File size: 12,060 Bytes
1fd89e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
"""

Aurora Trinity-3 Trigate Implementation

======================================



Fundamental logic module based on geometric coherence and ternary logic.

Implements inference, learning, and deduction modes with O(1) LUT operations.



Based on the principle: A + B + R = 180° (geometric triangle closure)

Translated to ternary logic: {0, 1, NULL}



Author: Aurora Program

License: Apache-2.0 + CC-BY-4.0

"""

from typing import List, Union, Optional, Tuple, Dict
import itertools


# Ternary values
NULL = None
TERNARY_VALUES = [0, 1, NULL]


class Trigate:
    """

    Fundamental Aurora logic module implementing ternary operations.

    

    Supports three operational modes:

    1. Inference: A + B + M -> R (given inputs and control, compute result)

    2. Learning: A + B + R -> M (given inputs and result, learn control)

    3. Deduction: M + R + A -> B (given control, result, and one input, deduce other)

    

    All operations are O(1) using precomputed lookup tables (LUTs).

    """
    
    # Class-level LUTs (computed once at module load)
    _LUT_INFER: Dict[Tuple, int] = {}
    _LUT_LEARN: Dict[Tuple, int] = {}
    _LUT_DEDUCE_A: Dict[Tuple, int] = {}
    _LUT_DEDUCE_B: Dict[Tuple, int] = {}
    _initialized = False
    
    def __init__(self):
        """Initialize Trigate and ensure LUTs are computed."""
        if not Trigate._initialized:
            Trigate._initialize_luts()
    
    @classmethod
    def _initialize_luts(cls):
        """

        Initialize all lookup tables for O(1) operations.

        

        Based on extended XOR logic with NULL propagation:

        - 0 XOR 0 = 0, 0 XOR 1 = 1, 1 XOR 0 = 1, 1 XOR 1 = 0

        - Any operation with NULL propagates NULL

        - Control bit M determines XOR (1) or XNOR (0)

        """
        print("Initializing Trigate LUTs...")
        
        # Generate all possible combinations for ternary logic
        for a, b, m, r in itertools.product(TERNARY_VALUES, repeat=4):
            
            # INFERENCE LUT: (a, b, m) -> r
            computed_r = cls._compute_inference(a, b, m)
            cls._LUT_INFER[(a, b, m)] = computed_r
            
            # LEARNING LUT: (a, b, r) -> m
            # Find control M that produces R given A, B
            learned_m = cls._compute_learning(a, b, r)
            cls._LUT_LEARN[(a, b, r)] = learned_m
            
            # DEDUCTION LUTS: (m, r, a) -> b and (m, r, b) -> a
            deduced_b = cls._compute_deduction_b(m, r, a)
            deduced_a = cls._compute_deduction_a(m, r, b)
            
            cls._LUT_DEDUCE_B[(m, r, a)] = deduced_b
            cls._LUT_DEDUCE_A[(m, r, b)] = deduced_a
        
        cls._initialized = True
        print(f"Trigate LUTs initialized: {len(cls._LUT_INFER)} entries each")
    
    @staticmethod
    def _compute_inference(a: Union[int, None], b: Union[int, None], m: Union[int, None]) -> Union[int, None]:
        """

        Compute R given A, B, M using ternary logic.

        

        Logic:

        - If any input is NULL, result is NULL

        - If M is 1: R = A XOR B

        - If M is 0: R = A XNOR B (NOT(A XOR B))

        """
        if a is NULL or b is NULL or m is NULL:
            return NULL
        
        if m == 1:  # XOR mode
            return a ^ b
        else:  # XNOR mode (m == 0)
            return 1 - (a ^ b)
    
    @staticmethod
    def _compute_learning(a: Union[int, None], b: Union[int, None], r: Union[int, None]) -> Union[int, None]:
        """

        Learn control M given A, B, R.

