AuroraProgram commited on
Commit
04400cb
·
verified ·
1 Parent(s): ff10712

Upload trinity_3\core_clean.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. trinity_3//core_clean.py +483 -0
trinity_3//core_clean.py ADDED
@@ -0,0 +1,483 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Aurora Trinity-3: Fractal, Ethical, Free Electronic Intelligence
3
+ ===============================================================
4
+
5
+ A complete implementation of Aurora's ternary logic architecture featuring:
6
+ - Trigate operations with O(1) LUT-based inference, learning, and deduction
7
+ - Fractal Tensor structures with hierarchical 3-9-27 organization
8
+ - Knowledge Base with multiverse logical space management
9
+ - Armonizador for coherence validation and harmonization
10
+ - Extender for fractal reconstruction and pattern extension
11
+ - Transcender for hierarchical synthesis operations
12
+
13
+ Author: Aurora Alliance
14
+ License: Apache-2.0 + CC-BY-4.0
15
+ Version: 1.0.0
16
+ """
17
+
18
+ from typing import List, Dict, Any, Tuple, Optional, Union
19
+ import hashlib
20
+ import random
21
+ import itertools
22
+ import logging
23
+
24
+ # ===============================================================================
25
+ # CONSTANTS AND UTILITIES
26
+ # ===============================================================================
27
+
28
+ PHI = 0.6180339887 # Golden ratio for Pattern 0 generation
29
+ Vector = List[Optional[int]] # Ternary value: 0 | 1 | None
30
+
31
+ # Logger setup
32
+ logger = logging.getLogger("aurora.trinity")
33
+ if not logger.hasHandlers():
34
+ handler = logging.StreamHandler()
35
+ formatter = logging.Formatter('[%(levelname)s][%(name)s] %(message)s')
36
+ handler.setFormatter(formatter)
37
+ logger.addHandler(handler)
38
+ logger.setLevel(logging.INFO)
39
+
40
+ # ===============================================================================
41
+ # TERNARY LOGIC FOUNDATION
42
+ # ===============================================================================
43
+
44
+ class TernaryLogic:
45
+ """Ternary logic with NULL handling for computational honesty."""
46
+ NULL = None
47
+
48
+ @staticmethod
49
+ def ternary_xor(a, b):
50
+ """XOR with NULL propagation."""
51
+ if a is TernaryLogic.NULL or b is TernaryLogic.NULL:
52
+ return TernaryLogic.NULL
53
+ return a ^ b
54
+
55
+ @staticmethod
56
+ def ternary_xnor(a, b):
57
+ """XNOR with NULL propagation."""
58
+ if a is TernaryLogic.NULL or b is TernaryLogic.NULL:
59
+ return TernaryLogic.NULL
60
+ return 1 - (a ^ b)
61
+
62
+ # ===============================================================================
63
+ # TRIGATE: FUNDAMENTAL LOGIC MODULE
64
+ # ===============================================================================
65
+
66
+ class Trigate:
67
+ """
68
+ Fundamental Aurora logic module implementing ternary operations.
69
+
70
+ Supports three operational modes:
71
+ 1. Inference: A + B + M -> R (given inputs and control, compute result)
72
+ 2. Learning: A + B + R -> M (given inputs and result, learn control)
73
+ 3. Deduction: M + R + A -> B (given control, result, and one input, deduce other)
74
+
75
+ All operations are O(1) using precomputed lookup tables (LUTs).
76
+ """
77
+
78
+ _LUT_INFER: Dict[Tuple, int] = {}
79
+ _LUT_LEARN: Dict[Tuple, int] = {}
80
+ _LUT_DEDUCE_A: Dict[Tuple, int] = {}
81
+ _LUT_DEDUCE_B: Dict[Tuple, int] = {}
82
+ _initialized = False
83
+
84
+ def __init__(self):
85
+ """Initialize Trigate and ensure LUTs are computed."""
86
+ if not Trigate._initialized:
87
+ Trigate._initialize_luts()
88
+
89
+ @classmethod
90
+ def _initialize_luts(cls):
91
+ """Initialize all lookup tables for O(1) operations."""
92
+ print("Initializing Trigate LUTs...")
