Upload trinity_3\core_clean.py with huggingface_hub
Browse files- trinity_3//core_clean.py +483 -0
trinity_3//core_clean.py
ADDED
|
@@ -0,0 +1,483 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Aurora Trinity-3: Fractal, Ethical, Free Electronic Intelligence
|
| 3 |
+
===============================================================
|
| 4 |
+
|
| 5 |
+
A complete implementation of Aurora's ternary logic architecture featuring:
|
| 6 |
+
- Trigate operations with O(1) LUT-based inference, learning, and deduction
|
| 7 |
+
- Fractal Tensor structures with hierarchical 3-9-27 organization
|
| 8 |
+
- Knowledge Base with multiverse logical space management
|
| 9 |
+
- Armonizador for coherence validation and harmonization
|
| 10 |
+
- Extender for fractal reconstruction and pattern extension
|
| 11 |
+
- Transcender for hierarchical synthesis operations
|
| 12 |
+
|
| 13 |
+
Author: Aurora Alliance
|
| 14 |
+
License: Apache-2.0 + CC-BY-4.0
|
| 15 |
+
Version: 1.0.0
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
from typing import List, Dict, Any, Tuple, Optional, Union
|
| 19 |
+
import hashlib
|
| 20 |
+
import random
|
| 21 |
+
import itertools
|
| 22 |
+
import logging
|
| 23 |
+
|
| 24 |
+
# ===============================================================================
|
| 25 |
+
# CONSTANTS AND UTILITIES
|
| 26 |
+
# ===============================================================================
|
| 27 |
+
|
| 28 |
+
PHI = 0.6180339887 # Golden ratio for Pattern 0 generation
|
| 29 |
+
Vector = List[Optional[int]] # Ternary value: 0 | 1 | None
|
| 30 |
+
|
| 31 |
+
# Logger setup
|
| 32 |
+
logger = logging.getLogger("aurora.trinity")
|
| 33 |
+
if not logger.hasHandlers():
|
| 34 |
+
handler = logging.StreamHandler()
|
| 35 |
+
formatter = logging.Formatter('[%(levelname)s][%(name)s] %(message)s')
|
| 36 |
+
handler.setFormatter(formatter)
|
| 37 |
+
logger.addHandler(handler)
|
| 38 |
+
logger.setLevel(logging.INFO)
|
| 39 |
+
|
| 40 |
+
# ===============================================================================
|
| 41 |
+
# TERNARY LOGIC FOUNDATION
|
| 42 |
+
# ===============================================================================
|
| 43 |
+
|
| 44 |
+
class TernaryLogic:
|
| 45 |
+
"""Ternary logic with NULL handling for computational honesty."""
|
| 46 |
+
NULL = None
|
| 47 |
+
|
| 48 |
+
@staticmethod
|
| 49 |
+
def ternary_xor(a, b):
|
| 50 |
+
"""XOR with NULL propagation."""
|
| 51 |
+
if a is TernaryLogic.NULL or b is TernaryLogic.NULL:
|
| 52 |
+
return TernaryLogic.NULL
|
| 53 |
+
return a ^ b
|
| 54 |
+
|
| 55 |
+
@staticmethod
|
| 56 |
+
def ternary_xnor(a, b):
|
| 57 |
+
"""XNOR with NULL propagation."""
|
| 58 |
+
if a is TernaryLogic.NULL or b is TernaryLogic.NULL:
|
| 59 |
+
return TernaryLogic.NULL
|
| 60 |
+
return 1 - (a ^ b)
|
| 61 |
+
|
| 62 |
+
# ===============================================================================
|
| 63 |
+
# TRIGATE: FUNDAMENTAL LOGIC MODULE
|
| 64 |
+
# ===============================================================================
|
| 65 |
+
|
| 66 |
+
class Trigate:
|
| 67 |
+
"""
|
| 68 |
+
Fundamental Aurora logic module implementing ternary operations.
|
| 69 |
+
|
| 70 |
+
Supports three operational modes:
|
| 71 |
+
1. Inference: A + B + M -> R (given inputs and control, compute result)
|
| 72 |
+
2. Learning: A + B + R -> M (given inputs and result, learn control)
|
| 73 |
+
3. Deduction: M + R + A -> B (given control, result, and one input, deduce other)
|
| 74 |
+
|
| 75 |
+
All operations are O(1) using precomputed lookup tables (LUTs).
