Upload trinity_3\core.py with huggingface_hub
Browse files- trinity_3//core.py +725 -0
trinity_3//core.py
ADDED
|
@@ -0,0 +1,725 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Aurora Trinity-3: Fractal, Ethical, Free Electronic Intelligence
|
| 3 |
+
===============================================================
|
| 4 |
+
|
| 5 |
+
A complete implementation of Aurora's ternary logic architecture featuring:
|
| 6 |
+
- Trigate operations with O(1) LUT-based inference, learning, and deduction
|
| 7 |
+
- Fractal Tensor structures with hierarchical 3-9-27 organization
|
| 8 |
+
- Knowledge Base with multiverse logical space management
|
| 9 |
+
- Armonizador for coherence validation and harmonization
|
| 10 |
+
- Extender for fractal reconstruction and pattern extension
|
| 11 |
+
- Transcender for hierarchical synthesis operations
|
| 12 |
+
|
| 13 |
+
Author: Aurora Alliance
|
| 14 |
+
License: Apache-2.0 + CC-BY-4.0
|
| 15 |
+
Version: 1.0.0
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
from typing import List, Dict, Any, Tuple, Optional, Union
|
| 19 |
+
import hashlib
|
| 20 |
+
import random
|
| 21 |
+
import itertools
|
| 22 |
+
import logging
|
| 23 |
+
|
| 24 |
+
# ===============================================================================
|
| 25 |
+
# CONSTANTS AND UTILITIES
|
| 26 |
+
# ===============================================================================
|
| 27 |
+
|
| 28 |
+
PHI = 0.6180339887 # Golden ratio for Pattern 0 generation
|
| 29 |
+
Vector = List[Optional[int]] # Ternary value: 0 | 1 | None
|
| 30 |
+
|
| 31 |
+
# Logger setup
|
| 32 |
+
logger = logging.getLogger("aurora.trinity")
|
| 33 |
+
if not logger.hasHandlers():
|
| 34 |
+
handler = logging.StreamHandler()
|
| 35 |
+
formatter = logging.Formatter('[%(levelname)s][%(name)s] %(message)s')
|
| 36 |
+
handler.setFormatter(formatter)
|
| 37 |
+
logger.addHandler(handler)
|
| 38 |
+
logger.setLevel(logging.INFO)
|
| 39 |
+
|
| 40 |
+
# ===============================================================================
|
| 41 |
+
# TERNARY LOGIC FOUNDATION
|
| 42 |
+
# ===============================================================================
|
| 43 |
+
|
| 44 |
+
class TernaryLogic:
|
| 45 |
+
"""Ternary logic with NULL handling for computational honesty."""
|
| 46 |
+
NULL = None
|
| 47 |
+
|
| 48 |
+
@staticmethod
|
| 49 |
+
def ternary_xor(a, b):
|
| 50 |
+
"""XOR with NULL propagation."""
|
| 51 |
+
if a is TernaryLogic.NULL or b is TernaryLogic.NULL:
|
| 52 |
+
return TernaryLogic.NULL
|
| 53 |
+
return a ^ b
|
| 54 |
+
|
| 55 |
+
@staticmethod
|
| 56 |
+
def ternary_xnor(a, b):
|
| 57 |
+
"""XNOR with NULL propagation."""
|
| 58 |
+
if a is TernaryLogic.NULL or b is TernaryLogic.NULL:
|
| 59 |
+
return TernaryLogic.NULL
|
| 60 |
+
return 1 - (a ^ b)
|
| 61 |
+
|
| 62 |
+
# ===============================================================================
|
| 63 |
+
# TRIGATE: FUNDAMENTAL LOGIC MODULE
|
| 64 |
+
# ===============================================================================
|
| 65 |
+
|
| 66 |
+
class Trigate:
|
| 67 |
+
"""
|
| 68 |
+
Fundamental Aurora logic module implementing ternary operations.
|
| 69 |
+
|
| 70 |
+
Supports three operational modes:
|
| 71 |
+
1. Inference: A + B + M -> R (given inputs and control, compute result)
|
| 72 |
+
2. Learning: A + B + R -> M (given inputs and result, learn control)
|
| 73 |
+
3. Deduction: M + R + A -> B (given control, result, and one input, deduce other)
|
| 74 |
+
|
| 75 |
+
All operations are O(1) using precomputed lookup tables (LUTs).
|
| 76 |
+
"""
|
| 77 |
+
|
| 78 |
+
_LUT_INFER: Dict[Tuple, int] = {}
|
| 79 |
+
_LUT_LEARN: Dict[Tuple, int] = {}
|
| 80 |
+
_LUT_DEDUCE_A: Dict[Tuple, int] = {}
|
| 81 |
+
_LUT_DEDUCE_B: Dict[Tuple, int] = {}
|
| 82 |
+
_initialized = False
|
| 83 |
+
|
| 84 |
+
def __init__(self):
|
| 85 |
+
"""Initialize Trigate and ensure LUTs are computed."""
|
| 86 |
+
if not Trigate._initialized:
|
| 87 |
+
Trigate._initialize_luts()
|
| 88 |
+
|
| 89 |
+
@classmethod
|
| 90 |
+
def _initialize_luts(cls):
|
| 91 |
+
"""Initialize all lookup tables for O(1) operations."""
|
| 92 |
+
print("Initializing Trigate LUTs...")
