, list) and len(Ss) > 0 and isinstance(Ss[0], list):
ss_source = Ss[0]
ss_key = tuple(int(0 if x is None else x) for x in (ss_source[:3] if ss_source else archetype_tensor.nivel_3[0][:3]))
# Permitir múltiples arquetipos por clave Ms/Ss
if name and name in self.name_index:
warnings.warn(f"Violación de Coherencia: Ya existe un arquetipo con el nombre '{name}'. No se añadió el nuevo.")
self.coherence_violations += 1
return False
metadata = kwargs.copy()
if name: metadata['name'] = name
setattr(archetype_tensor, 'metadata', metadata)
setattr(archetype_tensor, 'timestamp', time.time())
setattr(archetype_tensor, 'Ss', list(ss_key))
self.archetypes.append(archetype_tensor)
if ms_key not in self.ms_index:
self.ms_index[ms_key] = []
self.ms_index[ms_key].append(archetype_tensor)
if ss_key not in self.ss_index:
self.ss_index[ss_key] = []
self.ss_index[ss_key].append(archetype_tensor)
if name: self.name_index[name] = archetype_tensor
return True
def find_archetype_by_ms(self, Ms_query: List[int]) -> list:
"""Busca arquetipos por su clave Ms (vector raíz, normalizado a 3 ints). Devuelve siempre lista."""
res = self.ms_index.get(tuple(Ms_query[:3]))
if res is None:
return []
if isinstance(res, list):
return res
return [res]
def find_archetype_by_ss(self, Ss_query: List[int]) -> list:
"""Busca arquetipos por su clave Ss (memoria factual, normalizado a 3 ints). Devuelve siempre lista."""
res = self.ss_index.get(tuple(Ss_query[:3]))
if res is None:
return []
if isinstance(res, list):
return res
return [res]
def find_archetype_by_name(self, name: str) -> Optional["FractalTensor"]:
"""Busca un arquetipo por su nombre asignado."""
return self.name_index.get(name)
def register_patch(self, ms_key, ttl=10_000):
"""Registra un parche temporal para un vector raíz con TTL."""
if not hasattr(self, '_patches'):
self._patches = {}
self._patches[tuple(ms_key)] = {'ttl': ttl, 'timestamp': time.time()}
def supersede_axiom(self, ms_key, new_axiom):
"""Reemplaza el axioma raíz y versiona el anterior."""
if not hasattr(self, '_axiom_versions'):
self._axiom_versions = {}
old = self.ms_index.get(tuple(ms_key))
if old:
self._axiom_versions[tuple(ms_key)] = old
self.ms_index[tuple(ms_key)] = new_axiom
# También actualizar en archetypes si está
for i, t in enumerate(self.archetypes):
if t.nivel_3[0] == list(ms_key):
self.archetypes[i] = new_axiom
break
class FractalKnowledgeBase:
def add_archetype(self, space_id: str, name: str, archetype_tensor: "FractalTensor", Ss: list, **kwargs) -> bool:
"""Delegado: añade un arquetipo fractal al universo correcto."""
return self._get_space(space_id).add_archetype(archetype_tensor, Ss, name=name, **kwargs)
def get_archetype(self, space_id: str, name: str) -> Optional["FractalTensor"]:
"""Obtiene un arquetipo por space_id y nombre."""
return self._get_space(space_id).find_archetype_by_name(name)
def store_model(self, space_id: str, model_name: str, model_data: dict):
return self._get_space(space_id).store_model(model_name, model_data)
def get_model(self, space_id: str, model_name: str):
return self._get_space(space_id).get_model(model_name)
"""Gestor de múltiples universos de conocimiento fractal."""
def __init__(self):
self.universes = {}
def _get_space(self, space_id: str = 'default'):
if space_id not in self.universes:
self.universes[space_id] = _SingleUniverseKB()
return self.universes[space_id]
# ===================== MÓDULO DE EVOLVER INVERSO =====================
class InverseEvolver:
def __init__(self):
self.trigate = Trigate()
def infer_inputs_from_meta(self, Ms: list, MetaM: list) -> list:
"""
Dado Ms (emergente) y MetaM, deduce M_AB, M_BC, M_CA compatibles.
"""
M_intermediate = [TernaryLogic.ternary_xor(m, mm) for m, mm in zip(Ms, MetaM)]
# Heurística simple: replicamos M_AB = M_BC = M_CA = M_intermediate
return [M_intermediate, M_intermediate, M_intermediate]
def reconstruct_vectors(self, Ms: list) -> tuple:
"""
Deduce todas las combinaciones posibles de A y B que generan Ms usando lógica inversa del Trigate.
Selecciona la combinación con menor cantidad de valores None.
"""
import itertools, warnings
if not isinstance(Ms, list) or len(Ms) != 3:
Ms = [0, 0, 0] # Normalizar entrada inválida
possible_pairs = []
states = [0, 1, None]
# Explorar todas las combinaciones de A y B
for a in itertools.product(states, repeat=3):
a = list(a)
# Deducir B desde A y Ms usando LUT
b = [self.trigate._LUT_DEDUCE_B.get((a_i, 1, m), None) for a_i, m in zip(a, Ms)]
if all(x is not None for x in b): # Solo aceptar si B es válido
none_count = a.count(None) + b.count(None)
possible_pairs.append((a, b, none_count))
if not possible_pairs:
warnings.warn("No se encontraron combinaciones válidas para Ms. Devolviendo valores neutros.")
return [0, 0, 0], [0, 0, 0]
# Seleccionar la pareja con menor cantidad de None (criterio de simplicidad)
best_pair = min(possible_pairs, key=lambda x: x[2])
return list(best_pair[0]), list(best_pair[1])
# ===================== NUEVO EXTENDER: CONSEJO DE EXPERTOS =====================
class Extender:
"""
Orquestador Aurora refactorizado con expertos como métodos internos para
simplificar el alcance y la gestión de estado.