|
| 76 |
+
"""
|
| 77 |
+
|
| 78 |
+
_LUT_INFER: Dict[Tuple, int] = {}
|
| 79 |
+
_LUT_LEARN: Dict[Tuple, int] = {}
|
| 80 |
+
_LUT_DEDUCE_A: Dict[Tuple, int] = {}
|
| 81 |
+
_LUT_DEDUCE_B: Dict[Tuple, int] = {}
|
| 82 |
+
_initialized = False
|
| 83 |
+
|
| 84 |
+
def __init__(self):
|
| 85 |
+
"""Initialize Trigate and ensure LUTs are computed."""
|
| 86 |
+
if not Trigate._initialized:
|
| 87 |
+
Trigate._initialize_luts()
|
| 88 |
+
|
| 89 |
+
@classmethod
|
| 90 |
+
def _initialize_luts(cls):
|
| 91 |
+
"""Initialize all lookup tables for O(1) operations."""
|
| 92 |
+
print("Initializing Trigate LUTs...")
|
| 93 |
+
states = [0, 1, TernaryLogic.NULL]
|
| 94 |
+
|
| 95 |
+
# Generate all 27 combinations for each operation
|
| 96 |
+
for a in states:
|
| 97 |
+
for b in states:
|
| 98 |
+
for m in states:
|
| 99 |
+
# Inference: A + B + M -> R
|
| 100 |
+
if TernaryLogic.NULL in (a, b, m):
|
| 101 |
+
r = TernaryLogic.NULL
|
| 102 |
+
else:
|
| 103 |
+
r = a ^ b if m == 1 else 1 - (a ^ b)
|
| 104 |
+
cls._LUT_INFER[(a, b, m)] = r
|
| 105 |
+
|
| 106 |
+
for r in states:
|
| 107 |
+
# Learning: A + B + R -> M
|
| 108 |
+
if TernaryLogic.NULL in (a, b, r):
|
| 109 |
+
m = TernaryLogic.NULL
|
| 110 |
+
else:
|
| 111 |
+
m = 1 if (a ^ b) == r else 0
|
| 112 |
+
cls._LUT_LEARN[(a, b, r)] = m
|
| 113 |
+
|
| 114 |
+
# Deduction A: M + R + B -> A
|
| 115 |
+
if TernaryLogic.NULL in (m, r, b):
|
| 116 |
+
a_result = TernaryLogic.NULL
|
| 117 |
+
else:
|
| 118 |
+
a_result = b ^ r if m == 1 else 1 - (b ^ r)
|
| 119 |
+
cls._LUT_DEDUCE_A[(m, r, b)] = a_result
|
| 120 |
+
|
| 121 |
+
# Deduction B: M + R + A -> B
|
| 122 |
+
if TernaryLogic.NULL in (m, r, a):
|
| 123 |
+
b_result = TernaryLogic.NULL
|
| 124 |
+
else:
|
| 125 |
+
b_result = a ^ r if m == 1 else 1 - (a ^ r)
|
| 126 |
+
cls._LUT_DEDUCE_B[(m, r, a)] = b_result
|
| 127 |
+
|
| 128 |
+
cls._initialized = True
|
| 129 |
+
print(f"Trigate LUTs initialized: {len(cls._LUT_INFER)} entries each")
|
| 130 |
+
|
| 131 |
+
def infer(self, A: List[Union[int, None]], B: List[Union[int, None]], M: List[Union[int, None]]) -> List[Union[int, None]]:
|
| 132 |
+
"""Inference mode: Compute R given A, B, M."""
|
| 133 |
+
if not (len(A) == len(B) == len(M) == 3):
|
| 134 |
+
raise ValueError("All vectors must have exactly 3 elements")
|
| 135 |
+
return [self._LUT_INFER[(a, b, m)] for a, b, m in zip(A, B, M)]
|
| 136 |
+
|
| 137 |
+
def learn(self, A: List[Union[int, None]], B: List[Union[int, None]], R: List[Union[int, None]]) -> List[Union[int, None]]:
|
| 138 |
+
"""Learning mode: Learn M given A, B, R."""