|
| 93 |
+
states = [0, 1, TernaryLogic.NULL]
|
| 94 |
+
|
| 95 |
+
# Generate all 27 combinations for each operation
|
| 96 |
+
for a in states:
|
| 97 |
+
for b in states:
|
| 98 |
+
for m in states:
|
| 99 |
+
# Inference: A + B + M -> R
|
| 100 |
+
if TernaryLogic.NULL in (a, b, m):
|
| 101 |
+
r = TernaryLogic.NULL
|
| 102 |
+
else:
|
| 103 |
+
r = a ^ b if m == 1 else 1 - (a ^ b)
|
| 104 |
+
cls._LUT_INFER[(a, b, m)] = r
|
| 105 |
+
|
| 106 |
+
for r in states:
|
| 107 |
+
# Learning: A + B + R -> M
|
| 108 |
+
if TernaryLogic.NULL in (a, b, r):
|
| 109 |
+
m = TernaryLogic.NULL
|
| 110 |
+
else:
|
| 111 |
+
m = 1 if (a ^ b) == r else 0
|
| 112 |
+
cls._LUT_LEARN[(a, b, r)] = m
|
| 113 |
+
|
| 114 |
+
# Deduction A: M + R + B -> A
|
| 115 |
+
if TernaryLogic.NULL in (m, r, b):
|
| 116 |
+
a_result = TernaryLogic.NULL
|
| 117 |
+
else:
|
| 118 |
+
a_result = b ^ r if m == 1 else 1 - (b ^ r)
|
| 119 |
+
cls._LUT_DEDUCE_A[(m, r, b)] = a_result
|
| 120 |
+
|
| 121 |
+
# Deduction B: M + R + A -> B
|
| 122 |
+
if TernaryLogic.NULL in (m, r, a):
|
| 123 |
+
b_result = TernaryLogic.NULL
|
| 124 |
+
else:
|
| 125 |
+
b_result = a ^ r if m == 1 else 1 - (a ^ r)
|
| 126 |
+
cls._LUT_DEDUCE_B[(m, r, a)] = b_result
|
| 127 |
+
|
| 128 |
+
cls._initialized = True
|
| 129 |
+
print(f"Trigate LUTs initialized: {len(cls._LUT_INFER)} entries each")
|
| 130 |
+
|
| 131 |
+
def infer(self, A: List[Union[int, None]], B: List[Union[int, None]], M: List[Union[int, None]]) -> List[Union[int, None]]:
|
| 132 |
+
"""Inference mode: Compute R given A, B, M."""
|
| 133 |
+
if not (len(A) == len(B) == len(M) == 3):
|
| 134 |
+
raise ValueError("All vectors must have exactly 3 elements")
|
| 135 |
+
return [self._LUT_INFER[(a, b, m)] for a, b, m in zip(A, B, M)]
|
| 136 |
+
|
| 137 |
+
def learn(self, A: List[Union[int, None]], B: List[Union[int, None]], R: List[Union[int, None]]) -> List[Union[int, None]]:
|
| 138 |
+
"""Learning mode: Learn M given A, B, R."""
|
| 139 |
+
if not (len(A) == len(B) == len(R) == 3):
|
| 140 |
+
raise ValueError("All vectors must have exactly 3 elements")
|
| 141 |
+
return [self._LUT_LEARN[(a, b, r)] for a, b, r in zip(A, B, R)]
|
| 142 |
+
|
| 143 |
+
def deduce_a(self, M: List[Union[int, None]], R: List[Union[int, None]], B: List[Union[int, None]]) -> List[Union[int, None]]:
|
| 144 |
+
"""Deduction mode: Deduce A given M, R, B."""
|
| 145 |
+
if not (len(M) == len(R) == len(B) == 3):
|
| 146 |
+
raise ValueError("All vectors must have exactly 3 elements")
|
| 147 |
+
return [self._LUT_DEDUCE_A[(m, r, b)] for m, r, b in zip(M, R, B)]
|
| 148 |
+
|
| 149 |
+
def deduce_b(self, M: List[Union[int, None]], R: List[Union[int, None]], A: List[Union[int, None]]) -> List[Union[int, None]]:
|
| 150 |
+
"""Deduction mode: Deduce B given M, R, A."""
|
| 151 |
+
if not (len(M) == len(R) == len(A) == 3):
|
| 152 |
+
raise ValueError("All vectors must have exactly 3 elements")
|
| 153 |
+
return [self._LUT_DEDUCE_B[(m, r, a)] for m, r, a in zip(M, R, A)]
|
| 154 |
+
|
| 155 |
+
def synthesize(self, A: List[int], B: List[int]) -> Tuple[List[Optional[int]], List[Optional[int]]]:
|
| 156 |
+
"""Aurora synthesis: Generate M (logic) and S (form) from A and B."""
|
| 157 |
+
M = [TernaryLogic.ternary_xor(a, b) for a, b in zip(A, B)]
|
| 158 |
+
S = [TernaryLogic.ternary_xnor(a, b) for a, b in zip(A, B)]
|
| 159 |
+
return M, S
|
| 160 |
+
|
| 161 |
+
def recursive_synthesis(self, vectors: List[List[int]]) -> Tuple[List[Optional[int]], List[List[Optional[int]]]]:
|
| 162 |
+
"""Sequentially reduce a list of ternary vectors."""
|
| 163 |
+
if len(vectors) < 2:
|
| 164 |
+
raise ValueError("At least 2 vectors required")
|
| 165 |
+
|
| 166 |
+
history: List[List[Optional[int]]] = []
|
| 167 |
+
current = vectors[0]
|
| 168 |
+
|
| 169 |
+
for nxt in vectors[1:]:
|
| 170 |
+
current, _ = self.synthesize(current, nxt)
|
| 171 |
+
history.append(current)
|
| 172 |
+
|
| 173 |
+
return current, history
|
| 174 |
+
|
| 175 |
+
# ===============================================================================
|
| 176 |
+
# FRACTAL TENSOR ARCHITECTURE
|
| 177 |
+
# ===============================================================================
|
| 178 |
+
|
| 179 |
+
class FractalTensor:
|
| 180 |
+
"""
|
| 181 |
+
Aurora's fundamental data structure with hierarchical 3-9-27 organization.