Opera como de forma inversa a Evolver, extendiendo el conocimiento fractal
a partir de consultas simples y contexto, utilizando expertos para validar,
utiliza trigate de form inversa al transcender.
"""
def __init__(self, knowledge_base: "FractalKnowledgeBase"):
self.kb = knowledge_base
self.transcender = Transcender() # El relator necesita un transcender
self._lut_tables = {}
self.armonizador = Armonizador(knowledge_base=self.kb)
# --- Experto Arquetipo como método ---
def _validate_archetype(self, ss_query: list, space_id: str) -> Tuple[bool, Optional['FractalTensor']]:
universe = self.kb._get_space(space_id)
ss_key = tuple(int(x) if x in (0, 1) else 0 for x in ss_query[:3])
print(f"DEBUG: Looking up archetype with ss_key={ss_key} in space={space_id}")
# Buscar por Ss
archi_ss = universe.find_archetype_by_ss(list(ss_key))
if archi_ss:
print(f"DEBUG: Found archetype by Ss: {archi_ss}")
return True, archi_ss
# Buscar por Ms
archi_ms = universe.find_archetype_by_ms(list(ss_key))
if archi_ms:
print(f"DEBUG: Found archetype by Ms: {archi_ms}")
return True, archi_ms
print("DEBUG: No archetype found")
return False, None
# --- Experto Dinámica como método ---
def _project_dynamics(self, ss_query: list, space_id: str) -> Tuple[bool, Optional['FractalTensor']]:
universe = self.kb._get_space(space_id)
best, best_sim = None, -1.0
for archetype in universe.archetypes:
dMs = getattr(archetype, 'dMs', None)
if dMs and getattr(archetype, 'Ss', None):
sim = sum(1 for a, b in zip(archetype.Ss, ss_query) if a == b) / len(ss_query)
if sim > best_sim:
best_sim, best = sim, archetype
if best and best_sim > 0.7:
return True, best
return False, None
# --- Experto Relator como método ---
def _contextualize_relations(self, ss_query: list, space_id: str) -> Tuple[bool, Optional['FractalTensor']]:
universe = self.kb._get_space(space_id)
if not universe.archetypes:
print("DEBUG: No archetypes in universe")
return False, None
best, best_score = None, float('-inf')
for archetype in universe.archetypes:
if not getattr(archetype, 'Ss', None):
continue
rel = self.transcender.relate_vectors(ss_query, archetype.Ss)
score = sum(1 for bit in rel if bit == 0)
if score > best_score:
best_score, best = score, archetype
if best:
# Create a deep copy to avoid modifying the original
result = copy.deepcopy(best)
result.nivel_3[0] = list(ss_query[:3]) # Explicitly preserve root
print(f"DEBUG: Contextualized with score={best_score}, root preserved={result.nivel_3[0]}")
return True, result
print("DEBUG: No relational match found")
return False, None
# --- Orquestador Principal ---
def extend_fractal(self, input_ss, contexto: dict) -> dict:
log = [f"Extensión Aurora: espacio '{contexto.get('space_id', 'default')}'"]
# Validación y normalización de ss_query
if isinstance(input_ss, FractalTensor):
ss_query = getattr(input_ss, 'Ss', input_ss.nivel_3[0])
else:
ss_query = input_ss
# Normalizar a un vector ternario de longitud 3
if not isinstance(ss_query, (list, tuple, np.ndarray)):
log.append("⚠️ Entrada inválida, usando vector neutro [0,0,0]")
ss_query = [0, 0, 0]
else:
ss_query = [
None if x is None else int(x) if x in (0, 1) else 0
for x in list(ss_query)[:3]
] + [0] * (3 - len(ss_query))
space_id = contexto.get('space_id', 'default')
STEPS = [
lambda q, s: (self.lookup_lut(s, q) is not None, self.lookup_lut(s, q)),
self._validate_archetype,
self._project_dynamics,
self._contextualize_relations
]
METHODS = [
"reconstrucción por LUT",
"reconstrucción por arquetipo (axioma)",
"proyección por dinámica (raíz preservada)",
"contextualización por relator (raíz preservada)"
]
for step, method in zip(STEPS, METHODS):
ok, tensor = step(ss_query, space_id)
if ok and tensor is not None:
log.append(f"✅ {method}.")
# Si tensor es lista, seleccionar el más cercano
if isinstance(tensor, list):
armonizador = self.armonizador
tensor = min(tensor, key=lambda t: armonizador.ambiguity_score(ss_query, t.nivel_3[0]))
# For dynamic/relator, preserve root
if method.startswith("proyección") or method.startswith("contextualización"):
result = copy.deepcopy(tensor)
result.nivel_3[0] = ss_query
root_vector = result.nivel_3[0]
harm = self.armonizador.harmonize(root_vector, archetype=root_vector, space_id=space_id)
result.nivel_3[0] = harm["output"]
return {
"reconstructed_tensor": result,
"reconstruction_method": method + " + armonizador",
"log": log
}
tensor_c = copy.deepcopy(tensor)
root_vector = tensor_c.nivel_3[0]
harm = self.armonizador.harmonize(root_vector, archetype=root_vector, space_id=space_id)
tensor_c.nivel_3[0] = harm["output"]
return {
"reconstructed_tensor": tensor_c,
"reconstruction_method": method + " + armonizador",
"log": log
}
# Fallback
log.append("🤷 No se encontraron coincidencias. Devolviendo tensor neutro.")
tensor_n = FractalTensor.neutral()
root_vector = tensor_n.nivel_3[0]
harm = self.armonizador.harmonize(root_vector, archetype=root_vector, space_id=space_id)
tensor_n.nivel_3[0] = harm["output"]
return {
"reconstructed_tensor": tensor_n,
"reconstruction_method": "tensor neutro (sin coincidencias) + armonizador",
"log": log
}
# --- LUT methods moved into Extender as proper methods ---
def lookup_lut(self, space_id: str, ss_query: list):
"""
Consulta la LUT para el espacio dado y la firma ss_query.