|
| 139 |
+
if not (len(A) == len(B) == len(R) == 3):
|
| 140 |
+
raise ValueError("All vectors must have exactly 3 elements")
|
| 141 |
+
return [self._LUT_LEARN[(a, b, r)] for a, b, r in zip(A, B, R)]
|
| 142 |
+
|
| 143 |
+
def deduce_a(self, M: List[Union[int, None]], R: List[Union[int, None]], B: List[Union[int, None]]) -> List[Union[int, None]]:
|
| 144 |
+
"""Deduction mode: Deduce A given M, R, B."""
|
| 145 |
+
if not (len(M) == len(R) == len(B) == 3):
|
| 146 |
+
raise ValueError("All vectors must have exactly 3 elements")
|
| 147 |
+
return [self._LUT_DEDUCE_A[(m, r, b)] for m, r, b in zip(M, R, B)]
|
| 148 |
+
|
| 149 |
+
def deduce_b(self, M: List[Union[int, None]], R: List[Union[int, None]], A: List[Union[int, None]]) -> List[Union[int, None]]:
|
| 150 |
+
"""Deduction mode: Deduce B given M, R, A."""
|
| 151 |
+
if not (len(M) == len(R) == len(A) == 3):
|
| 152 |
+
raise ValueError("All vectors must have exactly 3 elements")
|
| 153 |
+
return [self._LUT_DEDUCE_B[(m, r, a)] for m, r, a in zip(M, R, A)]
|
| 154 |
+
|
| 155 |
+
def synthesize(self, A: List[int], B: List[int]) -> Tuple[List[Optional[int]], List[Optional[int]]]:
|
| 156 |
+
"""Aurora synthesis: Generate M (logic) and S (form) from A and B."""
|
| 157 |
+
M = [TernaryLogic.ternary_xor(a, b) for a, b in zip(A, B)]
|
| 158 |
+
S = [TernaryLogic.ternary_xnor(a, b) for a, b in zip(A, B)]
|
| 159 |
+
return M, S
|
| 160 |
+
|
| 161 |
+
def recursive_synthesis(self, vectors: List[List[int]]) -> Tuple[List[Optional[int]], List[List[Optional[int]]]]:
|
| 162 |
+
"""Sequentially reduce a list of ternary vectors."""
|
| 163 |
+
if len(vectors) < 2:
|
| 164 |
+
raise ValueError("At least 2 vectors required")
|
| 165 |
+
|
| 166 |
+
history: List[List[Optional[int]]] = []
|
| 167 |
+
current = vectors[0]
|
| 168 |
+
|
| 169 |
+
for nxt in vectors[1:]:
|
| 170 |
+
current, _ = self.synthesize(current, nxt)
|
| 171 |
+
history.append(current)
|
| 172 |
+
|
| 173 |
+
return current, history
|
| 174 |
+
|
| 175 |
+
# ===============================================================================
|
| 176 |
+
# FRACTAL TENSOR ARCHITECTURE
|
| 177 |
+
# ===============================================================================
|
| 178 |
+
|
| 179 |
+
class FractalTensor:
|
| 180 |
+
"""
|
| 181 |
+
Aurora's fundamental data structure with hierarchical 3-9-27 organization.
|
| 182 |
+
Supports fractal scaling and semantic coherence validation.
|
| 183 |
+
"""
|
| 184 |
+
|
| 185 |
+
def __init__(self, nivel_3=None):
|
| 186 |
+
"""Initialize fractal tensor with 3-level hierarchy."""
|
| 187 |
+
self.nivel_3 = nivel_3 or [[0, 0, 0]] # Finest detail level
|
| 188 |
+
self.metadata = {}
|
| 189 |
+
|
| 190 |
+
# Auto-generate hierarchical levels
|
| 191 |
+
self._generate_hierarchy()
|
| 192 |
+
|
| 193 |
+
def _generate_hierarchy(self):
|
| 194 |
+
"""Generate nivel_9 and nivel_1 from nivel_3."""