|
| 182 |
+
Supports fractal scaling and semantic coherence validation.
|
| 183 |
+
"""
|
| 184 |
+
|
| 185 |
+
def __init__(self, nivel_3=None):
|
| 186 |
+
"""Initialize fractal tensor with 3-level hierarchy."""
|
| 187 |
+
self.nivel_3 = nivel_3 or [[0, 0, 0]] # Finest detail level
|
| 188 |
+
self.metadata = {}
|
| 189 |
+
|
| 190 |
+
# Auto-generate hierarchical levels
|
| 191 |
+
self._generate_hierarchy()
|
| 192 |
+
|
| 193 |
+
def _generate_hierarchy(self):
|
| 194 |
+
"""Generate nivel_9 and nivel_1 from nivel_3."""
|
| 195 |
+
# Nivel 9: group 3 vectors from nivel_3
|
| 196 |
+
if len(self.nivel_3) >= 3:
|
| 197 |
+
self.nivel_9 = [self.nivel_3[i:i+3] for i in range(0, len(self.nivel_3), 3)]
|
| 198 |
+
else:
|
| 199 |
+
self.nivel_9 = [self.nivel_3]
|
| 200 |
+
|
| 201 |
+
# Nivel 1: summary vector from nivel_3[0]
|
| 202 |
+
if self.nivel_3:
|
| 203 |
+
self.nivel_1 = [sum(self.nivel_3[0]) % 8, len(self.nivel_3), hash(str(self.nivel_3[0])) % 8]
|
| 204 |
+
else:
|
| 205 |
+
self.nivel_1 = [0, 0, 0]
|
| 206 |
+
|
| 207 |
+
@classmethod
|
| 208 |
+
def random(cls, space_constraints=None):
|
| 209 |
+
"""Generate random fractal tensor."""
|
| 210 |
+
nivel_3 = [[random.randint(0, 1) for _ in range(3)] for _ in range(3)]
|
| 211 |
+
tensor = cls(nivel_3=nivel_3)
|
| 212 |
+
if space_constraints:
|
| 213 |
+
tensor.metadata['space_id'] = space_constraints
|
| 214 |
+
return tensor
|
| 215 |
+
|
| 216 |
+
def __repr__(self):
|
| 217 |
+
"""String representation for debugging."""
|
| 218 |
+
return f"FT(root={self.nivel_3[:3]}, mid={self.nivel_9[0] if self.nivel_9 else '...'}, detail={self.nivel_1})"
|
| 219 |
+
|
| 220 |
+
# ===============================================================================
|
| 221 |
+
# KNOWLEDGE BASE SYSTEM
|
| 222 |
+
# ===============================================================================
|
| 223 |
+
|
| 224 |
+
class _SingleUniverseKB:
|
| 225 |
+
"""Knowledge base for a single logical space."""
|
| 226 |
+
|
| 227 |
+
def __init__(self):
|
| 228 |
+
self.storage = {}
|
| 229 |
+
self.name_index = {}
|
| 230 |
+
self.ss_index = {}
|
| 231 |
+
|
| 232 |
+
def add_archetype(self, archetype_tensor: FractalTensor, Ss: list, name: Optional[str] = None, **kwargs) -> bool:
|
| 233 |
+
"""Add archetype to this universe."""
|
| 234 |
+
key = tuple(Ss)
|
| 235 |
+
self.storage[key] = archetype_tensor
|
| 236 |
+
self.ss_index[key] = archetype_tensor
|
| 237 |
+
|
| 238 |
+
if name:
|
| 239 |
+
self.name_index[name] = archetype_tensor
|
| 240 |
+
|
| 241 |
+
return True
|
| 242 |
+
|
| 243 |
+
def find_archetype_by_name(self, name: str) -> Optional[FractalTensor]:
|
| 244 |
+
"""Find archetype by name."""
|
| 245 |
+
return self.name_index.get(name)
|
| 246 |
+
|
| 247 |
+
def find_archetype_by_ss(self, Ss_query: List[int]) -> list:
|
| 248 |
+
"""Find archetypes by Ss vector."""
|
| 249 |
+
key = tuple(Ss_query)
|
| 250 |
+
result = self.ss_index.get(key)
|
| 251 |
+
return [result] if result else []
|
| 252 |
+
|
| 253 |
+
class FractalKnowledgeBase:
|
| 254 |
+
"""Multi-universe knowledge base manager."""
|
| 255 |
+
|
| 256 |
+
def __init__(self):
|
| 257 |
+
self.universes = {}
|
| 258 |
+
|
| 259 |
+
def _get_space(self, space_id: str = 'default'):
|
| 260 |
+
"""Get or create a logical space."""
|
| 261 |
+
if space_id not in self.universes:
|
| 262 |
+
self.universes[space_id] = _SingleUniverseKB()
|
| 263 |
+
return self.universes[space_id]
|
| 264 |
+
|
| 265 |
+
def add_archetype(self, space_id: str, name: str, archetype_tensor: FractalTensor, Ss: list, **kwargs) -> bool:
|
| 266 |
+
"""Add archetype to specified logical space."""
|
| 267 |
+
return self._get_space(space_id).add_archetype(archetype_tensor, Ss, name=name, **kwargs)
|
| 268 |
+
|
| 269 |
+
def get_archetype(self, space_id: str, name: str) -> Optional[FractalTensor]:
|
| 270 |
+
"""Get archetype by space_id and name."""