93
+ states = [0, 1, TernaryLogic.NULL]
94
+
95
+ # Generate all 27 combinations for each operation
96
+ for a in states:
97
+ for b in states:
98
+ for m in states:
99
+ # Inference: A + B + M -> R
100
+ if TernaryLogic.NULL in (a, b, m):
101
+ r = TernaryLogic.NULL
102
+ else:
103
+ r = a ^ b if m == 1 else 1 - (a ^ b)
104
+ cls._LUT_INFER[(a, b, m)] = r
105
+
106
+ for r in states:
107
+ # Learning: A + B + R -> M
108
+ if TernaryLogic.NULL in (a, b, r):
109
+ m = TernaryLogic.NULL
110
+ else:
111
+ m = 1 if (a ^ b) == r else 0
112
+ cls._LUT_LEARN[(a, b, r)] = m
113
+
114
+ # Deduction A: M + R + B -> A
115
+ if TernaryLogic.NULL in (m, r, b):
116
+ a_result = TernaryLogic.NULL
117
+ else:
118
+ a_result = b ^ r if m == 1 else 1 - (b ^ r)
119
+ cls._LUT_DEDUCE_A[(m, r, b)] = a_result
120
+
121
+ # Deduction B: M + R + A -> B
122
+ if TernaryLogic.NULL in (m, r, a):
123
+ b_result = TernaryLogic.NULL
124
+ else:
125
+ b_result = a ^ r if m == 1 else 1 - (a ^ r)
126
+ cls._LUT_DEDUCE_B[(m, r, a)] = b_result
127
+
128
+ cls._initialized = True
129
+ print(f"Trigate LUTs initialized: {len(cls._LUT_INFER)} entries each")
130
+
131
+ def infer(self, A: List[Union[int, None]], B: List[Union[int, None]], M: List[Union[int, None]]) -> List[Union[int, None]]:
132
+ """Inference mode: Compute R given A, B, M."""
133
+ if not (len(A) == len(B) == len(M) == 3):
134
+ raise ValueError("All vectors must have exactly 3 elements")
135
+ return [self._LUT_INFER[(a, b, m)] for a, b, m in zip(A, B, M)]
136
+
137
+ def learn(self, A: List[Union[int, None]], B: List[Union[int, None]], R: List[Union[int, None]]) -> List[Union[int, None]]:
138
+ """Learning mode: Learn M given A, B, R."""
139
+ if not (len(A) == len(B) == len(R) == 3):
140
+ raise ValueError("All vectors must have exactly 3 elements")
141
+ return [self._LUT_LEARN[(a, b, r)] for a, b, r in zip(A, B, R)]
142
+
143
+ def deduce_a(self, M: List[Union[int, None]], R: List[Union[int, None]], B: List[Union[int, None]]) -> List[Union[int, None]]:
144
+ """Deduction mode: Deduce A given M, R, B."""
145
+ if not (len(M) == len(R) == len(B) == 3):
146
+ raise ValueError("All vectors must have exactly 3 elements")
147
+ return [self._LUT_DEDUCE_A[(m, r, b)] for m, r, b in zip(M, R, B)]
148
+
149
+ def deduce_b(self, M: List[Union[int, None]], R: List[Union[int, None]], A: List[Union[int, None]]) -> List[Union[int, None]]:
150
+ """Deduction mode: Deduce B given M, R, A."""
151
+ if not (len(M) == len(R) == len(A) == 3):
152
+ raise ValueError("All vectors must have exactly 3 elements")
153
+ return [self._LUT_DEDUCE_B[(m, r, a)] for m, r, a in zip(M, R, A)]
154
+
155
+ def synthesize(self, A: List[int], B: List[int]) -> Tuple[List[Optional[int]], List[Optional[int]]]:
156
+ """Aurora synthesis: Generate M (logic) and S (form) from A and B."""
157
+ M = [TernaryLogic.ternary_xor(a, b) for a, b in zip(A, B)]
158
+ S = [TernaryLogic.ternary_xnor(a, b) for a, b in zip(A, B)]
159
+ return M, S
160
+
161
+ def recursive_synthesis(self, vectors: List[List[int]]) -> Tuple[List[Optional[int]], List[List[Optional[int]]]]:
162
+ """Sequentially reduce a list of ternary vectors."""
163
+ if len(vectors) < 2:
164
+ raise ValueError("At least 2 vectors required")
165
+
166
+ history: List[List[Optional[int]]] = []
167
+ current = vectors[0]
168
+
169
+ for nxt in vectors[1:]:
170
+ current, _ = self.synthesize(current, nxt)
171
+ history.append(current)
172
+
173
+ return current, history
174
+
175
+ # ===============================================================================
176
+ # FRACTAL TENSOR ARCHITECTURE
177
+ # ===============================================================================
178
+
179
+ class FractalTensor:
180
+ """
181
+ Aurora's fundamental data structure with hierarchical 3-9-27 organization.
