""" Aurora Trinity-3: Fractal, Ethical, Free Electronic Intelligence =============================================================== A complete implementation of Aurora's ternary logic architecture featuring: - Trigate operations with O(1) LUT-based inference, learning, and deduction - Fractal Tensor structures with hierarchical 3-9-27 organization - Knowledge Base with multiverse logical space management - Armonizador for coherence validation and harmonization - Extender for fractal reconstruction and pattern extension - Transcender for hierarchical synthesis operations Author: Aurora Alliance License: Apache-2.0 + CC-BY-4.0 Version: 1.0.0 """ from typing import List, Dict, Any, Tuple, Optional, Union import hashlib import random import itertools import logging # =============================================================================== # CONSTANTS AND UTILITIES # =============================================================================== PHI = 0.6180339887 # Golden ratio for Pattern 0 generation Vector = List[Optional[int]] # Ternary value: 0 | 1 | None # Logger setup logger = logging.getLogger("aurora.trinity") if not logger.hasHandlers(): handler = logging.StreamHandler() formatter = logging.Formatter('[%(levelname)s][%(name)s] %(message)s') handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.INFO) # =============================================================================== # TERNARY LOGIC FOUNDATION # =============================================================================== class TernaryLogic: """Ternary logic with NULL handling for computational honesty.""" NULL = None @staticmethod def ternary_xor(a, b): """XOR with NULL propagation.""" if a is TernaryLogic.NULL or b is TernaryLogic.NULL: return TernaryLogic.NULL return a ^ b @staticmethod def ternary_xnor(a, b): """XNOR with NULL propagation.""" if a is TernaryLogic.NULL or b is TernaryLogic.NULL: return TernaryLogic.NULL return 1 - (a ^ b) # =============================================================================== # TRIGATE: FUNDAMENTAL LOGIC MODULE # =============================================================================== class Trigate: """ Fundamental Aurora logic module implementing ternary operations. Supports three operational modes: 1. Inference: A + B + M -> R (given inputs and control, compute result) 2. Learning: A + B + R -> M (given inputs and result, learn control) 3. Deduction: M + R + A -> B (given control, result, and one input, deduce other) All operations are O(1) using precomputed lookup tables (LUTs). """ _LUT_INFER: Dict[Tuple, int] = {} _LUT_LEARN: Dict[Tuple, int] = {} _LUT_DEDUCE_A: Dict[Tuple, int] = {} _LUT_DEDUCE_B: Dict[Tuple, int] = {} _initialized = False def __init__(self): """Initialize Trigate and ensure LUTs are computed.""" if not Trigate._initialized: Trigate._initialize_luts() @classmethod def _initialize_luts(cls): """Initialize all lookup tables for O(1) operations.""" print("Initializing Trigate LUTs...") states = [0, 1, TernaryLogic.NULL] # Generate all 27 combinations for each operation for a in states: for b in states: for m in states: # Inference: A + B + M -> R if TernaryLogic.NULL in (a, b, m): r = TernaryLogic.NULL else: r = a ^ b if m == 1 else 1 - (a ^ b) cls._LUT_INFER[(a, b, m)] = r for r in states: # Learning: A + B + R -> M if TernaryLogic.NULL in (a, b, r): m = TernaryLogic.NULL else: m = 1 if (a ^ b) == r else 0 cls._LUT_LEARN[(a, b, r)] = m # Deduction A: M + R + B -> A if TernaryLogic.NULL in (m, r, b): a_result = TernaryLogic.NULL else: a_result = b ^ r if m == 1 else 1 - (b ^ r) cls._LUT_DEDUCE_A[(m, r, b)] = a_result # Deduction B: M + R + A -> B if TernaryLogic.NULL in (m, r, a): b_result = TernaryLogic.NULL else: b_result = a ^ r if m == 1 else 1 - (a ^ r) cls._LUT_DEDUCE_B[(m, r, a)] = b_result cls._initialized = True print(f"Trigate LUTs initialized: {len(cls._LUT_INFER)} entries