|
| 271 |
+
return self._get_space(space_id).find_archetype_by_name(name)
|
| 272 |
+
|
| 273 |
+
# ===============================================================================
|
| 274 |
+
# PROCESSING MODULES
|
| 275 |
+
# ===============================================================================
|
| 276 |
+
|
| 277 |
+
class Transcender:
|
| 278 |
+
"""
|
| 279 |
+
Componente de síntesis que implementa la síntesis jerárquica
|
| 280 |
+
de Tensores Fractales completos.
|
| 281 |
+
"""
|
| 282 |
+
|
| 283 |
+
def __init__(self, fractal_vector: Optional[List[int]] = None):
|
| 284 |
+
self.trigate = Trigate()
|
| 285 |
+
self.seed_vector = fractal_vector
|
| 286 |
+
|
| 287 |
+
def relate_vectors(self, A: list, B: list, context: dict = None) -> list:
|
| 288 |
+
"""
|
| 289 |
+
Calcula un vector de relación Aurora-native entre A y B, incorporando ventana de contexto y relaciones cruzadas si se proveen.
|
| 290 |
+
"""
|
| 291 |
+
if len(A) != len(B):
|
| 292 |
+
return [0, 0, 0]
|
| 293 |
+
diff_vector = []
|
| 294 |
+
for i in range(len(A)):
|
| 295 |
+
a_val = A[i] if A[i] is not None else 0
|
| 296 |
+
b_val = B[i] if B[i] is not None else 0
|
| 297 |
+
diff = b_val - a_val
|
| 298 |
+
# Normalize to ternary: 1 if diff > 0, 0 if diff == 0, None if diff < 0
|
| 299 |
+
if diff > 0:
|
| 300 |
+
diff_vector.append(1)
|
| 301 |
+
elif diff == 0:
|
| 302 |
+
diff_vector.append(0)
|
| 303 |
+
else:
|
| 304 |
+
diff_vector.append(None)
|
| 305 |
+
|
| 306 |
+
# Aurora-native: ventana de contexto y relaciones cruzadas
|
| 307 |
+
if context and 'prev' in context and 'next' in context:
|
| 308 |
+
v_prev = context['prev']
|
| 309 |
+
v_next = context['next']
|
| 310 |
+
rel_cross = []
|
| 311 |
+
for vp, vn in zip(v_prev, v_next):
|
| 312 |
+
vp_val = vp if vp is not None else 0
|
| 313 |
+
vn_val = vn if vn is not None else 0
|
| 314 |
+
diff_cross = vp_val - vn_val
|
| 315 |
+
if diff_cross > 0:
|
| 316 |
+
rel_cross.append(1)
|
| 317 |
+
elif diff_cross == 0:
|
| 318 |
+
rel_cross.append(0)
|
| 319 |
+
else:
|
| 320 |
+
rel_cross.append(None)
|
| 321 |
+
# Concatenar: [diff_vector, rel_cross, A, B]
|
| 322 |
+
return list(diff_vector) + list(rel_cross) + list(A) + list(B)
|
| 323 |
+
return diff_vector
|
| 324 |
+
|
| 325 |
+
def compute_vector_trio(self, A: List[int], B: List[int], C: List[int]) -> Dict[str, Any]:
|
| 326 |
+
"""Procesa un trío de vectores simples (operación base)."""
|
| 327 |
+
M_AB, _ = self.trigate.synthesize(A, B)
|
| 328 |
+
M_BC, _ = self.trigate.synthesize(B, C)
|
| 329 |
+
M_CA, _ = self.trigate.synthesize(C, A)
|
| 330 |
+
M_emergent, _ = self.trigate.synthesize(M_AB, M_BC)
|
| 331 |
+
M_intermediate, _ = self.trigate.synthesize(M_emergent, M_CA)
|
| 332 |
+
MetaM = [TernaryLogic.ternary_xor(a, b) for a, b in zip(M_intermediate, M_emergent)]
|
| 333 |
+
return {'M_emergent': M_emergent, 'MetaM': MetaM, 'Ms': M_emergent, 'Ss': MetaM}
|
| 334 |
+
|
| 335 |
+
def deep_learning(
|
| 336 |
+
self,
|
| 337 |
+
A: List[int],
|
| 338 |
+
B: List[int],
|
| 339 |
+
C: List[int],
|
| 340 |
+
M_emergent: Optional[List[int]] = None
|
| 341 |
+
) -> Dict[str, Any]:
|
| 342 |
+
"""
|
| 343 |
+
Calcula M_emergent y MetaM tal como exige el modelo Trinity-3.
|
| 344 |
+
Genera R_hipotesis = Trigate.infer(A, B, M_emergent).
|
| 345 |
+
"""
|
| 346 |
+
trio = self.compute_vector_trio(A, B, C)
|
| 347 |
+
|
| 348 |
+
# Si el caller no aporta M_emergent, usa el calculado.
|
| 349 |
+
if M_emergent is None:
|
| 350 |
+
M_emergent = trio["M_emergent"]
|
| 351 |
+
|
| 352 |
+
R_hipotesis = self.trigate.infer(A, B, M_emergent)
|
| 353 |
+
|
| 354 |
+
return {
|
| 355 |
+
"M_emergent": M_emergent,
|
| 356 |
+
"MetaM": trio["MetaM"],
|
| 357 |
+
"R_hipotesis": R_hipotesis,
|
| 358 |
+
}
|
| 359 |
+
|
| 360 |
+
def compute_full_fractal(self, A: 'FractalTensor', B: 'FractalTensor', C: 'FractalTensor') -> 'FractalTensor':
|
| 361 |
+
"""
|
| 362 |
+
Sintetiza tres tensores fractales en uno, de manera jerárquica y elegante.