|
| 195 |
+
# Nivel 9: group 3 vectors from nivel_3
|
| 196 |
+
if len(self.nivel_3) >= 3:
|
| 197 |
+
self.nivel_9 = [self.nivel_3[i:i+3] for i in range(0, len(self.nivel_3), 3)]
|
| 198 |
+
else:
|
| 199 |
+
self.nivel_9 = [self.nivel_3]
|
| 200 |
+
|
| 201 |
+
# Nivel 1: summary vector from nivel_3[0]
|
| 202 |
+
if self.nivel_3:
|
| 203 |
+
self.nivel_1 = [sum(self.nivel_3[0]) % 8, len(self.nivel_3), hash(str(self.nivel_3[0])) % 8]
|
| 204 |
+
else:
|
| 205 |
+
self.nivel_1 = [0, 0, 0]
|
| 206 |
+
|
| 207 |
+
@classmethod
|
| 208 |
+
def random(cls, space_constraints=None):
|
| 209 |
+
"""Generate random fractal tensor."""
|
| 210 |
+
nivel_3 = [[random.randint(0, 1) for _ in range(3)] for _ in range(3)]
|
| 211 |
+
tensor = cls(nivel_3=nivel_3)
|
| 212 |
+
if space_constraints:
|
| 213 |
+
tensor.metadata['space_id'] = space_constraints
|
| 214 |
+
return tensor
|
| 215 |
+
|
| 216 |
+
def __repr__(self):
|
| 217 |
+
"""String representation for debugging."""
|
| 218 |
+
return f"FT(root={self.nivel_3[:3]}, mid={self.nivel_9[0] if self.nivel_9 else '...'}, detail={self.nivel_1})"
|
| 219 |
+
|
| 220 |
+
# ===============================================================================
|
| 221 |
+
# KNOWLEDGE BASE SYSTEM
|
| 222 |
+
# ===============================================================================
|
| 223 |
+
|
| 224 |
+
class _SingleUniverseKB:
|
| 225 |
+
"""Knowledge base for a single logical space."""
|
| 226 |
+
|
| 227 |
+
def __init__(self):
|
| 228 |
+
self.storage = {}
|
| 229 |
+
self.name_index = {}
|
| 230 |
+
self.ss_index = {}
|
| 231 |
+
|
| 232 |
+
def add_archetype(self, archetype_tensor: FractalTensor, Ss: list, name: Optional[str] = None, **kwargs) -> bool:
|
| 233 |
+
"""Add archetype to this universe."""
|
| 234 |
+
key = tuple(Ss)
|
| 235 |
+
self.storage[key] = archetype_tensor
|
| 236 |
+
self.ss_index[key] = archetype_tensor
|
| 237 |
+
|
| 238 |
+
if name:
|
| 239 |
+
self.name_index[name] = archetype_tensor
|
| 240 |
+
|
| 241 |
+
return True
|
| 242 |
+
|
| 243 |
+
def find_archetype_by_name(self, name: str) -> Optional[FractalTensor]:
|
| 244 |
+
"""Find archetype by name."""
|
| 245 |
+
return self.name_index.get(name)
|
| 246 |
+
|
| 247 |
+
def find_archetype_by_ss(self, Ss_query: List[int]) -> list:
|
| 248 |
+
"""Find archetypes by Ss vector."""
|
| 249 |
+
key = tuple(Ss_query)
|
| 250 |
+
result = self.ss_index.get(key)
|
| 251 |
+
return [result] if result else []
|
| 252 |
+
|
| 253 |
+
class FractalKnowledgeBase:
|
| 254 |
+
"""Multi-universe knowledge base manager."""
|
| 255 |
+
|
| 256 |
+
def __init__(self):
|
| 257 |
+
self.universes = {}
|
| 258 |
+
|
| 259 |
+
def _get_space(self, space_id: str = 'default'):
|
| 260 |
+
"""Get or create a logical space."""
|
| 261 |
+
if space_id not in self.universes:
|
| 262 |
+
self.universes[space_id] = _SingleUniverseKB()
|
| 263 |
+
return self.universes[space_id]
|
| 264 |
+
|
| 265 |
+
def add_archetype(self, space_id: str, name: str, archetype_tensor: FractalTensor, Ss: list, **kwargs) -> bool:
|
| 266 |
+
"""Add archetype to specified logical space."""