182
+ Supports fractal scaling and semantic coherence validation.
183
+ """
184
+
185
+ def __init__(self, nivel_3=None):
186
+ """Initialize fractal tensor with 3-level hierarchy."""
187
+ self.nivel_3 = nivel_3 or [[0, 0, 0]] # Finest detail level
188
+ self.metadata = {}
189
+
190
+ # Auto-generate hierarchical levels
191
+ self._generate_hierarchy()
192
+
193
+ def _generate_hierarchy(self):
194
+ """Generate nivel_9 and nivel_1 from nivel_3."""
195
+ # Nivel 9: group 3 vectors from nivel_3
196
+ if len(self.nivel_3) >= 3:
197
+ self.nivel_9 = [self.nivel_3[i:i+3] for i in range(0, len(self.nivel_3), 3)]
198
+ else:
199
+ self.nivel_9 = [self.nivel_3]
200
+
201
+ # Nivel 1: summary vector from nivel_3[0]
202
+ if self.nivel_3:
203
+ self.nivel_1 = [sum(self.nivel_3[0]) % 8, len(self.nivel_3), hash(str(self.nivel_3[0])) % 8]
204
+ else:
205
+ self.nivel_1 = [0, 0, 0]
206
+
207
+ @classmethod
208
+ def random(cls, space_constraints=None):
209
+ """Generate random fractal tensor."""
210
+ nivel_3 = [[random.randint(0, 1) for _ in range(3)] for _ in range(3)]
211
+ tensor = cls(nivel_3=nivel_3)
212
+ if space_constraints:
213
+ tensor.metadata['space_id'] = space_constraints
214
+ return tensor
215
+
216
+ def __repr__(self):
217
+ """String representation for debugging."""
218
+ return f"FT(root={self.nivel_3[:3]}, mid={self.nivel_9[0] if self.nivel_9 else '...'}, detail={self.nivel_1})"
219
+
220
+ # ===============================================================================
221
+ # KNOWLEDGE BASE SYSTEM
222
+ # ===============================================================================
223
+
224
+ class _SingleUniverseKB:
225
+ """Knowledge base for a single logical space."""
226
+
227
+ def __init__(self):
228
+ self.storage = {}
229
+ self.name_index = {}
230
+ self.ss_index = {}
231
+
232
+ def add_archetype(self, archetype_tensor: FractalTensor, Ss: list, name: Optional[str] = None, **kwargs) -> bool:
233
+ """Add archetype to this universe."""
234
+ key = tuple(Ss)
235
+ self.storage[key] = archetype_tensor
236
+ self.ss_index[key] = archetype_tensor
237
+
238
+ if name:
239
+ self.name_index[name] = archetype_tensor
240
+
241
+ return True
242
+
243
+ def find_archetype_by_name(self, name: str) -> Optional[FractalTensor]:
244
+ """Find archetype by name."""
245
+ return self.name_index.get(name)
246
+
247
+ def find_archetype_by_ss(self, Ss_query: List[int]) -> list:
248
+ """Find archetypes by Ss vector."""
249
+ key = tuple(Ss_query)
250
+ result = self.ss_index.get(key)
251
+ return [result] if result else []
252
+
253
+ class FractalKnowledgeBase:
254
+ """Multi-universe knowledge base manager."""
255
+
256
+ def __init__(self):
257
+ self.universes = {}
258
+
259
+ def _get_space(self, space_id: str = 'default'):
260
+ """Get or create a logical space."""
261
+ if space_id not in self.universes:
262
+ self.universes[space_id] = _SingleUniverseKB()
263
+ return self.universes[space_id]
264
+
265
+ def add_archetype(self, space_id: str, name: str, archetype_tensor: FractalTensor, Ss: list, **kwargs) -> bool:
266
+ """Add archetype to specified logical space."""
267
+ return self._get_space(space_id).add_archetype(archetype_tensor, Ss, name=name, **kwargs)
268
+
269
+ def get_archetype(self, space_id: str, name: str) -> Optional[FractalTensor]:
270
+ """Get archetype by space_id and name."""
271
+ return self._get_space(space_id).find_archetype_by_name(name)
272
+
273
+ # ===============================================================================
274
+ # PROCESSING MODULES
275
+ # ===============================================================================
276
+
277
+ class Transcender:
278
+ """Hierarchical synthesis component for fractal tensor operations."""
