AuroraProgram commited on
Commit
95f4def
·
verified ·
1 Parent(s): 7dfb108

Upload trinity_3\core.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. trinity_3//core.py +725 -0
trinity_3//core.py ADDED
@@ -0,0 +1,725 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Aurora Trinity-3: Fractal, Ethical, Free Electronic Intelligence
3
+ ===============================================================
4
+
5
+ A complete implementation of Aurora's ternary logic architecture featuring:
6
+ - Trigate operations with O(1) LUT-based inference, learning, and deduction
7
+ - Fractal Tensor structures with hierarchical 3-9-27 organization
8
+ - Knowledge Base with multiverse logical space management
9
+ - Armonizador for coherence validation and harmonization
10
+ - Extender for fractal reconstruction and pattern extension
11
+ - Transcender for hierarchical synthesis operations
12
+
13
+ Author: Aurora Alliance
14
+ License: Apache-2.0 + CC-BY-4.0
15
+ Version: 1.0.0
16
+ """
17
+
18
+ from typing import List, Dict, Any, Tuple, Optional, Union
19
+ import hashlib
20
+ import random
21
+ import itertools
22
+ import logging
23
+
24
+ # ===============================================================================
25
+ # CONSTANTS AND UTILITIES
26
+ # ===============================================================================
27
+
28
+ PHI = 0.6180339887 # Golden ratio for Pattern 0 generation
29
+ Vector = List[Optional[int]] # Ternary value: 0 | 1 | None
30
+
31
+ # Logger setup
32
+ logger = logging.getLogger("aurora.trinity")
33
+ if not logger.hasHandlers():
34
+ handler = logging.StreamHandler()
35
+ formatter = logging.Formatter('[%(levelname)s][%(name)s] %(message)s')
36
+ handler.setFormatter(formatter)
37
+ logger.addHandler(handler)
38
+ logger.setLevel(logging.INFO)
39
+
40
+ # ===============================================================================
41
+ # TERNARY LOGIC FOUNDATION
42
+ # ===============================================================================
43
+
44
+ class TernaryLogic:
45
+ """Ternary logic with NULL handling for computational honesty."""
46
+ NULL = None
47
+
48
+ @staticmethod
49
+ def ternary_xor(a, b):
50
+ """XOR with NULL propagation."""
51
+ if a is TernaryLogic.NULL or b is TernaryLogic.NULL:
52
+ return TernaryLogic.NULL
53
+ return a ^ b
54
+
55
+ @staticmethod
56
+ def ternary_xnor(a, b):
57
+ """XNOR with NULL propagation."""
58
+ if a is TernaryLogic.NULL or b is TernaryLogic.NULL:
59
+ return TernaryLogic.NULL
60
+ return 1 - (a ^ b)
61
+
62
+ # ===============================================================================
63
+ # TRIGATE: FUNDAMENTAL LOGIC MODULE
64
+ # ===============================================================================
65
+
66
+ class Trigate:
67
+ """
68
+ Fundamental Aurora logic module implementing ternary operations.
69
+
70
+ Supports three operational modes:
71
+ 1. Inference: A + B + M -> R (given inputs and control, compute result)
72
+ 2. Learning: A + B + R -> M (given inputs and result, learn control)
73
+ 3. Deduction: M + R + A -> B (given control, result, and one input, deduce other)
74
+
75
+ All operations are O(1) using precomputed lookup tables (LUTs).
76
+ """
77
+
78
+ _LUT_INFER: Dict[Tuple, int] = {}
79
+ _LUT_LEARN: Dict[Tuple, int] = {}
80
+ _LUT_DEDUCE_A: Dict[Tuple, int] = {}
81
+ _LUT_DEDUCE_B: Dict[Tuple, int] = {}
82
+ _initialized = False
83
+
84
+ def __init__(self):
85
+ """Initialize Trigate and ensure LUTs are computed."""
86
+ if not Trigate._initialized:
87
+ Trigate._initialize_luts()
88
+
89
+ @classmethod
90
+ def _initialize_luts(cls):
91
+ """Initialize all lookup tables for O(1) operations."""
92
+ print("Initializing Trigate LUTs...")