        

        Logic:

        - If any input is NULL, cannot learn -> NULL

        - If A XOR B == R, then M = 1 (XOR)

        - If A XOR B != R, then M = 0 (XNOR)

        """
        if a is NULL or b is NULL or r is NULL:
            return NULL
        
        xor_result = a ^ b
        if xor_result == r:
            return 1  # XOR mode produces correct result
        else:
            return 0  # XNOR mode produces correct result
    
    @staticmethod
    def _compute_deduction_a(m: Union[int, None], r: Union[int, None], b: Union[int, None]) -> Union[int, None]:
        """

        Deduce A given M, R, B.

        

        Logic:

        - If any input is NULL, cannot deduce -> NULL

        - If M is 1: A = R XOR B (since R = A XOR B)

        - If M is 0: A = NOT(R) XOR B (since R = NOT(A XOR B))

        """
        if m is NULL or r is NULL or b is NULL:
            return NULL
        
        if m == 1:  # XOR mode: A XOR B = R -> A = R XOR B
            return r ^ b
        else:  # XNOR mode: NOT(A XOR B) = R -> A XOR B = NOT(R) -> A = NOT(R) XOR B
            return (1 - r) ^ b
    
    @staticmethod
    def _compute_deduction_b(m: Union[int, None], r: Union[int, None], a: Union[int, None]) -> Union[int, None]:
        """

        Deduce B given M, R, A.

        

        Logic: Same as deduce_a but solving for B instead of A.

        """
        if m is NULL or r is NULL or a is NULL:
            return NULL
        
        if m == 1:  # XOR mode: A XOR B = R -> B = R XOR A
            return r ^ a
        else:  # XNOR mode: NOT(A XOR B) = R -> A XOR B = NOT(R) -> B = NOT(R) XOR A
            return (1 - r) ^ a
    
    def infer(self, A: List[Union[int, None]], B: List[Union[int, None]], M: List[Union[int, None]]) -> List[Union[int, None]]:
        """

        Inference mode: Compute R given A, B, M.

        

        Args:

            A: First input vector (3 bits)

            B: Second input vector (3 bits)

            M: Control vector (3 bits)

            

        Returns:

            R: Result vector (3 bits)

            

        Example:

            >>> trigate = Trigate()

            >>> A = [0, 1, 0]

            >>> B = [1, 0, 1]

            >>> M = [1, 1, 0]  # XOR, XOR, XNOR

            >>> R = trigate.infer(A, B, M)

            >>> print(R)  # [1, 1, 1]

        """
        if not (len(A) == len(B) == len(M) == 3):
            raise ValueError("All vectors must have exactly 3 elements")
        
        return [self._LUT_INFER[(a, b, m)] for a, b, m in zip(A, B, M)]
    
    def learn(self, A: List[Union[int, None]], B: List[Union[int, None]], R: List[Union[int, None]]) -> List[Union[int, None]]:
        """

        Learning mode: Learn control M given A, B, R.

        

        Args:

            A: First input vector (3 bits)

            B: Second input vector (3 bits)

            R: Target result vector (3 bits)

            

        Returns:

            M: Learned control vector (3 bits)

            

        Example:

            >>> trigate = Trigate()

            >>> A = [0, 1, 0]

            >>> B = [1, 0, 1]

            >>> R = [1, 1, 1]

            >>> M = trigate.learn(A, B, R)

            >>> print(M)  # [1, 1, 0]

        """
        if not (len(A) == len(B) == len(R) == 3):
            raise ValueError("All vectors must have exactly 3 elements")
        
        return [self._LUT_LEARN[(a, b, r)] for a, b, r in zip(A, B, R)]
    
    def deduce_a(self, M: List[Union[int, None]], R: List[Union[int, None]], B: List[Union[int, None]]) -> List[Union[int, None]]:
        """

        Deduction mode: Deduce A given M, R, B.

        

        Args:

            M: Control vector (3 bits)

            R: Result vector (3 bits)

            B: Known input vector (3 bits)

            

        Returns:

            A: Deduced input vector (3 bits)

        """
        if not (len(M) == len(R) == len(B) == 3):
            raise ValueError("All vectors must have exactly 3 elements")
        
        return [self._LUT_DEDUCE_A[(m, r, b)] for m, r, b in zip(M, R, B)]
    
    def deduce_b(self, M: List[Union[int, None]], R: List[Union[int, None]], A: List[Union[int, None]]) -> List[Union[int, None]]:
        """

        Deduction mode: Deduce B given M, R, A.