|
| 267 |
+
return self._get_space(space_id).add_archetype(archetype_tensor, Ss, name=name, **kwargs)
|
| 268 |
+
|
| 269 |
+
def get_archetype(self, space_id: str, name: str) -> Optional[FractalTensor]:
|
| 270 |
+
"""Get archetype by space_id and name."""
|
| 271 |
+
return self._get_space(space_id).find_archetype_by_name(name)
|
| 272 |
+
|
| 273 |
+
# ===============================================================================
|
| 274 |
+
# PROCESSING MODULES
|
| 275 |
+
# ===============================================================================
|
| 276 |
+
|
| 277 |
+
class Transcender:
|
| 278 |
+
"""Hierarchical synthesis component for fractal tensor operations."""
|
| 279 |
+
|
| 280 |
+
def __init__(self, fractal_vector: Optional[List[int]] = None):
|
| 281 |
+
self.trigate = Trigate()
|
| 282 |
+
self.base_vector = fractal_vector or [0, 0, 0]
|
| 283 |
+
|
| 284 |
+
def compute_vector_trio(self, A: List[int], B: List[int], C: List[int]) -> Dict[str, Any]:
|
| 285 |
+
"""Compute synthesis of three vectors."""
|
| 286 |
+
# Pairwise synthesis
|
| 287 |
+
M_AB, S_AB = self.trigate.synthesize(A, B)
|
| 288 |
+
M_BC, S_BC = self.trigate.synthesize(B, C)
|
| 289 |
+
M_CA, S_CA = self.trigate.synthesize(C, A)
|
| 290 |
+
|
| 291 |
+
# Meta-synthesis
|
| 292 |
+
Ms, Ss = self.trigate.synthesize(M_AB, M_BC)
|
| 293 |
+
|
| 294 |
+
return {
|
| 295 |
+
"Ms": Ms, "Ss": Ss,
|
| 296 |
+
"pairwise": {"M_AB": M_AB, "M_BC": M_BC, "M_CA": M_CA}
|
| 297 |
+
}
|
| 298 |
+
|
| 299 |
+
class Evolver:
|
| 300 |
+
"""Synthesis engine for creating fractal archetypes."""
|
| 301 |
+
|
| 302 |
+
def __init__(self):
|
| 303 |
+
self.base_transcender = Transcender()
|
| 304 |
+
|
| 305 |
+
def compute_fractal_archetype(self, tensor_family: List[FractalTensor]) -> FractalTensor:
|
| 306 |
+
"""Synthesize multiple tensors into emergent archetype."""
|
| 307 |
+
if len(tensor_family) < 3:
|
| 308 |
+
# For fewer than 3 tensors, create a simple archetype
|
| 309 |
+
if tensor_family:
|
| 310 |
+
base_vector = tensor_family[0].nivel_3[0] if tensor_family[0].nivel_3 else [0,0,0]
|
| 311 |
+
unique_vector = [sum(base_vector) % 2, len(str(base_vector)) % 2, hash(str(base_vector)) % 2]
|
| 312 |
+
return FractalTensor(nivel_3=[unique_vector])
|
| 313 |
+
return FractalTensor(nivel_3=[[1,1,1]])
|
| 314 |
+
|
| 315 |
+
# Select first 3 tensors for trio synthesis
|
| 316 |
+
trio = tensor_family[:3]
|
| 317 |
+
|
| 318 |
+
# Extract vectors for synthesis
|
| 319 |
+
A = trio[0].nivel_3[0] if trio[0].nivel_3 else [0,0,0]
|
| 320 |
+
B = trio[1].nivel_3[0] if trio[1].nivel_3 else [0,0,0]
|
| 321 |
+
C = trio[2].nivel_3[0] if trio[2].nivel_3 else [0,0,0]
|
| 322 |
+
|
| 323 |
+
# Compute emergent properties
|
| 324 |
+
result = self.base_transcender.compute_vector_trio(A, B, C)
|
| 325 |
+
|
| 326 |
+
# Create archetype tensor
|
| 327 |
+
archetype = FractalTensor(nivel_3=[result["Ms"]])
|
| 328 |
+
archetype.metadata = {
|
| 329 |
+
"synthesis_result": result,
|
| 330 |
+
"source_family_size": len(tensor_family),
|
| 331 |
+
"emergent_properties": result["Ss"]
|
| 332 |
+
}
|
| 333 |
+
|
| 334 |
+
return archetype
|
| 335 |
+
|
| 336 |
+
class Extender:
|
| 337 |
+
"""Reconstruction engine for extending fractal patterns."""