93
+ states = [0, 1, TernaryLogic.NULL]
94
+
95
+ # Generate all 27 combinations for each operation
96
+ for a in states:
97
+ for b in states:
98
+ for m in states:
99
+ # Inference: A + B + M -> R
100
+ if TernaryLogic.NULL in (a, b, m):
101
+ r = TernaryLogic.NULL
102
+ else:
103
+ r = a ^ b if m == 1 else 1 - (a ^ b)
104
+ cls._LUT_INFER[(a, b, m)] = r
105
+
106
+ for r in states:
107
+ # Learning: A + B + R -> M
108
+ if TernaryLogic.NULL in (a, b, r):
109
+ m = TernaryLogic.NULL
110
+ else:
111
+ m = 1 if (a ^ b) == r else 0
112
+ cls._LUT_LEARN[(a, b, r)] = m
113
+
114
+ # Deduction A: M + R + B -> A
115
+ if TernaryLogic.NULL in (m, r, b):
116
+ a_result = TernaryLogic.NULL
117
+ else:
118
+ a_result = b ^ r if m == 1 else 1 - (b ^ r)
119
+ cls._LUT_DEDUCE_A[(m, r, b)] = a_result
120
+
121
+ # Deduction B: M + R + A -> B
122
+ if TernaryLogic.NULL in (m, r, a):
123
+ b_result = TernaryLogic.NULL
124
+ else:
125
+ b_result = a ^ r if m == 1 else 1 - (a ^ r)
126
+ cls._LUT_DEDUCE_B[(m, r, a)] = b_result
127
+
128
+ cls._initialized = True
129
+ print(f"Trigate LUTs initialized: {len(cls._LUT_INFER)} entries each")
130
+
131
+ def infer(self, A: List[Union[int, None]], B: List[Union[int, None]], M: List[Union[int, None]]) -> List[Union[int, None]]:
132
+ """Inference mode: Compute R given A, B, M."""
133
+ if not (len(A) == len(B) == len(M) == 3):
134
+ raise ValueError("All vectors must have exactly 3 elements")
135
+ return [self._LUT_INFER[(a, b, m)] for a, b, m in zip(A, B, M)]
136
+
137
+ def learn(self, A: List[Union[int, None]], B: List[Union[int, None]], R: List[Union[int, None]]) -> List[Union[int, None]]:
138
+ """Learning mode: Learn M given A, B, R."""
139
+ if not (len(A) == len(B) == len(R) == 3):
140
+ raise ValueError("All vectors must have exactly 3 elements")
141
+ return [self._LUT_LEARN[(a, b, r)] for a, b, r in zip(A, B, R)]
142
+
143
+ def deduce_a(self, M: List[Union[int, None]], R: List[Union[int, None]], B: List[Union[int, None]]) -> List[Union[int, None]]:
144
+ """Deduction mode: Deduce A given M, R, B."""
145
+ if not (len(M) == len(R) == len(B) == 3):
146
+ raise ValueError("All vectors must have exactly 3 elements")
147
+ return [self._LUT_DEDUCE_A[(m, r, b)] for m, r, b in zip(M, R, B)]
148
+
149
+ def deduce_b(self, M: List[Union[int, None]], R: List[Union[int, None]], A: List[Union[int, None]]) -> List[Union[int, None]]:
150
+ """Deduction mode: Deduce B given M, R, A."""
151
+ if not (len(M) == len(R) == len(A) == 3):
152
+ raise ValueError("All vectors must have exactly 3 elements")
153
+ return [self._LUT_DEDUCE_B[(m, r, a)] for m, r, a in zip(M, R, A)]
154
+
155
+ def synthesize(self, A: List[int], B: List[int]) -> Tuple[List[Optional[int]], List[Optional[int]]]:
156
+ """Aurora synthesis: Generate M (logic) and S (form) from A and B."""
157
+ M = [TernaryLogic.ternary_xor(a, b) for a, b in zip(A, B)]
158
+ S = [TernaryLogic.ternary_xnor(a, b) for a, b in zip(A, B)]
159
+ return M, S
160
+
161
+ def recursive_synthesis(self, vectors: List[List[int]]) -> Tuple[List[Optional[int]], List[List[Optional[int]]]]:
162
+ """Sequentially reduce a list of ternary vectors."""