"""
lut = getattr(self, '_lut_tables', {}).get(space_id, None)
if lut is None:
return None
key = tuple(ss_query)
return lut.get(key, None)
def learn_lut_from_data(self, space_id: str, data: list):
"""
Aprende una LUT auto-didacta a partir de datos [(ss_query, tensor_result)].
Si hay conflicto, usa voto por mayoría.
"""
lut = {}
votes = {}
for ss_query, tensor_result in data:
# Ensure key is always a tuple of ints (flatten if needed)
if isinstance(ss_query, list) and len(ss_query) > 0 and isinstance(ss_query[0], list):
key = tuple(ss_query[0])
else:
key = tuple(ss_query)
if key not in votes:
votes[key] = []
votes[key].append(tensor_result)
# Votar por mayoría (por nivel_3[0])
for key, tensors in votes.items():
# Si solo hay uno, usarlo
if len(tensors) == 1:
lut[key] = tensors[0]
else:
# Votar por mayoría en nivel_3[0]
root_votes = [t.nivel_3[0] if hasattr(t, 'nivel_3') else t for t in tensors]
# Simple: moda por componente
majority = []
for i in range(3):
vals = [rv[i] for rv in root_votes if rv and len(rv) > i]
if vals:
count_1 = vals.count(1)
count_0 = vals.count(0)
if count_1 > count_0:
majority.append(1)
elif count_0 > count_1:
majority.append(0)
else:
majority.append(None)
else:
majority.append(None)
# Crear tensor neutro y ponerle la raíz votada
tensor_majority = FractalTensor.neutral()
tensor_majority.nivel_3[0] = majority
lut[key] = tensor_majority
self.patch_lut(space_id, lut)
return lut
def patch_lut(self, space_id, lut):
"""Actualiza o crea la LUT para el espacio dado."""
if not hasattr(self, '_lut_tables') or self._lut_tables is None:
self._lut_tables = {}
self._lut_tables[space_id] = lut
def vote_candidates(self, candidates: list):
"""
Vota entre varios tensores candidatos y devuelve el tensor con mayoría en la raíz.
"""
if not candidates:
return FractalTensor.neutral()
root_votes = [c.nivel_3[0] if hasattr(c, 'nivel_3') else c for c in candidates]
majority = []
for i in range(3):
vals = [rv[i] for rv in root_votes if rv and len(rv) > i]
if vals:
count_1 = vals.count(1)
count_0 = vals.count(0)
if count_1 > count_0:
majority.append(1)
elif count_0 > count_1:
majority.append(0)
else:
majority.append(None)
else:
majority.append(None)
tensor_majority = FractalTensor.neutral()
tensor_majority.nivel_3[0] = majority
return tensor_majority
# Move these expert classes to top-level scope
class ExpertArquetipo:
def __init__(self, kb):
self.kb = kb
def validar_axioma(self, ss_query, space_id):
"""
Valida si existe un axioma. Es más robusto:
1. Busca por Ss (memoria factual) en ss_index.
2. Si falla, busca por Ms (raíz) en ms_index.
"""
universe = self.kb._get_space(space_id)
# --- FIX: Normalización de tipo reforzada con int() ---
ss_query_fixed = tuple(int(0 if x is None else x) for x in ss_query[:3])
# Búsqueda primaria por Ss/Ms en el índice (ahora ambos usan la misma clave)
exact_match_list = universe.ss_index.get(ss_query_fixed)
if exact_match_list:
return True, exact_match_list[0]
# Búsqueda de respaldo (aunque debería ser redundante si el índice es el mismo)
exact_by_ms = universe.find_archetype_by_ms(list(ss_query_fixed))
if exact_by_ms:
return True, exact_by_ms
return False, None
class ExpertDinamica:
def __init__(self, kb):
self.kb = kb
def proyectar_dinamica(self, ss_query, space_id):
# Busca tensor con dMs compatible o genera proyección neutra
universe = self.kb._get_space(space_id)
best, best_sim = None, 0.0
for archetype in universe.archetypes:
dMs = getattr(archetype, 'dMs', None)
if dMs:
sim = sum(1 for a, b in zip(getattr(archetype, 'Ss', []), ss_query) if a == b) / len(ss_query)
if sim > best_sim:
best_sim, best = sim, archetype
if best and best_sim > 0.7:
return True, best
return False, None
class ExpertRelator:
def __init__(self, kb):
self.kb = kb
self.transcender = Transcender()
def contextualizar(self, ss_query, space_id):
# Busca relaciones semánticas entre ss_query y todos los arquetipos
universe = self.kb._get_space(space_id)
best, best_score = None, float('-inf')
for archetype in universe.archetypes:
rel = self.transcender.relate_vectors(ss_query, getattr(archetype, 'Ss', [0,0,0]))
score = -sum(abs(x) if x is not None else 0 for x in rel)
if score > best_score:
best_score, best = score, archetype
if best:
return True, best
return False, None
# ===================== MÓDULO DE ROTACIÓN DE TENSORES (ARC - Aurean Rotation Cycle)
# ===============================================================================
PHI = (1 + 5**0.5) / 2
PHI_INVERSE = 1 / PHI
class TensorRotor:
"""Genera secuencias de índices para la selección de tensores."""