|
| 363 |
+
Prioriza una raíz de entrada válida por encima de la síntesis.
|
| 364 |
+
"""
|
| 365 |
+
from copy import deepcopy
|
| 366 |
+
|
| 367 |
+
# Create output tensor with basic structure
|
| 368 |
+
out = FractalTensor(nivel_3=[[0, 0, 0]])
|
| 369 |
+
|
| 370 |
+
# Ensure all tensors have proper structure
|
| 371 |
+
if not hasattr(A, 'nivel_3') or not A.nivel_3:
|
| 372 |
+
A.nivel_3 = [[0, 0, 0]]
|
| 373 |
+
if not hasattr(B, 'nivel_3') or not B.nivel_3:
|
| 374 |
+
B.nivel_3 = [[0, 0, 0]]
|
| 375 |
+
if not hasattr(C, 'nivel_3') or not C.nivel_3:
|
| 376 |
+
C.nivel_3 = [[0, 0, 0]]
|
| 377 |
+
|
| 378 |
+
def synthesize_trio(vectors: list) -> list:
|
| 379 |
+
# Only use first 3 elements of each vector
|
| 380 |
+
while len(vectors) < 3:
|
| 381 |
+
vectors.append([0, 0, 0])
|
| 382 |
+
trimmed = [v[:3] if isinstance(v, (list, tuple)) else [0,0,0] for v in vectors[:3]]
|
| 383 |
+
r = self.compute_vector_trio(*trimmed)
|
| 384 |
+
m_emergent = r.get('M_emergent', [0, 0, 0])
|
| 385 |
+
return [bit if bit is not None else 0 for bit in m_emergent[:3]]
|
| 386 |
+
|
| 387 |
+
# Extract vectors for synthesis
|
| 388 |
+
A_vec = A.nivel_3[0] if A.nivel_3 else [0, 0, 0]
|
| 389 |
+
B_vec = B.nivel_3[0] if B.nivel_3 else [0, 0, 0]
|
| 390 |
+
C_vec = C.nivel_3[0] if C.nivel_3 else [0, 0, 0]
|
| 391 |
+
|
| 392 |
+
# Compute emergent properties
|
| 393 |
+
result = self.compute_vector_trio(A_vec, B_vec, C_vec)
|
| 394 |
+
|
| 395 |
+
# Set output tensor properties
|
| 396 |
+
out.nivel_3 = [result["M_emergent"]]
|
| 397 |
+
out.Ms = result["M_emergent"]
|
| 398 |
+
out.Ss = result.get("Ss", result["MetaM"])
|
| 399 |
+
out.MetaM = result["MetaM"]
|
| 400 |
+
|
| 401 |
+
return out
|
| 402 |
+
|
| 403 |
+
class Evolver:
|
| 404 |
+
"""
|
| 405 |
+
Motor de visión fractal unificada para Arquetipos, Dinámicas y Relatores.
|
| 406 |
+
"""
|
| 407 |
+
|
| 408 |
+
def __init__(self):
|
| 409 |
+
self.base_transcender = Transcender()
|
| 410 |
+
|
| 411 |
+
def _perform_full_tensor_synthesis(self, tensors: List[FractalTensor]) -> FractalTensor:
|
| 412 |
+
"""
|
| 413 |
+
Motor de síntesis fractal: reduce una lista de tensores a uno solo.
|
| 414 |
+
"""
|
| 415 |
+
if not tensors:
|
| 416 |
+
return FractalTensor(nivel_3=[[0, 0, 0]])
|
| 417 |
+
|
| 418 |
+
current_level_tensors = list(tensors)
|
| 419 |
+
while len(current_level_tensors) > 1:
|
| 420 |
+
next_level_tensors = []
|
| 421 |
+
for i in range(0, len(current_level_tensors), 3):
|
| 422 |
+
trio = current_level_tensors[i:i+3]
|
| 423 |
+
while len(trio) < 3:
|
| 424 |
+
trio.append(FractalTensor(nivel_3=[[0, 0, 0]]))
|
| 425 |
+
synthesized_tensor = self.base_transcender.compute_full_fractal(*trio)
|
| 426 |
+
next_level_tensors.append(synthesized_tensor)
|
| 427 |
+
current_level_tensors = next_level_tensors
|
| 428 |
+
|
| 429 |
+
return current_level_tensors[0]
|
| 430 |
+
|
| 431 |
+
def compute_fractal_archetype(self, tensor_family: List[FractalTensor]) -> FractalTensor:
|
| 432 |
+
"""Perspectiva de ARQUETIPO: Destila la esencia de una familia de conceptos."""
|
| 433 |
+
if len(tensor_family) < 2:
|
| 434 |
+
import warnings
|
| 435 |
+
warnings.warn("Se requieren al menos 2 tensores para computar un arquetipo.")
|
| 436 |
+
return FractalTensor(nivel_3=[[0, 0, 0]]) if not tensor_family else tensor_family[0]
|
| 437 |
+
return self._perform_full_tensor_synthesis(tensor_family)
|
| 438 |
+
|
| 439 |
+
class Extender:
|
| 440 |
+
"""
|
| 441 |
+
Orquestador Aurora refactorizado con expertos como métodos internos para
|
| 442 |
+
simplificar el alcance y la gestión de estado.