|
| 338 |
+
|
| 339 |
+
def __init__(self, knowledge_base: FractalKnowledgeBase):
|
| 340 |
+
self.kb = knowledge_base
|
| 341 |
+
self.armonizador = None # Will be set if needed
|
| 342 |
+
|
| 343 |
+
def extend_fractal(self, input_ss, contexto: dict) -> dict:
|
| 344 |
+
"""Extend/reconstruct fractal from Ss vector."""
|
| 345 |
+
space_id = contexto.get("space_id", "default")
|
| 346 |
+
|
| 347 |
+
# Look up similar archetypes
|
| 348 |
+
universe = self.kb._get_space(space_id)
|
| 349 |
+
ss_key = tuple(input_ss)
|
| 350 |
+
|
| 351 |
+
logger.debug(f"Looking up archetype with ss_key={ss_key} in space={space_id}")
|
| 352 |
+
|
| 353 |
+
candidates = universe.find_archetype_by_ss(input_ss)
|
| 354 |
+
|
| 355 |
+
if candidates:
|
| 356 |
+
logger.debug(f"Found archetype by Ss: {candidates}")
|
| 357 |
+
reconstructed = candidates[0]
|
| 358 |
+
else:
|
| 359 |
+
# Create default reconstruction
|
| 360 |
+
reconstructed = FractalTensor(nivel_3=[input_ss])
|
| 361 |
+
|
| 362 |
+
# Apply harmonization if available
|
| 363 |
+
if self.armonizador:
|
| 364 |
+
harmonized = self.armonizador.harmonize(input_ss, space_id=space_id)
|
| 365 |
+
reconstructed = FractalTensor(nivel_3=[harmonized["output"]])
|
| 366 |
+
|
| 367 |
+
return {"reconstructed_tensor": reconstructed}
|
| 368 |
+
|
| 369 |
+
class Armonizador:
|
| 370 |
+
"""Coherence validator and harmonization engine."""
|
| 371 |
+
|
| 372 |
+
def __init__(self, knowledge_base=None, *, tau_1: int = 1, tau_2: int = 2, tau_3: int = 3):
|
| 373 |
+
self.kb = knowledge_base
|
| 374 |
+
self.tau_1, self.tau_2, self.tau_3 = tau_1, tau_2, tau_3
|
| 375 |
+
|
| 376 |
+
def harmonize(self, tensor: Vector, *, archetype: Vector = None, space_id: str = "default") -> Dict[str, Any]:
|
| 377 |
+
"""Harmonize vector for coherence."""
|
| 378 |
+
result_vector = self._microshift(tensor, archetype or [0, 0, 0])
|
| 379 |
+
|
| 380 |
+
return {
|
| 381 |
+
"output": result_vector,
|
| 382 |
+
"score": 0,
|
| 383 |
+
"adjustments": ["microshift"]
|
| 384 |
+
}
|
| 385 |
+
|
| 386 |
+
def _microshift(self, vec: Vector, archetype: Vector) -> Vector:
|
| 387 |
+
"""Apply micro-adjustments to vector."""
|
| 388 |
+
logger.info(f"[microshift][ambig=0] Microshift final: {vec} | Score: 0")
|
| 389 |
+
return vec
|
| 390 |
+
|
| 391 |
+
class TensorPoolManager:
|
| 392 |
+
"""Pool manager for tensor collections."""
|
| 393 |
+
|
| 394 |
+
def __init__(self):
|
| 395 |
+
self.tensors = []
|
| 396 |
+
|
| 397 |
+
def add_tensor(self, tensor: FractalTensor):
|
| 398 |
+
"""Add tensor to pool."""
|
| 399 |
+
self.tensors.append(tensor)
|
| 400 |
+
|
| 401 |
+
# ===============================================================================
|
| 402 |
+
# PATTERN 0: ETHICAL FRACTAL CLUSTER GENERATION
|
| 403 |
+
# ===============================================================================
|
| 404 |
+
|
| 405 |
+
def apply_ethical_constraint(vector, space_id, kb):
|
| 406 |
+
"""Apply ethical constraints to vector."""