def __init__(self, N: int, mode: str = "hybrid", start_k: int = 0):
self.N = max(1, N)
self.k = start_k % self.N
self.i = 0
self.mode = mode
self.phi_step = max(1, round(PHI_INVERSE * self.N))
self.fib_cache = {n: self._fib(n) for n in range(16)}
def _fib(self, n: int) -> int:
if n <= 1: return 1
a, b = 1, 1
for _ in range(2, n + 1): a, b = b, a + b
return b
def next(self) -> int:
"""Calcula el siguiente índice según la estrategia de rotación."""
if self.mode == "phi":
self.k = (self.k + self.phi_step) % self.N
elif self.mode == "fibonacci":
fib_step = self.fib_cache[self.i % 16]
self.k = (self.k + fib_step) % self.N
else: # hybrid
if self.i % 2 == 0:
self.k = (self.k + self.phi_step) % self.N
else:
fib_step = self.fib_cache[(self.i // 2) % 16]
self.k = (self.k + fib_step) % self.N
self.i += 1
return self.k
class TensorPoolManager:
"""Gestor de pools de tensores con rotación estratificada."""
def __init__(self):
self.pools: Dict[str, List['FractalTensor']] = {
'deep27': [], 'mid9': [], 'shallow3': [], 'mixed': []
}
self.rotors: Dict[str, TensorRotor] = {
'deep27': TensorRotor(0, mode="fibonacci"),
'mid9': TensorRotor(0, mode="hybrid"),
'shallow3': TensorRotor(0, mode="phi"),
'mixed': TensorRotor(0, mode="hybrid")
}
def add_tensor(self, tensor: 'FractalTensor'):
"""Añade un tensor al pool apropiado según su profundidad."""
# Un tensor se considera "profundo" si tiene datos en el nivel 27
if any(any(bit is not None for bit in vec) for vec in tensor.nivel_27):
pool_name = 'deep27'
elif any(any(bit is not None for bit in vec) for vec in tensor.nivel_9):
pool_name = 'mid9'
else:
pool_name = 'shallow3'
self.pools[pool_name].append(tensor)
self.pools['mixed'].append(tensor)
self.rotors[pool_name].N = len(self.pools[pool_name])
self.rotors['mixed'].N = len(self.pools['mixed'])
def get_tensor_trio(self, task_type: str = "arquetipo") -> List['FractalTensor']:
"""Obtiene un trío de tensores optimizado para una tarea específica."""
task_to_pool = {
'arquetipo': 'mixed', 'dinamica': 'shallow3',
'relator': 'mid9', 'axioma': 'deep27'
}
pool_name = task_to_pool.get(task_type, 'mixed')
# Fallback inteligente si el pool preferido no tiene suficientes tensores
if len(self.pools[pool_name]) < 3:
fallback_order = ['mixed', 'shallow3', 'mid9', 'deep27']
for fb_pool_name in fallback_order:
if len(self.pools[fb_pool_name]) >= 3:
pool_name = fb_pool_name
break
pool = self.pools[pool_name]
rotor = self.rotors[pool_name]
if len(pool) < 3:
trio = list(pool)
while len(trio) < 3: trio.append(FractalTensor.neutral())
return trio
indices = [rotor.next() for _ in range(3)]
return [pool[i] for i in indices]
KnowledgeBase = FractalKnowledgeBase
# ===============================================================================
# DEMOSTRACIÓN FRACTAL COMPLETA
# ===============================================================================
if __name__ == "__main__":
print("🌌 DEMOSTRACIÓN FRACTAL AURORA: Arquetipos, Dinámicas y Relatores 🌌")
print("=" * 80)
print("Análisis de conocimiento desde tres perspectivas con datos coherentes.")
print("=" * 80)
# === INICIALIZACIÓN DEL ECOSISTEMA AURORA ===
kb = FractalKnowledgeBase()
evolver = Evolver()
extender = Extender(kb)
pool_manager = TensorPoolManager()
# === FASE 1: ANÁLISIS DE ARQUETIPOS ===
print("\n🏛️ FASE 1: ANÁLISIS DE ARQUETIPOS")
print("-" * 50)
familia_movimiento = [
FractalTensor(nivel_3=[[1,0,1]], nivel_9=[[1,0,0]]*9, nivel_27=[[0,0,1]]*27),
FractalTensor(nivel_3=[[1,0,1]], nivel_9=[[1,1,0]]*9, nivel_27=[[0,1,0]]*27),
FractalTensor(nivel_3=[[1,0,1]], nivel_9=[[0,1,1]]*9, nivel_27=[[1,1,1]]*27)
]
for t in familia_movimiento: pool_manager.add_tensor(t)
trio_para_arquetipo = pool_manager.get_tensor_trio('arquetipo')
arquetipo_movimiento = evolver.compute_fractal_archetype(trio_para_arquetipo)
print(f"• Analizando {len(trio_para_arquetipo)} conceptos de 'movimiento'...")
print(f"• ARQUETIPO resultante: {arquetipo_movimiento}")
# Extraer Ss del tensor raíz del arquetipo (ejemplo: primer vector de nivel_3)
Ss_movimiento = arquetipo_movimiento.nivel_3[0] if hasattr(arquetipo_movimiento, 'nivel_3') else [0,0,0]
kb.add_archetype('fisica_conceptual', 'movimiento_universal', arquetipo_movimiento, Ss=Ss_movimiento)
print(" └─ Arquetipo almacenado en el espacio 'fisica_conceptual'.")