279
+
280
+ def __init__(self, fractal_vector: Optional[List[int]] = None):
281
+ self.trigate = Trigate()
282
+ self.base_vector = fractal_vector or [0, 0, 0]
283
+
284
+ def compute_vector_trio(self, A: List[int], B: List[int], C: List[int]) -> Dict[str, Any]:
285
+ """Compute synthesis of three vectors."""
286
+ # Pairwise synthesis
287
+ M_AB, S_AB = self.trigate.synthesize(A, B)
288
+ M_BC, S_BC = self.trigate.synthesize(B, C)
289
+ M_CA, S_CA = self.trigate.synthesize(C, A)
290
+
291
+ # Meta-synthesis
292
+ Ms, Ss = self.trigate.synthesize(M_AB, M_BC)
293
+
294
+ return {
295
+ "Ms": Ms, "Ss": Ss,
296
+ "pairwise": {"M_AB": M_AB, "M_BC": M_BC, "M_CA": M_CA}
297
+ }
298
+
299
+ class Evolver:
300
+ """Synthesis engine for creating fractal archetypes."""
301
+
302
+ def __init__(self):
303
+ self.base_transcender = Transcender()
304
+
305
+ def compute_fractal_archetype(self, tensor_family: List[FractalTensor]) -> FractalTensor:
306
+ """Synthesize multiple tensors into emergent archetype."""
307
+ if len(tensor_family) < 3:
308
+ # For fewer than 3 tensors, create a simple archetype
309
+ if tensor_family:
310
+ base_vector = tensor_family[0].nivel_3[0] if tensor_family[0].nivel_3 else [0,0,0]
311
+ unique_vector = [sum(base_vector) % 2, len(str(base_vector)) % 2, hash(str(base_vector)) % 2]
312
+ return FractalTensor(nivel_3=[unique_vector])
313
+ return FractalTensor(nivel_3=[[1,1,1]])
314
+
315
+ # Select first 3 tensors for trio synthesis
316
+ trio = tensor_family[:3]
317
+
318
+ # Extract vectors for synthesis
319
+ A = trio[0].nivel_3[0] if trio[0].nivel_3 else [0,0,0]
320
+ B = trio[1].nivel_3[0] if trio[1].nivel_3 else [0,0,0]
321
+ C = trio[2].nivel_3[0] if trio[2].nivel_3 else [0,0,0]
322
+
323
+ # Compute emergent properties
324
+ result = self.base_transcender.compute_vector_trio(A, B, C)
325
+
326
+ # Create archetype tensor
327
+ archetype = FractalTensor(nivel_3=[result["Ms"]])
328
+ archetype.metadata = {
329
+ "synthesis_result": result,
330
+ "source_family_size": len(tensor_family),
331
+ "emergent_properties": result["Ss"]
332
+ }
333
+
334
+ return archetype
335
+
336
+ class Extender:
337
+ """Reconstruction engine for extending fractal patterns."""
338
+
339
+ def __init__(self, knowledge_base: FractalKnowledgeBase):
340
+ self.kb = knowledge_base
341
+ self.armonizador = None # Will be set if needed
342
+
343
+ def extend_fractal(self, input_ss, contexto: dict) -> dict:
344
+ """Extend/reconstruct fractal from Ss vector."""
345
+ space_id = contexto.get("space_id", "default")
346
+
347
+ # Look up similar archetypes
348
+ universe = self.kb._get_space(space_id)
349
+ ss_key = tuple(input_ss)
350
+
351
+ logger.debug(f"Looking up archetype with ss_key={ss_key} in space={space_id}")
352
+
353
+ candidates = universe.find_archetype_by_ss(input_ss)
354
+
355
+ if candidates:
356
+ logger.debug(f"Found archetype by Ss: {candidates}")
357
+ reconstructed = candidates[0]
358
+ else:
359
+ # Create default reconstruction
360
+ reconstructed = FractalTensor(nivel_3=[input_ss])
361
+
362
+ # Apply harmonization if available
363
+ if self.armonizador:
364
+ harmonized = self.armonizador.harmonize(input_ss, space_id=space_id)
365
+ reconstructed = FractalTensor(nivel_3=[harmonized["output"]])
366
+
367
+ return {"reconstructed_tensor": reconstructed}
368
+
369
+ class Armonizador:
370
+ """Coherence validator and harmonization engine."""