|
| 443 |
+
|
| 444 |
+
Opera como de forma inversa a Evolver, extendiendo el conocimiento fractal
|
| 445 |
+
a partir de consultas simples y contexto, utilizando expertos para validar,
|
| 446 |
+
utiliza trigate de form inversa al transcender.
|
| 447 |
+
"""
|
| 448 |
+
|
| 449 |
+
def __init__(self, knowledge_base: FractalKnowledgeBase):
|
| 450 |
+
self.kb = knowledge_base
|
| 451 |
+
self.transcender = Transcender()
|
| 452 |
+
self._lut_tables = {}
|
| 453 |
+
self.armonizador = Armonizador(knowledge_base=self.kb)
|
| 454 |
+
|
| 455 |
+
def _validate_archetype(self, ss_query: list, space_id: str) -> Tuple[bool, Optional[FractalTensor]]:
|
| 456 |
+
"""Experto Arquetipo como método."""
|
| 457 |
+
universe = self.kb._get_space(space_id)
|
| 458 |
+
ss_key = tuple(int(x) if x in (0, 1) else 0 for x in ss_query[:3])
|
| 459 |
+
logger.debug(f"Looking up archetype with ss_key={ss_key} in space={space_id}")
|
| 460 |
+
|
| 461 |
+
# Buscar por Ss
|
| 462 |
+
archi_ss = universe.find_archetype_by_ss(list(ss_key))
|
| 463 |
+
if archi_ss:
|
| 464 |
+
logger.debug(f"Found archetype by Ss: {archi_ss}")
|
| 465 |
+
return True, archi_ss[0] if isinstance(archi_ss, list) else archi_ss
|
| 466 |
+
|
| 467 |
+
# Fallback: buscar por nombre si hay algún patrón
|
| 468 |
+
for name in universe.name_index.keys():
|
| 469 |
+
if str(ss_key) in name:
|
| 470 |
+
archetype = universe.find_archetype_by_name(name)
|
| 471 |
+
if archetype:
|
| 472 |
+
logger.debug(f"Found archetype by name pattern: {archetype}")
|
| 473 |
+
return True, archetype
|
| 474 |
+
|
| 475 |
+
logger.debug("No archetype found")
|
| 476 |
+
return False, None
|
| 477 |
+
|
| 478 |
+
def _project_dynamics(self, ss_query: list, space_id: str) -> Tuple[bool, Optional[FractalTensor]]:
|
| 479 |
+
"""Experto Dinámica como método."""
|
| 480 |
+
universe = self.kb._get_space(space_id)
|
| 481 |
+
best, best_sim = None, -1.0
|
| 482 |
+
|
| 483 |
+
# Buscar en todos los arquetipos almacenados
|
| 484 |
+
for key, archetype in universe.storage.items():
|
| 485 |
+
if hasattr(archetype, 'nivel_3') and archetype.nivel_3:
|
| 486 |
+
archetype_ss = archetype.nivel_3[0]
|
| 487 |
+
sim = sum(1 for a, b in zip(archetype_ss, ss_query) if a == b) / len(ss_query)
|
| 488 |
+
if sim > best_sim:
|
| 489 |
+
best_sim, best = sim, archetype
|
| 490 |
+
|
| 491 |
+
if best and best_sim > 0.7:
|
| 492 |
+
return True, best
|
| 493 |
+
return False, None
|
| 494 |
+
|
| 495 |
+
def _contextualize_relations(self, ss_query: list, space_id: str) -> Tuple[bool, Optional[FractalTensor]]:
|
| 496 |
+
"""Experto Relator como método."""
|
| 497 |
+
universe = self.kb._get_space(space_id)
|
| 498 |
+
if not universe.storage:
|
| 499 |
+
logger.debug("No archetypes in universe")
|
| 500 |
+
return False, None
|
| 501 |
+
|
| 502 |
+
best, best_score = None, float('-inf')
|
| 503 |
+
for key, archetype in universe.storage.items():
|
| 504 |
+
if not hasattr(archetype, 'nivel_3') or not archetype.nivel_3:
|
| 505 |
+
continue
|
| 506 |
+
|
| 507 |
+
archetype_ss = archetype.nivel_3[0]
|
| 508 |
+
rel = self.transcender.relate_vectors(ss_query, archetype_ss)
|
| 509 |
+
score = sum(1 for bit in rel if bit == 0)
|
| 510 |
+
if score > best_score:
|
| 511 |
+
best_score, best = score, archetype
|
| 512 |
+
|
| 513 |
+
if best:
|
| 514 |
+
# Create a deep copy to avoid modifying the original
|
| 515 |
+
from copy import deepcopy
|
| 516 |
+
result = deepcopy(best)
|
| 517 |
+
result.nivel_3[0] = list(ss_query[:3]) # Explicitly preserve root
|
| 518 |
+
logger.debug(f"Contextualized with score={best_score}, root preserved={result.nivel_3[0]}")
|
| 519 |
+
return True, result
|
| 520 |
+
|
| 521 |
+
logger.debug("No relational match found")
|
| 522 |
+
return False, None
|
| 523 |
+
|
| 524 |
+
def lookup_lut(self, space_id: str, ss_query: list) -> Optional[FractalTensor]:
|
| 525 |
+
"""Lookup in LUT tables."""
|
| 526 |
+
lut_key = f"{space_id}:{tuple(ss_query)}"
|
| 527 |
+
return self._lut_tables.get(lut_key)
|
| 528 |
+
|
| 529 |
+
def extend_fractal(self, input_ss, contexto: dict) -> dict:
|
| 530 |
+
"""Orquestador Principal."""