# Initialize LUT for archetype
extender.learn_lut_from_data('fisica_conceptual', [([1, 0, 1], arquetipo_movimiento)])
# Print KB indices for debug
print("DEBUG: ss_index:", kb._get_space('fisica_conceptual').ss_index)
print("DEBUG: ms_index:", kb._get_space('fisica_conceptual').ms_index)
# === FASE 2: ANÁLISIS DE DINÁMICAS ===
print("\n⚡ FASE 2: ANÁLISIS DE DINÁMICAS")
print("-" * 50)
estado_t0 = FractalTensor.random()
estado_t1 = evolver.base_transcender.compute_full_fractal(estado_t0, estado_t0, FractalTensor.neutral())
estado_t2 = evolver.base_transcender.compute_full_fractal(estado_t1, estado_t1, FractalTensor.neutral())
secuencia_temporal_logica = [estado_t0, estado_t1, estado_t2]
print(f"• Analizando secuencia temporal de {len(secuencia_temporal_logica)} estados.")
firma_dinamica = evolver.analyze_fractal_dynamics(secuencia_temporal_logica)
print(f"• DINÁMICA resultante: {firma_dinamica}")
Ss_dinamica = firma_dinamica.nivel_3[0] if hasattr(firma_dinamica, 'nivel_3') else [0,0,0]
kb.add_archetype('dinamicas_sistemas', 'evolucion_sistema_X', firma_dinamica, Ss=Ss_dinamica)
print(" └─ Dinámica almacenada en 'dinamicas_sistemas'.")
# === FASE 3: ANÁLISIS DE RELATORES ===
print("\n🔗 FASE 3: ANÁLISIS DE RELATORES")
print("-" * 50)
concepto_base = FractalTensor.random()
concepto_fuerza = evolver.base_transcender.compute_full_fractal(concepto_base, FractalTensor.random(), FractalTensor.neutral())
concepto_energia = evolver.base_transcender.compute_full_fractal(concepto_base, concepto_fuerza, FractalTensor.neutral())
cluster_contextual = [concepto_base, concepto_fuerza, concepto_energia]
print(f"• Analizando clúster de {len(cluster_contextual)} conceptos relacionados.")
firma_relacional = evolver.analyze_fractal_relations(cluster_contextual)
print(f"• RELATOR resultante: {firma_relacional}")
Ss_relator = firma_relacional.nivel_3[0] if hasattr(firma_relacional, 'nivel_3') else [0,0,0]
kb.add_archetype('mapas_conceptuales', 'mecanica_basica', firma_relacional, Ss=Ss_relator)
print(" └─ Relator almacenado en 'mapas_conceptuales'.")
# === FASE 4: EXTENSIÓN BASADA EN CONOCIMIENTO ===
print("\n🧩 FASE 4: EXTENSIÓN POR ARQUETIPO")
print("-" * 50)
# Usar directamente el vector raíz del arquetipo como consulta
query_vector = arquetipo_movimiento.nivel_3[0][:3]
print(f"• Vector a extender (solo con raíz): {query_vector}")
# Extensión robusta: la función copiará todos los niveles del arquetipo encontrado
resultado_extension = extender.extend_fractal(
query_vector,
contexto={'space_id': 'fisica_conceptual'}
)
tensor_reconstruido = resultado_extension['reconstructed_tensor']
print(f"• Método de reconstrucción: {resultado_extension['reconstruction_method']}")
print(f"• Tensor reconstruido: {tensor_reconstruido}")
print(" └─ Los niveles 3, 9 y 27 se han rellenado desde la KB.")
print("\n" + "=" * 80)
print("🎯 DEMOSTRACIÓN FINALIZADA.")
print("=" * 80)
################################################################################################
# ===================== INTEGRACIÓN DE REVERSIBILIDAD Y AUTOSIMILARIDAD ========================
################################################################################################
# --- UTILIDADES DE IMPUTACIÓN Y VALIDACIÓN ---
from statistics import mode
def impute_none(vec, context, tensor=None):
"""Imputa valores None usando contexto y niveles superiores del tensor."""
result = []
for i, v in enumerate(vec):
if v is not None:
result.append(v)
continue
col = [c[i] for c in context if i < len(c) and c[i] is not None]
if tensor:
if hasattr(tensor, 'nivel_9') and i < len(tensor.nivel_9):
col.extend([x for x in tensor.nivel_9[i] if x is not None])
if hasattr(tensor, 'nivel_3') and i < len(tensor.nivel_3[0]):
col.append(tensor.nivel_3[0][i % 3])
result.append(mode(col) if col else 0)
return result
def validate_ternary_input(vec, expected_len=3, name="input"):
"""Valida y normaliza entradas ternarias."""
if not isinstance(vec, (list, tuple)) or len(vec) != expected_len:
print(f"Warning: Invalid {name}: {vec}, using default {[0]*expected_len}")
return [0] * expected_len
return [None if x is None else int(x) % 2 for x in vec]
# --- ESTRATEGIAS DE SELECCIÓN AUTOSIMILARES ---
def golden_ratio_skip_indices(N, k, trios=3):
"""Devuelve una lista de índices para formar un trío usando saltos áureos."""
phi = (1 + math.sqrt(5)) / 2
skip = max(1, int(N / phi))
indices = []
idx = k
for _ in range(trios):
indices.append(idx % N)
idx = (idx + skip) % N
return indices
def fibonacci(n):
a, b = 1, 1
for _ in range(n):
a, b = b, a + b
return a
def fibonacci_stepping_indices(N, k, trios=3, start_step=0):
"""Devuelve una lista de índices para formar un trío usando pasos de Fibonacci."""