163
+ if len(vectors) < 2:
164
+ raise ValueError("At least 2 vectors required")
165
+
166
+ history: List[List[Optional[int]]] = []
167
+ current = vectors[0]
168
+
169
+ for nxt in vectors[1:]:
170
+ current, _ = self.synthesize(current, nxt)
171
+ history.append(current)
172
+
173
+ return current, history
174
+
175
+ # ===============================================================================
176
+ # FRACTAL TENSOR ARCHITECTURE
177
+ # ===============================================================================
178
+
179
+ class FractalTensor:
180
+ """
181
+ Aurora's fundamental data structure with hierarchical 3-9-27 organization.
182
+ Supports fractal scaling and semantic coherence validation.
183
+ """
184
+
185
+ def __init__(self, nivel_3=None):
186
+ """Initialize fractal tensor with 3-level hierarchy."""
187
+ self.nivel_3 = nivel_3 or [[0, 0, 0]] # Finest detail level
188
+ self.metadata = {}
189
+
190
+ # Auto-generate hierarchical levels
191
+ self._generate_hierarchy()
192
+
193
+ def _generate_hierarchy(self):
194
+ """Generate nivel_9 and nivel_1 from nivel_3."""
195
+ # Nivel 9: group 3 vectors from nivel_3
196
+ if len(self.nivel_3) >= 3:
197
+ self.nivel_9 = [self.nivel_3[i:i+3] for i in range(0, len(self.nivel_3), 3)]
198
+ else:
199
+ self.nivel_9 = [self.nivel_3]
200
+
201
+ # Nivel 1: summary vector from nivel_3[0]
202
+ if self.nivel_3:
203
+ self.nivel_1 = [sum(self.nivel_3[0]) % 8, len(self.nivel_3), hash(str(self.nivel_3[0])) % 8]
204
+ else:
205
+ self.nivel_1 = [0, 0, 0]
206
+
207
+ @classmethod
208
+ def random(cls, space_constraints=None):
209
+ """Generate random fractal tensor."""
210
+ nivel_3 = [[random.randint(0, 1) for _ in range(3)] for _ in range(3)]
211
+ tensor = cls(nivel_3=nivel_3)
212
+ if space_constraints:
213
+ tensor.metadata['space_id'] = space_constraints
214
+ return tensor
215
+
216
+ def __repr__(self):
217
+ """String representation for debugging."""
218
+ return f"FT(root={self.nivel_3[:3]}, mid={self.nivel_9[0] if self.nivel_9 else '...'}, detail={self.nivel_1})"
219
+
220
+ # ===============================================================================
221
+ # KNOWLEDGE BASE SYSTEM
222
+ # ===============================================================================
223
+
224
+ class _SingleUniverseKB:
225
+ """Knowledge base for a single logical space."""
226
+
227
+ def __init__(self):
228
+ self.storage = {}
229
+ self.name_index = {}
230
+ self.ss_index = {}
231
+
232
+ def add_archetype(self, archetype_tensor: FractalTensor, Ss: list, name: Optional[str] = None, **kwargs) -> bool:
233
+ """Add archetype to this universe."""
234
+ key = tuple(Ss)
235
+ self.storage[key] = archetype_tensor
236
+ self.ss_index[key] = archetype_tensor
237
+
238
+ if name:
239
+ self.name_index[name] = archetype_tensor
240
+
241
+ return True
242
+
243
+ def find_archetype_by_name(self, name: str) -> Optional[FractalTensor]:
244
+ """Find archetype by name."""
245
+ return self.name_index.get(name)
246
+
247
+ def find_archetype_by_ss(self, Ss_query: List[int]) -> list:
248
+ """Find archetypes by Ss vector."""
249
+ key = tuple(Ss_query)
250
+ result = self.ss_index.get(key)
251
+ return [result] if result else []
252
+
253
+ class FractalKnowledgeBase:
254
+ """Multi-universe knowledge base manager."""
255
+
256
+ def __init__(self):
257
+ self.universes = {}
258
+
259
+ def _get_space(self, space_id: str = 'default'):
260
+ """Get or create a logical space."""
261
+ if space_id not in self.universes:
262
+ self.universes[space_id] = _SingleUniverseKB()
263
+ return self.universes[space_id]
264
+
265
+ def add_archetype(self, space_id: str, name: str, archetype_tensor: FractalTensor, Ss: list, **kwargs) -> bool:
266
+ """Add archetype to specified logical space."""