        

        Args:

            M: Control vector (3 bits)

            R: Result vector (3 bits)

            A: Known input vector (3 bits)

            

        Returns:

            B: Deduced input vector (3 bits)

        """
        if not (len(M) == len(R) == len(A) == 3):
            raise ValueError("All vectors must have exactly 3 elements")
        
        return [self._LUT_DEDUCE_B[(m, r, a)] for m, r, a in zip(M, R, A)]
    
    def validate_triangle_closure(self, A: List[Union[int, None]], B: List[Union[int, None]], 

                                  M: List[Union[int, None]], R: List[Union[int, None]]) -> bool:
        """

        Validate that A, B, M, R form a valid logical triangle.

        

        This ensures geometric coherence: the triangle "closes" properly.

        

        Args:

            A, B, M, R: The four vectors forming the logical triangle

            

        Returns:

            True if triangle is valid, False otherwise

        """
        # Compute expected R from A, B, M
        expected_R = self.infer(A, B, M)
        
        # Check if computed R matches provided R
        for expected, actual in zip(expected_R, R):
            if expected != actual:
                return False
        
        return True
    
    def get_truth_table(self, operation: str = "infer") -> str:
        """

        Generate human-readable truth table for debugging.

        

        Args:

            operation: "infer", "learn", "deduce_a", or "deduce_b"

            

        Returns:

            Formatted truth table string

        """
        if operation == "infer":
            lut = self._LUT_INFER
            header = "A | B | M | R"
        elif operation == "learn":
            lut = self._LUT_LEARN
            header = "A | B | R | M"
        elif operation == "deduce_a":
            lut = self._LUT_DEDUCE_A
            header = "M | R | B | A"
        elif operation == "deduce_b":
            lut = self._LUT_DEDUCE_B
            header = "M | R | A | B"
        else:
            raise ValueError(f"Unknown operation: {operation}")
        
        def format_val(v):
            return "N" if v is NULL else str(v)
        
        lines = [header, "-" * len(header)]
        
        for key, value in sorted(lut.items()):
            key_str = " | ".join(format_val(k) for k in key)
            val_str = format_val(value)
            lines.append(f"{key_str} | {val_str}")
        
        return "\n".join(lines)
    
    def __repr__(self) -> str:
        return f"Trigate(initialized={self._initialized}, lut_size={len(self._LUT_INFER)})"


# Example usage and testing
if __name__ == "__main__":
    # Create Trigate instance
    trigate = Trigate()
    
    print("=== Aurora Trigate Implementation ===\n")
    
    # Test inference
    print("1. Inference Test:")
    A = [0, 1, 0]
    B = [1, 0, 1]
    M = [1, 1, 0]  # XOR, XOR, XNOR
    R = trigate.infer(A, B, M)
    print(f"   A={A}, B={B}, M={M} -> R={R}")
    
    # Test learning
    print("\n2. Learning Test:")
    A = [0, 1, 0]
    B = [1, 0, 1]
    R = [1, 1, 1]
    M_learned = trigate.learn(A, B, R)
    print(f"   A={A}, B={B}, R={R} -> M={M_learned}")
    
    # Test deduction
    print("\n3. Deduction Test:")
    M = [1, 1, 0]
    R = [1, 1, 1]
    A = [0, 1, 0]
    B_deduced = trigate.deduce_b(M, R, A)
    print(f"   M={M}, R={R}, A={A} -> B={B_deduced}")
    
    # Test with NULL values
    print("\n4. NULL Propagation Test:")
    A_null = [0, 1, None]
    B_null = [1, 0, 1]
    M_null = [1, 1, 1]
    R_null = trigate.infer(A_null, B_null, M_null)
    print(f"   A={A_null}, B={B_null}, M={M_null} -> R={R_null}")
    
    # Validate triangle closure
    print("\n5. Triangle Closure Validation:")
    is_valid = trigate.validate_triangle_closure([0, 1, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1])
    print(f"   Triangle is valid: {is_valid}")
    
    print(f"\n6. Trigate Status: {trigate}")