indices = []
idx = k
for i in range(start_step, start_step + trios):
step = fibonacci(i)
indices.append(idx % N)
idx = (idx + step) % N
return indices
# --- AJUSTE AUTOSIMILAR (OPCIONAL, SI SE DESEA USAR EN ARMONIZADOR) ---
class AdjustmentStep:
def apply(self, vec, archetype, kb=None):
raise NotImplementedError
class MicroShift(AdjustmentStep):
def apply(self, vec, archetype, kb=None):
return [a if v is None else v for v, a in zip(vec, archetype)]
class Regrewire(AdjustmentStep):
def apply(self, vec, archetype, kb=None):
if sum(1 for v, a in zip(vec, archetype) if v == a) >= 2:
return list(archetype)
return vec
class Metatune(AdjustmentStep):
def apply(self, vec, archetype, kb=None):
if kb is not None:
matches = kb.find_archetype_by_ms(archetype)
if matches:
return matches[0]
return vec
# --- TRIAGE FUNCIONAL UNIFICADO (INFERENCIA, APRENDIZAJE, DEDUCCIÓN) ---
def f_not(x):
return 1 - x if x in (0, 1) else 0
def f_not_inv(x):
return 1 - x if x in (0, 1) else 0
f_not.inverse = f_not_inv
def f_inc(x):
return (x + 1) % 2 if x in (0, 1) else 0
def f_inc_inv(x):
return (x - 1) % 2 if x in (0, 1) else 0
f_inc.inverse = f_inc_inv
def f_id(x):
return x
f_id.inverse = f_id
def aurora_apply_sequence(val, sequence):
for func in sequence:
val = func(val)
return val
def aurora_triage_inferencia(A, B, M):
allowed_functions = [f_not, f_inc, f_id]
def normalize_ternary_vector(vec, default=[0,0,0]):
if not isinstance(vec, (list, tuple)):
return default.copy()
return [None if x is None else int(x) if x in (0,1) else 0 for x in list(vec)[:3]] + [0]*(3-len(vec))
def validate_function_sequence(M, allowed_functions, max_len=2):
if not isinstance(M, (list, tuple)) or len(M) != 3:
return [[f_id] for _ in range(3)]
return [list(seq)[:max_len] if isinstance(seq, (list, tuple)) and all(f in allowed_functions for f in seq) else [f_id] for seq in M[:3]] + [[f_id]]*(3-len(M))
A = normalize_ternary_vector(A)
B = normalize_ternary_vector(B)
M = validate_function_sequence(M, allowed_functions)
R = []
for i in range(3):
rA = aurora_apply_sequence(A[i], M[i])
rB = aurora_apply_sequence(B[i], M[i])
if rA is not None and rB is not None:
R.append(rA + rB)
else:
R.append(0)
return R
def aurora_triage_aprendizaje(A, B, R, funciones_permitidas, max_len=2):
import itertools
def normalize_ternary_vector(vec, default=[0,0,0]):
if not isinstance(vec, (list, tuple)):
return default.copy()
return [None if x is None else int(x) if x in (0,1) else 0 for x in list(vec)[:3]] + [0]*(3-len(vec))
A = normalize_ternary_vector(A)
B = normalize_ternary_vector(B)
R = normalize_ternary_vector(R)
M = []
for i in range(3):
found = False
for l in range(1, max_len+1):
for seq in itertools.product(funciones_permitidas, repeat=l):
rA = aurora_apply_sequence(A[i], seq)
rB = aurora_apply_sequence(B[i], seq)
if rA is not None and rB is not None and rA + rB == R[i]:
M.append(list(seq))
found = True
break
if found:
break
if not found:
M.append([f_id])
return M
def aurora_triage_deduccion(M, R, known, known_is_A=True):
allowed_functions = [f_not, f_inc, f_id]
def normalize_ternary_vector(vec, default=[0,0,0]):
if not isinstance(vec, (list, tuple)):
return default.copy()
return [None if x is None else int(x) if x in (0,1) else 0 for x in list(vec)[:3]] + [0]*(3-len(vec))
def validate_function_sequence(M, allowed_functions, max_len=2):
if not isinstance(M, (list, tuple)) or len(M) != 3:
return [[f_id] for _ in range(3)]
return [list(seq)[:max_len] if isinstance(seq, (list, tuple)) and all(f in allowed_functions for f in seq) else [f_id] for seq in M[:3]] + [[f_id]]*(3-len(M))
R = normalize_ternary_vector(R)
known = normalize_ternary_vector(known)
M = validate_function_sequence(M, allowed_functions)
deduced = []
for i in range(3):
val = R[i] - aurora_apply_sequence(known[i], M[i]) if R[i] is not None and known[i] is not None else 0
for func in reversed(M[i]):
if hasattr(func, 'inverse'):
val = func.inverse(val)
deduced.append(val if val in (0,1,None) else 0)
return deduced
# --- INVERSE EVOLVER: REVERSIBILIDAD FRACTAL ---
class InverseEvolver:
"""Reconstruye tensores originales desde sintetizados usando lógica inversa."""
def __init__(self, knowledge_base=None):
self.kb = knowledge_base
self.trigate = Trigate()
self.armonizador = Armonizador(knowledge_base=knowledge_base) if knowledge_base else None
def reconstruct_vectors(self, Ms):
"""Deduce A y B desde Ms usando lógica inversa del Trigate."""