267
+ return self._get_space(space_id).add_archetype(archetype_tensor, Ss, name=name, **kwargs)
268
+
269
+ def get_archetype(self, space_id: str, name: str) -> Optional[FractalTensor]:
270
+ """Get archetype by space_id and name."""
271
+ return self._get_space(space_id).find_archetype_by_name(name)
272
+
273
+ # ===============================================================================
274
+ # PROCESSING MODULES
275
+ # ===============================================================================
276
+
277
+ class Transcender:
278
+ """
279
+ Componente de síntesis que implementa la síntesis jerárquica
280
+ de Tensores Fractales completos.
281
+ """
282
+
283
+ def __init__(self, fractal_vector: Optional[List[int]] = None):
284
+ self.trigate = Trigate()
285
+ self.seed_vector = fractal_vector
286
+
287
+ def relate_vectors(self, A: list, B: list, context: dict = None) -> list:
288
+ """
289
+ Calcula un vector de relación Aurora-native entre A y B, incorporando ventana de contexto y relaciones cruzadas si se proveen.
290
+ """
291
+ if len(A) != len(B):
292
+ return [0, 0, 0]
293
+ diff_vector = []
294
+ for i in range(len(A)):
295
+ a_val = A[i] if A[i] is not None else 0
296
+ b_val = B[i] if B[i] is not None else 0
297
+ diff = b_val - a_val
298
+ # Normalize to ternary: 1 if diff > 0, 0 if diff == 0, None if diff < 0
299
+ if diff > 0:
300
+ diff_vector.append(1)
301
+ elif diff == 0:
302
+ diff_vector.append(0)
303
+ else:
304
+ diff_vector.append(None)
305
+
306
+ # Aurora-native: ventana de contexto y relaciones cruzadas
307
+ if context and 'prev' in context and 'next' in context:
308
+ v_prev = context['prev']
309
+ v_next = context['next']
310
+ rel_cross = []
311
+ for vp, vn in zip(v_prev, v_next):
312
+ vp_val = vp if vp is not None else 0
313
+ vn_val = vn if vn is not None else 0
314
+ diff_cross = vp_val - vn_val
315
+ if diff_cross > 0:
316
+ rel_cross.append(1)
317
+ elif diff_cross == 0:
318
+ rel_cross.append(0)
319
+ else:
320
+ rel_cross.append(None)
321
+ # Concatenar: [diff_vector, rel_cross, A, B]
322
+ return list(diff_vector) + list(rel_cross) + list(A) + list(B)
323
+ return diff_vector
324
+
325
+ def compute_vector_trio(self, A: List[int], B: List[int], C: List[int]) -> Dict[str, Any]:
326
+ """Procesa un trío de vectores simples (operación base)."""
327
+ M_AB, _ = self.trigate.synthesize(A, B)
328
+ M_BC, _ = self.trigate.synthesize(B, C)
329
+ M_CA, _ = self.trigate.synthesize(C, A)
330
+ M_emergent, _ = self.trigate.synthesize(M_AB, M_BC)
331
+ M_intermediate, _ = self.trigate.synthesize(M_emergent, M_CA)
332
+ MetaM = [TernaryLogic.ternary_xor(a, b) for a, b in zip(M_intermediate, M_emergent)]
333
+ return {'M_emergent': M_emergent, 'MetaM': MetaM, 'Ms': M_emergent, 'Ss': MetaM}
334
+
335
+ def deep_learning(
336
+ self,
337
+ A: List[int],
338
+ B: List[int],
339
+ C: List[int],
340
+ M_emergent: Optional[List[int]] = None
341
+ ) -> Dict[str, Any]:
342
+ """
343
+ Calcula M_emergent y MetaM tal como exige el modelo Trinity-3.
344
+ Genera R_hipotesis = Trigate.infer(A, B, M_emergent).
345
+ """
346
+ trio = self.compute_vector_trio(A, B, C)
347
+
348
+ # Si el caller no aporta M_emergent, usa el calculado.