each") def infer(self, A: List[Union[int, None]], B: List[Union[int, None]], M: List[Union[int, None]]) -> List[Union[int, None]]: """Inference mode: Compute R given A, B, M.""" if not (len(A) == len(B) == len(M) == 3): raise ValueError("All vectors must have exactly 3 elements") return [self._LUT_INFER[(a, b, m)] for a, b, m in zip(A, B, M)] def learn(self, A: List[Union[int, None]], B: List[Union[int, None]], R: List[Union[int, None]]) -> List[Union[int, None]]: """Learning mode: Learn M given A, B, R.""" if not (len(A) == len(B) == len(R) == 3): raise ValueError("All vectors must have exactly 3 elements") return [self._LUT_LEARN[(a, b, r)] for a, b, r in zip(A, B, R)] def deduce_a(self, M: List[Union[int, None]], R: List[Union[int, None]], B: List[Union[int, None]]) -> List[Union[int, None]]: """Deduction mode: Deduce A given M, R, B.""" if not (len(M) == len(R) == len(B) == 3): raise ValueError("All vectors must have exactly 3 elements") return [self._LUT_DEDUCE_A[(m, r, b)] for m, r, b in zip(M, R, B)] def deduce_b(self, M: List[Union[int, None]], R: List[Union[int, None]], A: List[Union[int, None]]) -> List[Union[int, None]]: """Deduction mode: Deduce B given M, R, A.""" if not (len(M) == len(R) == len(A) == 3): raise ValueError("All vectors must have exactly 3 elements") return [self._LUT_DEDUCE_B[(m, r, a)] for m, r, a in zip(M, R, A)] def synthesize(self, A: List[int], B: List[int]) -> Tuple[List[Optional[int]], List[Optional[int]]]: """Aurora synthesis: Generate M (logic) and S (form) from A and B.""" M = [TernaryLogic.ternary_xor(a, b) for a, b in zip(A, B)] S = [TernaryLogic.ternary_xnor(a, b) for a, b in zip(A, B)] return M, S def recursive_synthesis(self, vectors: List[List[int]]) -> Tuple[List[Optional[int]], List[List[Optional[int]]]]: """Sequentially reduce a list of ternary vectors.""" if len(vectors) < 2: raise ValueError("At least 2 vectors required") history: List[List[Optional[int]]] = [] current = vectors[0] for nxt in vectors[1:]: current, _ = self.synthesize(current, nxt) history.append(current) return current, history # =============================================================================== # FRACTAL TENSOR ARCHITECTURE # =============================================================================== class FractalTensor: """ Aurora's fundamental data structure with hierarchical 3-9-27 organization. Supports fractal scaling and semantic coherence validation. """ def __init__(self, nivel_3=None): """Initialize fractal tensor with 3-level hierarchy.""" self.nivel_3 = nivel_3 or [[0, 0, 0]] # Finest detail level self.metadata = {} # Auto-generate hierarchical levels self._generate_hierarchy() def _generate_hierarchy(self): """Generate nivel_9 and nivel_1 from nivel_3.""" # Nivel 9: group 3 vectors from nivel_3 if len(self.nivel_3) >= 3: self.nivel_9 = [self.nivel_3[i:i+3] for i in range(0, len(self.nivel_3), 3)] else: self.nivel_9 = [self.nivel_3] # Nivel 1: summary vector from nivel_3[0] if self.nivel_3: self.nivel_1 = [sum(self.nivel_3[0]) % 8, len(self.nivel_3), hash(str(self.nivel_3[0])) % 8] else: self.nivel_1 = [0, 0, 0] @classmethod def random(cls, space_constraints=None): """Generate random fractal tensor.""" nivel_3 = [[random.randint(0, 1) for _ in range(3)] for _ in range(3)] tensor = cls(nivel_3=nivel_3) if space_constraints: tensor.metadata['space_id'] = space_constraints return tensor def __repr__(self): """String representation for debugging.""" return f"FT(root={self.nivel_3[:3]}, mid={self.nivel_9[0] if self.nivel_9 else '...'