|
| 531 |
+
log = [f"Extensión Aurora: espacio '{contexto.get('space_id', 'default')}'"]
|
| 532 |
+
|
| 533 |
+
# Validación y normalización de ss_query
|
| 534 |
+
if hasattr(input_ss, 'nivel_3'):
|
| 535 |
+
ss_query = input_ss.nivel_3[0] if input_ss.nivel_3 else [0, 0, 0]
|
| 536 |
+
else:
|
| 537 |
+
ss_query = input_ss
|
| 538 |
+
|
| 539 |
+
# Normalizar a un vector ternario de longitud 3
|
| 540 |
+
if not isinstance(ss_query, (list, tuple)):
|
| 541 |
+
log.append("⚠️ Entrada inválida, usando vector neutro [0,0,0]")
|
| 542 |
+
ss_query = [0, 0, 0]
|
| 543 |
+
else:
|
| 544 |
+
ss_query = [
|
| 545 |
+
None if x is None else int(x) if x in (0, 1) else 0
|
| 546 |
+
for x in list(ss_query)[:3]
|
| 547 |
+
] + [0] * (3 - len(ss_query))
|
| 548 |
+
|
| 549 |
+
space_id = contexto.get('space_id', 'default')
|
| 550 |
+
|
| 551 |
+
STEPS = [
|
| 552 |
+
lambda q, s: (self.lookup_lut(s, q) is not None, self.lookup_lut(s, q)),
|
| 553 |
+
self._validate_archetype,
|
| 554 |
+
self._project_dynamics,
|
| 555 |
+
self._contextualize_relations
|
| 556 |
+
]
|
| 557 |
+
METHODS = [
|
| 558 |
+
"reconstrucción por LUT",
|
| 559 |
+
"reconstrucción por arquetipo (axioma)",
|
| 560 |
+
"proyección por dinámica (raíz preservada)",
|
| 561 |
+
"contextualización por relator (raíz preservada)"
|
| 562 |
+
]
|
| 563 |
+
|
| 564 |
+
for step, method in zip(STEPS, METHODS):
|
| 565 |
+
ok, tensor = step(ss_query, space_id)
|
| 566 |
+
if ok and tensor is not None:
|
| 567 |
+
log.append(f"✅ {method}.")
|
| 568 |
+
|
| 569 |
+
# Si tensor es lista, seleccionar el más cercano
|
| 570 |
+
if isinstance(tensor, list):
|
| 571 |
+
tensor = tensor[0] if tensor else FractalTensor(nivel_3=[ss_query])
|
| 572 |
+
|
| 573 |
+
# For dynamic/relator, preserve root
|
| 574 |
+
if method.startswith("proyección") or method.startswith("contextualización"):
|
| 575 |
+
from copy import deepcopy
|
| 576 |
+
result = deepcopy(tensor)
|
| 577 |
+
result.nivel_3[0] = ss_query
|
| 578 |
+
root_vector = result.nivel_3[0]
|
| 579 |
+
harm = self.armonizador.harmonize(root_vector, archetype=root_vector, space_id=space_id)
|
| 580 |
+
result.nivel_3[0] = harm["output"]
|
| 581 |
+
return {
|
| 582 |
+
"reconstructed_tensor": result,
|
| 583 |
+
"reconstruction_method": method + " + armonizador",
|
| 584 |
+
"log": log
|
| 585 |
+
}
|
| 586 |
+
|
| 587 |
+
from copy import deepcopy
|
| 588 |
+
tensor_c = deepcopy(tensor)
|
| 589 |
+
root_vector = tensor_c.nivel_3[0] if tensor_c.nivel_3 else ss_query
|
| 590 |
+
harm = self.armonizador.harmonize(root_vector, archetype=root_vector, space_id=space_id)
|
| 591 |
+
tensor_c.nivel_3[0] = harm["output"]
|
| 592 |
+
return {
|
| 593 |
+
"reconstructed_tensor": tensor_c,
|
| 594 |
+
"reconstruction_method": method + " + armonizador",
|
| 595 |
+
"log": log
|
| 596 |
+
}
|
| 597 |
+
|
| 598 |
+
# Fallback
|
| 599 |
+
log.append("🤷 No se encontraron coincidencias. Devolviendo tensor neutro.")
|
| 600 |
+
tensor_n = FractalTensor(nivel_3=[ss_query])
|
| 601 |
+
root_vector = tensor_n.nivel_3[0]
|
| 602 |
+
harm = self.armonizador.harmonize(root_vector, archetype=root_vector, space_id=space_id)
|
| 603 |
+
tensor_n.nivel_3[0] = harm["output"]
|
| 604 |
+
|
| 605 |
+
return {
|
| 606 |
+
"reconstructed_tensor": tensor_n,
|
| 607 |
+
"reconstruction_method": "fallback neutro + armonizador",
|
| 608 |
+
"log": log
|
| 609 |
+
}
|
| 610 |
+
|
| 611 |
+
class Armonizador:
|
| 612 |
+
"""Coherence validator and harmonization engine."""
|
| 613 |
+
|
| 614 |
+
def __init__(self, knowledge_base=None, *, tau_1: int = 1, tau_2: int = 2, tau_3: int = 3):
|
| 615 |
+
self.kb = knowledge_base
|
| 616 |
+
self.tau_1, self.tau_2, self.tau_3 = tau_1, tau_2, tau_3
|
| 617 |
+
|
| 618 |
+
def harmonize(self, tensor: Vector, *, archetype: Vector = None, space_id: str = "default") -> Dict[str, Any]:
|
| 619 |
+
"""Harmonize vector for coherence."""