349
+ if M_emergent is None:
350
+ M_emergent = trio["M_emergent"]
351
+
352
+ R_hipotesis = self.trigate.infer(A, B, M_emergent)
353
+
354
+ return {
355
+ "M_emergent": M_emergent,
356
+ "MetaM": trio["MetaM"],
357
+ "R_hipotesis": R_hipotesis,
358
+ }
359
+
360
+ def compute_full_fractal(self, A: 'FractalTensor', B: 'FractalTensor', C: 'FractalTensor') -> 'FractalTensor':
361
+ """
362
+ Sintetiza tres tensores fractales en uno, de manera jerárquica y elegante.
363
+ Prioriza una raíz de entrada válida por encima de la síntesis.
364
+ """
365
+ from copy import deepcopy
366
+
367
+ # Create output tensor with basic structure
368
+ out = FractalTensor(nivel_3=[[0, 0, 0]])
369
+
370
+ # Ensure all tensors have proper structure
371
+ if not hasattr(A, 'nivel_3') or not A.nivel_3:
372
+ A.nivel_3 = [[0, 0, 0]]
373
+ if not hasattr(B, 'nivel_3') or not B.nivel_3:
374
+ B.nivel_3 = [[0, 0, 0]]
375
+ if not hasattr(C, 'nivel_3') or not C.nivel_3:
376
+ C.nivel_3 = [[0, 0, 0]]
377
+
378
+ def synthesize_trio(vectors: list) -> list:
379
+ # Only use first 3 elements of each vector
380
+ while len(vectors) < 3:
381
+ vectors.append([0, 0, 0])
382
+ trimmed = [v[:3] if isinstance(v, (list, tuple)) else [0,0,0] for v in vectors[:3]]
383
+ r = self.compute_vector_trio(*trimmed)
384
+ m_emergent = r.get('M_emergent', [0, 0, 0])
385
+ return [bit if bit is not None else 0 for bit in m_emergent[:3]]
386
+
387
+ # Extract vectors for synthesis
388
+ A_vec = A.nivel_3[0] if A.nivel_3 else [0, 0, 0]
389
+ B_vec = B.nivel_3[0] if B.nivel_3 else [0, 0, 0]
390
+ C_vec = C.nivel_3[0] if C.nivel_3 else [0, 0, 0]
391
+
392
+ # Compute emergent properties
393
+ result = self.compute_vector_trio(A_vec, B_vec, C_vec)
394
+
395
+ # Set output tensor properties
396
+ out.nivel_3 = [result["M_emergent"]]
397
+ out.Ms = result["M_emergent"]
398
+ out.Ss = result.get("Ss", result["MetaM"])
399
+ out.MetaM = result["MetaM"]
400
+
401
+ return out
402
+
403
+ class Evolver:
404
+ """
405
+ Motor de visión fractal unificada para Arquetipos, Dinámicas y Relatores.
406
+ """
407
+
408
+ def __init__(self):
409
+ self.base_transcender = Transcender()
410
+
411
+ def _perform_full_tensor_synthesis(self, tensors: List[FractalTensor]) -> FractalTensor:
412
+ """
413
+ Motor de síntesis fractal: reduce una lista de tensores a uno solo.
414
+ """
415
+ if not tensors:
416
+ return FractalTensor(nivel_3=[[0, 0, 0]])
417
+
418
+ current_level_tensors = list(tensors)
419
+ while len(current_level_tensors) > 1:
420
+ next_level_tensors = []
421
+ for i in range(0, len(current_level_tensors), 3):
422
+ trio = current_level_tensors[i:i+3]
423
+ while len(trio) < 3:
424
+ trio.append(FractalTensor(nivel_3=[[0, 0, 0]]))
425
+ synthesized_tensor = self.base_transcender.compute_full_fractal(*trio)
426
+ next_level_tensors.append(synthesized_tensor)
427
+ current_level_tensors = next_level_tensors
428
+
429
+ return current_level_tensors[0]
430
+
431
+ def compute_fractal_archetype(self, tensor_family: List[FractalTensor]) -> FractalTensor:
432
+ """Perspectiva de ARQUETIPO: Destila la esencia de una familia de conceptos."""
433
+ if len(tensor_family) < 2:
434
+ import warnings
435
+ warnings.warn("Se requieren al menos 2 tensores para computar un arquetipo.")
436
+ return FractalTensor(nivel_3=[[0, 0, 0]]) if not tensor_family else tensor_family[0]
437
+ return self._perform_full_tensor_synthesis(tensor_family)
438
+
439
+ class Extender:
440
+ """
441
+ Orquestador Aurora refactorizado con expertos como métodos internos para
442
+ simplificar el alcance y la gestión de estado.