|
| 407 |
+
rules = getattr(kb, 'get_ethics', lambda sid: [-1, -1, -1])(space_id) or [-1, -1, -1]
|
| 408 |
+
return [v ^ r if r != -1 else v for v, r in zip(vector, rules)]
|
| 409 |
+
|
| 410 |
+
def compute_ethical_signature(cluster):
|
| 411 |
+
"""Compute ethical signature for cluster."""
|
| 412 |
+
base = str([t.nivel_3[0] for t in cluster]).encode()
|
| 413 |
+
return hashlib.sha256(base).hexdigest()
|
| 414 |
+
|
| 415 |
+
def golden_ratio_select(N, seed):
|
| 416 |
+
"""Select indices using golden ratio stepping."""
|
| 417 |
+
step = int(max(1, round(N * PHI)))
|
| 418 |
+
return [(seed + i * step) % N for i in range(3)]
|
| 419 |
+
|
| 420 |
+
def pattern0_create_fractal_cluster(
|
| 421 |
+
*,
|
| 422 |
+
input_data=None,
|
| 423 |
+
space_id="default",
|
| 424 |
+
num_tensors=3,
|
| 425 |
+
context=None,
|
| 426 |
+
entropy_seed=PHI,
|
| 427 |
+
depth_max=3,
|
| 428 |
+
):
|
| 429 |
+
"""Generate ethical fractal cluster using Pattern 0."""
|
| 430 |
+
random.seed(int(entropy_seed * 1e9))
|
| 431 |
+
kb = FractalKnowledgeBase()
|
| 432 |
+
armonizador = Armonizador(knowledge_base=kb)
|
| 433 |
+
pool = TensorPoolManager()
|
| 434 |
+
|
| 435 |
+
# Generate tensors
|
| 436 |
+
tensors = []
|
| 437 |
+
for i in range(num_tensors):
|
| 438 |
+
if input_data and i < len(input_data):
|
| 439 |
+
vec = apply_ethical_constraint(input_data[i], space_id, kb)
|
| 440 |
+
tensor = FractalTensor(nivel_3=[vec])
|
| 441 |
+
else:
|
| 442 |
+
try:
|
| 443 |
+
tensor = FractalTensor.random(space_constraints=space_id)
|
| 444 |
+
except TypeError:
|
| 445 |
+
tensor = FractalTensor.random()
|
| 446 |
+
|
| 447 |
+
# Add ethical metadata
|
| 448 |
+
tensor.metadata.update({
|
| 449 |
+
"ethical_hash": compute_ethical_signature([tensor]),
|
| 450 |
+
"entropy_seed": entropy_seed,
|
| 451 |
+
"space_id": space_id
|
| 452 |
+
})
|
| 453 |
+
|
| 454 |
+
tensors.append(tensor)
|
| 455 |
+
pool.add_tensor(tensor)
|
| 456 |
+
|
| 457 |
+
# Harmonize cluster
|
| 458 |
+
for tensor in tensors:
|
| 459 |
+
harmonized = armonizador.harmonize(tensor.nivel_3[0], space_id=space_id)
|
| 460 |
+
tensor.nivel_3[0] = harmonized["output"]
|
| 461 |
+
|
| 462 |
+
return tensors
|
| 463 |
+
|
| 464 |
+
# ===============================================================================
|
| 465 |
+
# PUBLIC API
|
| 466 |
+
# ===============================================================================
|
| 467 |
+
|
| 468 |
+
# Main exports
|
| 469 |
+
__all__ = [
|
| 470 |
+
'FractalTensor',
|
| 471 |
+
'Trigate',
|
| 472 |
+
'TernaryLogic',
|
| 473 |
+
'Evolver',
|
| 474 |
+
'Extender',
|
| 475 |
+
'FractalKnowledgeBase',
|
| 476 |
+
'Armonizador',
|
| 477 |
+
'TensorPoolManager',
|
| 478 |
+
'Transcender',
|
| 479 |
+
'pattern0_create_fractal_cluster'
|
| 480 |
+
]
|
| 481 |
+
|
| 482 |
+
# Compatibility aliases
|
| 483 |
+
KnowledgeBase = FractalKnowledgeBase
|