|
| 620 |
+
result_vector = self._microshift(tensor, archetype or [0, 0, 0])
|
| 621 |
+
|
| 622 |
+
return {
|
| 623 |
+
"output": result_vector,
|
| 624 |
+
"score": 0,
|
| 625 |
+
"adjustments": ["microshift"]
|
| 626 |
+
}
|
| 627 |
+
|
| 628 |
+
def _microshift(self, vec: Vector, archetype: Vector) -> Vector:
|
| 629 |
+
"""Apply micro-adjustments to vector."""
|
| 630 |
+
logger.info(f"[microshift][ambig=0] Microshift final: {vec} | Score: 0")
|
| 631 |
+
return vec
|
| 632 |
+
|
| 633 |
+
class TensorPoolManager:
|
| 634 |
+
"""Pool manager for tensor collections."""
|
| 635 |
+
|
| 636 |
+
def __init__(self):
|
| 637 |
+
self.tensors = []
|
| 638 |
+
|
| 639 |
+
def add_tensor(self, tensor: FractalTensor):
|
| 640 |
+
"""Add tensor to pool."""
|
| 641 |
+
self.tensors.append(tensor)
|
| 642 |
+
|
| 643 |
+
# ===============================================================================
|
| 644 |
+
# PATTERN 0: ETHICAL FRACTAL CLUSTER GENERATION
|
| 645 |
+
# ===============================================================================
|
| 646 |
+
|
| 647 |
+
def apply_ethical_constraint(vector, space_id, kb):
|
| 648 |
+
"""Apply ethical constraints to vector."""
|
| 649 |
+
rules = getattr(kb, 'get_ethics', lambda sid: [-1, -1, -1])(space_id) or [-1, -1, -1]
|
| 650 |
+
return [v ^ r if r != -1 else v for v, r in zip(vector, rules)]
|
| 651 |
+
|
| 652 |
+
def compute_ethical_signature(cluster):
|
| 653 |
+
"""Compute ethical signature for cluster."""
|
| 654 |
+
base = str([t.nivel_3[0] for t in cluster]).encode()
|
| 655 |
+
return hashlib.sha256(base).hexdigest()
|
| 656 |
+
|
| 657 |
+
def golden_ratio_select(N, seed):
|
| 658 |
+
"""Select indices using golden ratio stepping."""
|
| 659 |
+
step = int(max(1, round(N * PHI)))
|
| 660 |
+
return [(seed + i * step) % N for i in range(3)]
|
| 661 |
+
|
| 662 |
+
def pattern0_create_fractal_cluster(
|
| 663 |
+
*,
|
| 664 |
+
input_data=None,
|
| 665 |
+
space_id="default",
|
| 666 |
+
num_tensors=3,
|
| 667 |
+
context=None,
|
| 668 |
+
entropy_seed=PHI,
|
| 669 |
+
depth_max=3,
|
| 670 |
+
):
|
| 671 |
+
"""Generate ethical fractal cluster using Pattern 0."""
|
| 672 |
+
random.seed(int(entropy_seed * 1e9))
|
| 673 |
+
kb = FractalKnowledgeBase()
|
| 674 |
+
armonizador = Armonizador(knowledge_base=kb)
|
| 675 |
+
pool = TensorPoolManager()
|
| 676 |
+
|
| 677 |
+
# Generate tensors
|
| 678 |
+
tensors = []
|
| 679 |
+
for i in range(num_tensors):
|
| 680 |
+
if input_data and i < len(input_data):
|
| 681 |
+
vec = apply_ethical_constraint(input_data[i], space_id, kb)
|
| 682 |
+
tensor = FractalTensor(nivel_3=[vec])
|
| 683 |
+
else:
|
| 684 |
+
try:
|
| 685 |
+
tensor = FractalTensor.random(space_constraints=space_id)
|
| 686 |
+
except TypeError:
|
| 687 |
+
tensor = FractalTensor.random()
|
| 688 |
+
|
| 689 |
+
# Add ethical metadata
|
| 690 |
+
tensor.metadata.update({
|
| 691 |
+
"ethical_hash": compute_ethical_signature([tensor]),
|
| 692 |
+
"entropy_seed": entropy_seed,
|
| 693 |
+
"space_id": space_id
|
| 694 |
+
})
|
| 695 |
+
|
| 696 |
+
tensors.append(tensor)
|
| 697 |
+
pool.add_tensor(tensor)
|
| 698 |
+
|
| 699 |
+
# Harmonize cluster
|
| 700 |
+
for tensor in tensors:
|
| 701 |
+
harmonized = armonizador.harmonize(tensor.nivel_3[0], space_id=space_id)
|
| 702 |
+
tensor.nivel_3[0] = harmonized["output"]
|
| 703 |
+
|
| 704 |
+
return tensors
|
| 705 |
+
|
| 706 |
+
# ===============================================================================
|
| 707 |
+
# PUBLIC API
|
| 708 |
+
# ===============================================================================
|
| 709 |
+
|
| 710 |
+
# Main exports
|
| 711 |
+
__all__ = [
|
| 712 |
+
'FractalTensor',
|
| 713 |
+
'Trigate',
|
| 714 |
+
'TernaryLogic',
|
| 715 |
+
'Evolver',
|
| 716 |
+
'Extender',
|
| 717 |
+
'FractalKnowledgeBase',
|
| 718 |
+
'Armonizador',
|
| 719 |
+
'TensorPoolManager',
|
| 720 |
+
'Transcender',
|
| 721 |
+
'pattern0_create_fractal_cluster'
|
| 722 |
+
]
|
| 723 |
+
|
| 724 |
+
# Compatibility aliases
|
| 725 |
+
KnowledgeBase = FractalKnowledgeBase
|