443
+
444
+ Opera como de forma inversa a Evolver, extendiendo el conocimiento fractal
445
+ a partir de consultas simples y contexto, utilizando expertos para validar,
446
+ utiliza trigate de form inversa al transcender.
447
+ """
448
+
449
+ def __init__(self, knowledge_base: FractalKnowledgeBase):
450
+ self.kb = knowledge_base
451
+ self.transcender = Transcender()
452
+ self._lut_tables = {}
453
+ self.armonizador = Armonizador(knowledge_base=self.kb)
454
+
455
+ def _validate_archetype(self, ss_query: list, space_id: str) -> Tuple[bool, Optional[FractalTensor]]:
456
+ """Experto Arquetipo como método."""
457
+ universe = self.kb._get_space(space_id)
458
+ ss_key = tuple(int(x) if x in (0, 1) else 0 for x in ss_query[:3])
459
+ logger.debug(f"Looking up archetype with ss_key={ss_key} in space={space_id}")
460
+
461
+ # Buscar por Ss
462
+ archi_ss = universe.find_archetype_by_ss(list(ss_key))
463
+ if archi_ss:
464
+ logger.debug(f"Found archetype by Ss: {archi_ss}")
465
+ return True, archi_ss[0] if isinstance(archi_ss, list) else archi_ss
466
+
467
+ # Fallback: buscar por nombre si hay algún patrón
468
+ for name in universe.name_index.keys():
469
+ if str(ss_key) in name:
470
+ archetype = universe.find_archetype_by_name(name)
471
+ if archetype:
472
+ logger.debug(f"Found archetype by name pattern: {archetype}")
473
+ return True, archetype
474
+
475
+ logger.debug("No archetype found")
476
+ return False, None
477
+
478
+ def _project_dynamics(self, ss_query: list, space_id: str) -> Tuple[bool, Optional[FractalTensor]]:
479
+ """Experto Dinámica como método."""
480
+ universe = self.kb._get_space(space_id)
481
+ best, best_sim = None, -1.0
482
+
483
+ # Buscar en todos los arquetipos almacenados
484
+ for key, archetype in universe.storage.items():
485
+ if hasattr(archetype, 'nivel_3') and archetype.nivel_3:
486
+ archetype_ss = archetype.nivel_3[0]
487
+ sim = sum(1 for a, b in zip(archetype_ss, ss_query) if a == b) / len(ss_query)
488
+ if sim > best_sim:
489
+ best_sim, best = sim, archetype
490
+
491
+ if best and best_sim > 0.7:
492
+ return True, best
493
+ return False, None
494
+
495
+ def _contextualize_relations(self, ss_query: list, space_id: str) -> Tuple[bool, Optional[FractalTensor]]:
496
+ """Experto Relator como método."""
497
+ universe = self.kb._get_space(space_id)
498
+ if not universe.storage:
499
+ logger.debug("No archetypes in universe")
500
+ return False, None
501
+
502
+ best, best_score = None, float('-inf')
503
+ for key, archetype in universe.storage.items():
504
+ if not hasattr(archetype, 'nivel_3') or not archetype.nivel_3:
505
+ continue
506
+
507
+ archetype_ss = archetype.nivel_3[0]
508
+ rel = self.transcender.relate_vectors(ss_query, archetype_ss)
509
+ score = sum(1 for bit in rel if bit == 0)
510
+ if score > best_score:
511
+ best_score, best = score, archetype
512
+
513
+ if best:
514
+ # Create a deep copy to avoid modifying the original
515
+ from copy import deepcopy
516
+ result = deepcopy(best)
517
+ result.nivel_3[0] = list(ss_query[:3]) # Explicitly preserve root
518
+ logger.debug(f"Contextualized with score={best_score}, root preserved={result.nivel_3[0]}")
519
+ return True, result
520
+
521
+ logger.debug("No relational match found")
522
+ return False, None
523
+
524
+ def lookup_lut(self, space_id: str, ss_query: list) -> Optional[FractalTensor]:
525
+ """Lookup in LUT tables."""
526
+ lut_key = f"{space_id}:{tuple(ss_query)}"
527
+ return self._lut_tables.get(lut_key)
528
+
529
+ def extend_fractal(self, input_ss, contexto: dict) -> dict:
530
+ """Orquestador Principal."""