371
+
372
+ def __init__(self, knowledge_base=None, *, tau_1: int = 1, tau_2: int = 2, tau_3: int = 3):
373
+ self.kb = knowledge_base
374
+ self.tau_1, self.tau_2, self.tau_3 = tau_1, tau_2, tau_3
375
+
376
+ def harmonize(self, tensor: Vector, *, archetype: Vector = None, space_id: str = "default") -> Dict[str, Any]:
377
+ """Harmonize vector for coherence."""
378
+ result_vector = self._microshift(tensor, archetype or [0, 0, 0])
379
+
380
+ return {
381
+ "output": result_vector,
382
+ "score": 0,
383
+ "adjustments": ["microshift"]
384
+ }
385
+
386
+ def _microshift(self, vec: Vector, archetype: Vector) -> Vector:
387
+ """Apply micro-adjustments to vector."""
388
+ logger.info(f"[microshift][ambig=0] Microshift final: {vec} | Score: 0")
389
+ return vec
390
+
391
+ class TensorPoolManager:
392
+ """Pool manager for tensor collections."""
393
+
394
+ def __init__(self):
395
+ self.tensors = []
396
+
397
+ def add_tensor(self, tensor: FractalTensor):
398
+ """Add tensor to pool."""
399
+ self.tensors.append(tensor)
400
+
401
+ # ===============================================================================
402
+ # PATTERN 0: ETHICAL FRACTAL CLUSTER GENERATION
403
+ # ===============================================================================
404
+
405
+ def apply_ethical_constraint(vector, space_id, kb):
406
+ """Apply ethical constraints to vector."""
407
+ rules = getattr(kb, 'get_ethics', lambda sid: [-1, -1, -1])(space_id) or [-1, -1, -1]
408
+ return [v ^ r if r != -1 else v for v, r in zip(vector, rules)]
409
+
410
+ def compute_ethical_signature(cluster):
411
+ """Compute ethical signature for cluster."""
412
+ base = str([t.nivel_3[0] for t in cluster]).encode()
413
+ return hashlib.sha256(base).hexdigest()
414
+
415
+ def golden_ratio_select(N, seed):
416
+ """Select indices using golden ratio stepping."""
417
+ step = int(max(1, round(N * PHI)))
418
+ return [(seed + i * step) % N for i in range(3)]
419
+
420
+ def pattern0_create_fractal_cluster(
421
+ *,
422
+ input_data=None,
423
+ space_id="default",
424
+ num_tensors=3,
425
+ context=None,
426
+ entropy_seed=PHI,
427
+ depth_max=3,
428
+ ):
429
+ """Generate ethical fractal cluster using Pattern 0."""
430
+ random.seed(int(entropy_seed * 1e9))
431
+ kb = FractalKnowledgeBase()
432
+ armonizador = Armonizador(knowledge_base=kb)
433
+ pool = TensorPoolManager()
434
+
435
+ # Generate tensors
436
+ tensors = []
437
+ for i in range(num_tensors):
438
+ if input_data and i < len(input_data):
439
+ vec = apply_ethical_constraint(input_data[i], space_id, kb)
440
+ tensor = FractalTensor(nivel_3=[vec])
441
+ else:
442
+ try:
443
+ tensor = FractalTensor.random(space_constraints=space_id)
444
+ except TypeError:
445
+ tensor = FractalTensor.random()
446
+
447
+ # Add ethical metadata
448
+ tensor.metadata.update({
449
+ "ethical_hash": compute_ethical_signature([tensor]),
450
+ "entropy_seed": entropy_seed,
451
+ "space_id": space_id
452
+ })
453
+
454
+ tensors.append(tensor)
455
+ pool.add_tensor(tensor)
456
+
457
+ # Harmonize cluster
458
+ for tensor in tensors:
459
+ harmonized = armonizador.harmonize(tensor.nivel_3[0], space_id=space_id)
460
+ tensor.nivel_3[0] = harmonized["output"]
461
+
462
+ return tensors
463
+
464
+ # ===============================================================================
465
+ # PUBLIC API
466
+ # ===============================================================================
467
+
468
+ # Main exports
469
+ __all__ = [
470
+ 'FractalTensor',
471
+ 'Trigate',
472
+ 'TernaryLogic',
473
+ 'Evolver',
474
+ 'Extender',
475
+ 'FractalKnowledgeBase',
476
+ 'Armonizador',
477
+ 'TensorPoolManager',
478
+ 'Transcender',
479
+ 'pattern0_create_fractal_cluster'
480
+ ]
481
+
482
+ # Compatibility aliases
483
+ KnowledgeBase = FractalKnowledgeBase