A, B = [], []
for m in Ms:
if m == 0:
A.append(0)
B.append(0)
elif m == 1:
A.append(1)
B.append(0)
else:
A.append(None)
B.append(None)
return A, B
def reconstruct_fractal(self, synthesized):
"""Reconstruye tres tensores fractales desde uno sintetizado (niveles 3, 9, 27)."""
ms_key = synthesized.nivel_3[0]
A_l3, B_l3 = self.reconstruct_vectors(ms_key)
C_l3 = [TernaryLogic.ternary_xor(a, b) for a, b in zip(A_l3, B_l3)]
def reconstruct_level(level_vectors):
A_vectors, B_vectors, C_vectors = [], [], []
for vec in level_vectors:
a, b = self.reconstruct_vectors(vec)
c = [TernaryLogic.ternary_xor(x, y) for x, y in zip(a, b)]
A_vectors.append(a)
B_vectors.append(b)
C_vectors.append(c)
return A_vectors, B_vectors, C_vectors
A_l9, B_l9, C_l9 = reconstruct_level(synthesized.nivel_9)
A_l27, B_l27, C_l27 = reconstruct_level(synthesized.nivel_27)
def create_tensor(n3, n9, n27, ss):
tensor = FractalTensor(nivel_3=n3, nivel_9=n9, nivel_27=n27)
if self.armonizador:
harm = self.armonizador.harmonize(
tensor.nivel_3[0],
archetype=tensor.nivel_3[0],
space_id="inverse"
)
tensor.nivel_3[0] = harm["output"]
tensor.Ss = ss
return tensor
return [
create_tensor([A_l3], A_l9, A_l27, ss="A"),
create_tensor([B_l3], B_l9, B_l27, ss="B"),
create_tensor([C_l3], C_l9, C_l27, ss="C")
]
# ===================== TRIGATE IMPLEMENTATION =====================
# Ternary values
NULL = None
TERNARY_VALUES = [0, 1, NULL]
class Trigate:
"""
Fundamental Aurora logic module implementing ternary operations.
Supports three operational modes:
1. Inference: A + B + M -> R (given inputs and control, compute result)
2. Learning: A + B + R -> M (given inputs and result, learn control)
3. Deduction: M + R + A -> B (given control, result, and one input, deduce other)
All operations are O(1) using precomputed lookup tables (LUTs).
"""
# Class-level LUTs (computed once at module load)
_LUT_INFER: Dict[Tuple, int] = {}
_LUT_LEARN: Dict[Tuple, int] = {}
_LUT_DEDUCE_A: Dict[Tuple, int] = {}
_LUT_DEDUCE_B: Dict[Tuple, int] = {}
_initialized = False
def __init__(self):
"""Initialize Trigate and ensure LUTs are computed."""
if not Trigate._initialized:
Trigate._initialize_luts()
@classmethod
def _initialize_luts(cls):
"""
Initialize all lookup tables for O(1) operations.
Based on extended XOR logic with NULL propagation:
- 0 XOR 0 = 0, 0 XOR 1 = 1, 1 XOR 0 = 1, 1 XOR 1 = 0
- Any operation with NULL propagates NULL
- Control bit M determines XOR (1) or XNOR (0)
"""
print("Initializing Trigate LUTs...")
# Generate all possible combinations for ternary logic
for a, b, m, r in itertools.product(TERNARY_VALUES, repeat=4):
# INFERENCE LUT: (a, b, m) -> r
computed_r = cls._compute_inference(a, b, m)
cls._LUT_INFER[(a, b, m)] = computed_r
# LEARNING LUT: (a, b, r) -> m
# Find control M that produces R given A, B
learned_m = cls._compute_learning(a, b, r)
cls._LUT_LEARN[(a, b, r)] = learned_m
# DEDUCTION LUTS: (m, r, a) -> b and (m, r, b) -> a
deduced_b = cls._compute_deduction_b(m, r, a)
deduced_a = cls._compute_deduction_a(m, r, b)
cls._LUT_DEDUCE_B[(m, r, a)] = deduced_b
cls._LUT_DEDUCE_A[(m, r, b)] = deduced_a
cls._initialized = True
print(f"Trigate LUTs initialized: {len(cls._LUT_INFER)} entries each")
@staticmethod
def _compute_inference(a: Union[int, None], b: Union[int, None], m: Union[int, None]) -> Union[int, None]:
"""
Compute R given A, B, M using ternary logic.
Logic:
- If any input is NULL, result is NULL
- If M is 1: R = A XOR B
- If M is 0: R = A XNOR B (NOT(A XOR B))
"""
if a is NULL or b is NULL or m is NULL:
return NULL
if m == 1: # XOR mode
return a ^ b
else: # XNOR mode (m == 0)
return 1 - (a ^ b)
@staticmethod
def _compute_learning(a: Union[int, None], b: Union[int, None], r: Union[int, None]) -> Union[int, None]:
"""
Learn control M given A, B, R.
Logic:
- If any input is NULL, cannot learn -> NULL
- If A XOR B == R, then M = 1 (XOR)
- If A XOR B != R, then M = 0 (XNOR)
"""
if a is NULL or b is NULL or r is NULL:
return NULL
xor_result = a ^ b
if xor_result == r:
return 1 # XOR mode produces correct result
else:
return 0 # XNOR mode produces correct result
@staticmethod
def _compute_deduction_a(m: Union[int, None], r: Union[int, None], b: Union[int, None]) -> Union[int, None]:
"""
Deduce A given M, R, B.
Logic:
- If any input is NULL, cannot deduce -> NULL
- If M is 1: A = R XOR B (since R = A XOR B)
- If M is 0: A = NOT(R) XOR B (since R = NOT(A XOR B))
"""
if m is NULL or r is NULL or b is NULL:
return NULL
if m == 1: # XOR mode: A XOR B = R -> A = R XOR B
return r ^ b
else: # XNOR mode: NOT(A XOR B) = R -> A XOR B = NOT(R) -> A = NOT(R) XOR B
return (1 - r) ^ b
@staticmethod
def _compute_deduction_b(m: Union[int, None], r: Union[int, None], a: Union[int, None]) -> Union[int, None]:
"""
Deduce B given M, R, A.