531
+ log = [f"Extensión Aurora: espacio '{contexto.get('space_id', 'default')}'"]
532
+
533
+ # Validación y normalización de ss_query
534
+ if hasattr(input_ss, 'nivel_3'):
535
+ ss_query = input_ss.nivel_3[0] if input_ss.nivel_3 else [0, 0, 0]
536
+ else:
537
+ ss_query = input_ss
538
+
539
+ # Normalizar a un vector ternario de longitud 3
540
+ if not isinstance(ss_query, (list, tuple)):
541
+ log.append("⚠️ Entrada inválida, usando vector neutro [0,0,0]")
542
+ ss_query = [0, 0, 0]
543
+ else:
544
+ ss_query = [
545
+ None if x is None else int(x) if x in (0, 1) else 0
546
+ for x in list(ss_query)[:3]
547
+ ] + [0] * (3 - len(ss_query))
548
+
549
+ space_id = contexto.get('space_id', 'default')
550
+
551
+ STEPS = [
552
+ lambda q, s: (self.lookup_lut(s, q) is not None, self.lookup_lut(s, q)),
553
+ self._validate_archetype,
554
+ self._project_dynamics,
555
+ self._contextualize_relations
556
+ ]
557
+ METHODS = [
558
+ "reconstrucción por LUT",
559
+ "reconstrucción por arquetipo (axioma)",
560
+ "proyección por dinámica (raíz preservada)",
561
+ "contextualización por relator (raíz preservada)"
562
+ ]
563
+
564
+ for step, method in zip(STEPS, METHODS):
565
+ ok, tensor = step(ss_query, space_id)
566
+ if ok and tensor is not None:
567
+ log.append(f"✅ {method}.")
568
+
569
+ # Si tensor es lista, seleccionar el más cercano
570
+ if isinstance(tensor, list):
571
+ tensor = tensor[0] if tensor else FractalTensor(nivel_3=[ss_query])
572
+
573
+ # For dynamic/relator, preserve root
574
+ if method.startswith("proyección") or method.startswith("contextualización"):
575
+ from copy import deepcopy
576
+ result = deepcopy(tensor)
577
+ result.nivel_3[0] = ss_query
578
+ root_vector = result.nivel_3[0]
579
+ harm = self.armonizador.harmonize(root_vector, archetype=root_vector, space_id=space_id)
580
+ result.nivel_3[0] = harm["output"]
581
+ return {
582
+ "reconstructed_tensor": result,
583
+ "reconstruction_method": method + " + armonizador",
584
+ "log": log
585
+ }
586
+
587
+ from copy import deepcopy
588
+ tensor_c = deepcopy(tensor)
589
+ root_vector = tensor_c.nivel_3[0] if tensor_c.nivel_3 else ss_query
590
+ harm = self.armonizador.harmonize(root_vector, archetype=root_vector, space_id=space_id)
591
+ tensor_c.nivel_3[0] = harm["output"]
592
+ return {
593
+ "reconstructed_tensor": tensor_c,
594
+ "reconstruction_method": method + " + armonizador",
595
+ "log": log
596
+ }
597
+
598
+ # Fallback
599
+ log.append("🤷 No se encontraron coincidencias. Devolviendo tensor neutro.")
600
+ tensor_n = FractalTensor(nivel_3=[ss_query])
601
+ root_vector = tensor_n.nivel_3[0]
602
+ harm = self.armonizador.harmonize(root_vector, archetype=root_vector, space_id=space_id)
603
+ tensor_n.nivel_3[0] = harm["output"]
604
+
605
+ return {
606
+ "reconstructed_tensor": tensor_n,
607
+ "reconstruction_method": "fallback neutro + armonizador",
608
+ "log": log
609
+ }
610
+
611
+ class Armonizador:
612
+ """Coherence validator and harmonization engine."""
613
+
614
+ def __init__(self, knowledge_base=None, *, tau_1: int = 1, tau_2: int = 2, tau_3: int = 3):
615
+ self.kb = knowledge_base
616
+ self.tau_1, self.tau_2, self.tau_3 = tau_1, tau_2, tau_3
617
+
618
+ def harmonize(self, tensor: Vector, *, archetype: Vector = None, space_id: str = "default") -> Dict[str, Any]:
619
+ """Harmonize vector for coherence."""
620
+ result_vector = self._microshift(tensor, archetype or [0, 0, 0])
621
+
622
+ return {
623
+ "output": result_vector,
624
+ "score": 0,
625
+ "adjustments": ["microshift"]
626
+ }
627
+
628
+ def _microshift(self, vec: Vector, archetype: Vector) -> Vector:
629
+ """Apply micro-adjustments to vector."""
630
+ logger.info(f"[microshift][ambig=0] Microshift final: {vec} | Score: 0")
631
+ return vec
632
+
633
+ class TensorPoolManager:
634
+ """Pool manager for tensor collections."""
635
+
636
+ def __init__(self):
637
+ self.tensors = []
638
+
639
+ def add_tensor(self, tensor: FractalTensor):
640
+ """Add tensor to pool."""
641
+ self.tensors.append(tensor)
642
+
643
+ # ===============================================================================
644
+ # PATTERN 0: ETHICAL FRACTAL CLUSTER GENERATION
645
+ # ===============================================================================
646
+
647
+ def apply_ethical_constraint(vector, space_id, kb):
648
+ """Apply ethical constraints to vector."""
649
+ rules = getattr(kb, 'get_ethics', lambda sid: [-1, -1, -1])(space_id) or [-1, -1, -1]
650
+ return [v ^ r if r != -1 else v for v, r in zip(vector, rules)]
651
+
652
+ def compute_ethical_signature(cluster):
653
+ """Compute ethical signature for cluster."""
654
+ base = str([t.nivel_3[0] for t in cluster]).encode()
655
+ return hashlib.sha256(base).hexdigest()
656
+
657
+ def golden_ratio_select(N, seed):
658
+ """Select indices using golden ratio stepping."""
659
+ step = int(max(1, round(N * PHI)))
660
+ return [(seed + i * step) % N for i in range(3)]
661
+
662
+ def pattern0_create_fractal_cluster(
663
+ *,
664
+ input_data=None,
665
+ space_id="default",
666
+ num_tensors=3,
667
+ context=None,
668
+ entropy_seed=PHI,
669
+ depth_max=3,
670
+ ):
671
+ """Generate ethical fractal cluster using Pattern 0."""
672
+ random.seed(int(entropy_seed * 1e9))
673
+ kb = FractalKnowledgeBase()
674
+ armonizador = Armonizador(knowledge_base=kb)
675
+ pool = TensorPoolManager()
676
+
677
+ # Generate tensors
678
+ tensors = []
679
+ for i in range(num_tensors):
680
+ if input_data and i < len(input_data):
681
+ vec = apply_ethical_constraint(input_data[i], space_id, kb)
682
+ tensor = FractalTensor(nivel_3=[vec])
683
+ else:
684
+ try:
685
+ tensor = FractalTensor.random(space_constraints=space_id)
686
+ except TypeError:
687
+ tensor = FractalTensor.random()
688
+
689
+ # Add ethical metadata
690
+ tensor.metadata.update({
691
+ "ethical_hash": compute_ethical_signature([tensor]),
692
+ "entropy_seed": entropy_seed,
693
+ "space_id": space_id
694
+ })
695
+
696
+ tensors.append(tensor)
697
+ pool.add_tensor(tensor)
698
+
699
+ # Harmonize cluster
700
+ for tensor in tensors:
701
+ harmonized = armonizador.harmonize(tensor.nivel_3[0], space_id=space_id)
702
+ tensor.nivel_3[0] = harmonized["output"]
703
+
704
+ return tensors
705
+
706
+ # ===============================================================================
707
+ # PUBLIC API
708
+ # ===============================================================================
709
+
710
+ # Main exports
711
+ __all__ = [
712
+ 'FractalTensor',
713
+ 'Trigate',
714
+ 'TernaryLogic',
715
+ 'Evolver',
716
+ 'Extender',
717
+ 'FractalKnowledgeBase',
718
+ 'Armonizador',
719
+ 'TensorPoolManager',
720
+ 'Transcender',
721
+ 'pattern0_create_fractal_cluster'
722
+ ]
723
+
724
+ # Compatibility aliases
725
+ KnowledgeBase = FractalKnowledgeBase