Logic: Same as deduce_a but solving for B instead of A.
"""
if m is NULL or r is NULL or a is NULL:
return NULL
if m == 1: # XOR mode: A XOR B = R -> B = R XOR A
return r ^ a
else: # XNOR mode: NOT(A XOR B) = R -> A XOR B = NOT(R) -> B = NOT(R) XOR A
return (1 - r) ^ a
def infer(self, A: List[Union[int, None]], B: List[Union[int, None]], M: List[Union[int, None]]) -> List[Union[int, None]]:
"""
Inference mode: Compute R given A, B, M.
Args:
A: First input vector (3 bits)
B: Second input vector (3 bits)
M: Control vector (3 bits)
Returns:
R: Result vector (3 bits)
"""
if not (len(A) == len(B) == len(M) == 3):
raise ValueError("All vectors must have exactly 3 elements")
return [self._LUT_INFER[(a, b, m)] for a, b, m in zip(A, B, M)]
def learn(self, A: List[Union[int, None]], B: List[Union[int, None]], R: List[Union[int, None]]) -> List[Union[int, None]]:
"""
Learning mode: Learn control M given A, B, R.
Args:
A: First input vector (3 bits)
B: Second input vector (3 bits)
R: Target result vector (3 bits)
Returns:
M: Learned control vector (3 bits)
"""
if not (len(A) == len(B) == len(R) == 3):
raise ValueError("All vectors must have exactly 3 elements")
return [self._LUT_LEARN[(a, b, r)] for a, b, r in zip(A, B, R)]
def deduce_a(self, M: List[Union[int, None]], R: List[Union[int, None]], B: List[Union[int, None]]) -> List[Union[int, None]]:
"""
Deduction mode: Deduce A given M, R, B.
Args:
M: Control vector (3 bits)
R: Result vector (3 bits)
B: Known input vector (3 bits)
Returns:
A: Deduced input vector (3 bits)
"""
if not (len(M) == len(R) == len(B) == 3):
raise ValueError("All vectors must have exactly 3 elements")
return [self._LUT_DEDUCE_A[(m, r, b)] for m, r, b in zip(M, R, B)]
def deduce_b(self, M: List[Union[int, None]], R: List[Union[int, None]], A: List[Union[int, None]]) -> List[Union[int, None]]:
"""
Deduction mode: Deduce B given M, R, A.
Args:
M: Control vector (3 bits)
R: Result vector (3 bits)
A: Known input vector (3 bits)
Returns:
B: Deduced input vector (3 bits)
"""
if not (len(M) == len(R) == len(A) == 3):
raise ValueError("All vectors must have exactly 3 elements")
return [self._LUT_DEDUCE_B[(m, r, a)] for m, r, a in zip(M, R, A)]
def validate_triangle_closure(self, A: List[Union[int, None]], B: List[Union[int, None]],
M: List[Union[int, None]], R: List[Union[int, None]]) -> bool:
"""
Validate that A, B, M, R form a valid logical triangle.
This ensures geometric coherence: the triangle "closes" properly.
Args:
A, B, M, R: The four vectors forming the logical triangle
Returns:
True if triangle is valid, False otherwise
"""
# Compute expected R from A, B, M
expected_R = self.infer(A, B, M)
# Check if computed R matches provided R
for expected, actual in zip(expected_R, R):
if expected != actual:
return False
return True
def get_truth_table(self, operation: str = "infer") -> str:
"""
Generate human-readable truth table for debugging.
Args:
operation: "infer", "learn", "deduce_a", or "deduce_b"
Returns:
Formatted truth table string
"""
if operation == "infer":
lut = self._LUT_INFER
header = "A | B | M | R"
elif operation == "learn":
lut = self._LUT_LEARN
header = "A | B | R | M"
elif operation == "deduce_a":
lut = self._LUT_DEDUCE_A
header = "M | R | B | A"
elif operation == "deduce_b":
lut = self._LUT_DEDUCE_B
header = "M | R | A | B"
else:
raise ValueError(f"Unknown operation: {operation}")
def format_val(v):
return "N" if v is NULL else str(v)
lines = [header, "-" * len(header)]
for key, value in sorted(lut.items()):
key_str = " | ".join(format_val(k) for k in key)
val_str = format_val(value)
lines.append(f"{key_str} | {val_str}")
return "\n".join(lines)
def synthesize(self, A: List[int], B: List[int]) -> Tuple[List[Optional[int]], List[Optional[int]]]:
"""Síntesis Aurora: genera M (lógica) y S (forma) desde A y B."""
M = [TernaryLogic.ternary_xor(a, b) for a, b in zip(A, B)]
S = [TernaryLogic.ternary_xnor(a, b) for a, b in zip(A, B)]
return M, S
def recursive_synthesis(
self,
vectors: List[List[int]]
) -> Tuple[List[Optional[int]], List[List[Optional[int]]]]:
"""
Reduce secuencialmente una lista ≥2 de vectores ternarios.
Devuelve:
• resultado_final – vector M después de la última combinación
• history – lista de cada resultado intermedio (M-k) para depuración
"""
if len(vectors) < 2:
raise ValueError("Se necesitan al menos 2 vectores")
history: List[List[Optional[int]]] = []
current = vectors[0]
for nxt in vectors[1:]:
current, _ = self.synthesize(current, nxt)
history.append(current)
return current, history
def __repr__(self) -> str:
return f"Trigate(initialized={self._initialized}, lut_size={len(self._LUT_INFER)})" |