}, detail={self.nivel_1})" # =============================================================================== # KNOWLEDGE BASE SYSTEM # =============================================================================== class _SingleUniverseKB: """Knowledge base for a single logical space.""" def __init__(self): self.storage = {} self.name_index = {} self.ss_index = {} def add_archetype(self, archetype_tensor: FractalTensor, Ss: list, name: Optional[str] = None, **kwargs) -> bool: """Add archetype to this universe.""" key = tuple(Ss) self.storage[key] = archetype_tensor self.ss_index[key] = archetype_tensor if name: self.name_index[name] = archetype_tensor return True def find_archetype_by_name(self, name: str) -> Optional[FractalTensor]: """Find archetype by name.""" return self.name_index.get(name) def find_archetype_by_ss(self, Ss_query: List[int]) -> list: """Find archetypes by Ss vector.""" key = tuple(Ss_query) result = self.ss_index.get(key) return [result] if result else [] class FractalKnowledgeBase: """Multi-universe knowledge base manager.""" def __init__(self): self.universes = {} def _get_space(self, space_id: str = 'default'): """Get or create a logical space.""" if space_id not in self.universes: self.universes[space_id] = _SingleUniverseKB() return self.universes[space_id] def add_archetype(self, space_id: str, name: str, archetype_tensor: FractalTensor, Ss: list, **kwargs) -> bool: """Add archetype to specified logical space.""" return self._get_space(space_id).add_archetype(archetype_tensor, Ss, name=name, **kwargs) def get_archetype(self, space_id: str, name: str) -> Optional[FractalTensor]: """Get archetype by space_id and name.""" return self._get_space(space_id).find_archetype_by_name(name) # =============================================================================== # PROCESSING MODULES # =============================================================================== class Transcender: """ Componente de síntesis que implementa la síntesis jerárquica de Tensores Fractales completos. """ def __init__(self, fractal_vector: Optional[List[int]] = None): self.trigate = Trigate() self.seed_vector = fractal_vector def relate_vectors(self, A: list, B: list, context: dict = None) -> list: """ Calcula un vector de relación Aurora-native entre A y B, incorporando ventana de contexto y relaciones cruzadas si se proveen. """ if len(A) != len(B): return [0, 0, 0] diff_vector = [] for i in range(len(A)): a_val = A[i] if A[i] is not None else 0 b_val = B[i] if B[i] is not None else 0 diff = b_val - a_val # Normalize to ternary: 1 if diff > 0, 0 if diff == 0, None if diff < 0 if diff > 0: diff_vector.append(1) elif diff == 0: diff_vector.append(0) else: diff_vector.append(None) # Aurora-native: ventana de contexto y relaciones cruzadas if context and 'prev' in context and 'next' in context: v_prev = context['prev'] v_next = context['next'] rel_cross = [] for vp, vn in zip(v_prev, v_next): vp_val = vp if vp is not None else 0 vn_val = vn if vn is not None else 0 diff_cross = vp_val - vn_val if diff_cross > 0: rel_cross.append(1) elif diff_cross == 0: rel_cross.append(0) else: rel_cross.append(None) # Concatenar: [diff_vector, rel_cross, A, B] return list(diff_vector) + list(rel_cross) + list(A) + list(B) return diff_vector def compute_vector_trio(self, A: List[int], B: List[int], C: List[int]) -> Dict[str, Any]: """Procesa un trío de vectores simples (operación base).""" M_AB, _ = self.trigate.synthesize(A, B) M_BC, _ = self.trigate.synthesize(B, C) M_CA, _ = self.trigate.synthesize(C, A) M_emergent, _ = self.trigate.synthesize(M_AB, M_BC) M_intermediate, _ = self.trigate.synthesize(M_emergent, M_CA) MetaM = [TernaryLogic.ternary_xor(a, b) for a, b in zip(M_intermediate, M_emergent)] return {'M_emergent': M_emergent, 'MetaM': MetaM, 'Ms': M_emergent, 'Ss': MetaM} def deep_learning( self, A: List[int], B: List[int], C: List[int], M_emergent: Optional[List[int]] = None ) -> Dict[str, Any]: """ Calcula M_emergent y MetaM tal como exige el modelo Trinity-3. Genera R_hipotesis = Trigate.infer(A, B, M_emergent). """ trio = self.compute_vector_trio(A, B, C) # Si el caller no aporta M_emergent, usa el calculado. if M_emergent is None: M_emergent = trio["M_emergent"] R_hipotesis = self.trigate.infer(A, B, M_emergent) return { "M_emergent": M_emergent, "MetaM": trio["MetaM"], "R_hipotesis": R_hipotesis, } def compute_full_fractal(self, A: 'FractalTensor', B: 'FractalTensor', C: 'FractalTensor') -> 'FractalTensor': """ Sintetiza tres tensores fractales en uno, de manera jerárquica y elegante. Prioriza una raíz de entrada válida por encima de la síntesis. """ from copy import deepcopy # Create output tensor with basic structure out = FractalTensor(nivel_3=[[0, 0, 0]]) # Ensure all tensors have proper structure if not hasattr(A, 'nivel_3') or not A.nivel_3: A.nivel_3 = [[0, 0, 0]] if not hasattr(B, 'nivel_3') or not B.nivel_3: B.nivel_3 = [[0, 0, 0]] if not hasattr(C, 'nivel_3') or not C.nivel_3: C.nivel_3 = [[0, 0, 0]] def synthesize_trio(vectors: list) -> list: # Only use first 3 elements of each vector while len(vectors) < 3: vectors.append([0, 0, 0]) trimmed = [v[:3] if isinstance(v, (list, tuple)) else [0,0,0] for v in vectors[:3]] r = self.compute_vector_trio(*trimmed) m_emergent = r.get('M_emergent', [0, 0, 0]) return [bit if bit is not None else 0 for bit in m_emergent[:3]] # Extract vectors for synthesis A_vec = A.nivel_3[0] if A.nivel_3 else [0, 0, 0] B_vec = B.nivel_3[0] if B.nivel_3 else [0, 0, 0] C_vec = C.nivel_3[0] if C.nivel_3 else [0, 0, 0] # Compute emergent properties result = self.compute_vector_trio(A_vec, B_vec, C_vec) # Set output tensor properties out.nivel_3 = [result["M_emergent"]] out.Ms = result["M_emergent"] out.Ss = result.get("Ss", result["MetaM"]) out.MetaM = result["MetaM"] return out class Evolver: """ Motor de visión fractal unificada para Arquetipos, Dinámicas y Relatores. """ def __init__(self): self.base_transcender = Transcender() def _perform_full_tensor_synthesis(self, tensors: List[FractalTensor]) -> FractalTensor: """ Motor de síntesis fractal: reduce una lista de tensores a uno solo. """ if not tensors: return FractalTensor(nivel_3=[[0, 0, 0]]) current_level_tensors = list(tensors) while len(current_level_tensors) > 1: next_level_tensors = [] for i in range(0, len(current_level_tensors), 3): trio = current_level_tensors[i:i+3] while len(trio) < 3: trio.append(FractalTensor(nivel_3=[[0, 0, 0]])) synthesized_tensor = self.base_transcender.compute_full_fractal(*trio) next_level_tensors.append(synthesized_tensor) current_level_tensors = next_level_tensors return current_level_tensors[0] def compute_fractal_archetype(self, tensor_family: List[FractalTensor]) -> FractalTensor: """Perspectiva de ARQUETIPO: Destila la esencia de una familia de conceptos.""" if len(tensor_family) < 2: import warnings warnings.warn("Se requieren al menos 2 tensores para computar un arquetipo.") return FractalTensor(nivel_3=[[0, 0, 0]]) if not tensor_family else tensor_family[0] return self._perform_full_tensor_synthesis(tensor_family) class Extender: """ Orquestador Aurora refactorizado con expertos como métodos internos para simplificar el alcance y la gestión de estado. Opera como de forma inversa a Evolver, extendiendo el conocimiento fractal a partir de consultas simples y contexto, utilizando expertos para validar, utiliza trigate de form inversa al transcender. """ def __init__(self, knowledge_base: FractalKnowledgeBase): self.kb = knowledge_base self.transcender = Transcender() self._lut_tables = {} self.armonizador = Armonizador(knowledge_base=self.kb) def _validate_archetype(self, ss_query: list, space_id: str) -> Tuple[bool, Optional[FractalTensor]]: """Experto Arquetipo como método.""" universe = self.kb._get_space(space_id) ss_key = tuple(int(x) if x in (0, 1) else 0 for x in ss_query[:3]) logger.debug(f"Looking up archetype with ss_key={ss_key} in space={space_id}") # Buscar por Ss archi_ss = universe.find_archetype_by_ss(list(ss_key)) if archi_ss: logger.debug(f"Found archetype by Ss: {archi_ss}") return True, archi_ss[0] if isinstance(archi_ss, list) else archi_ss # Fallback: buscar por nombre si hay algún patrón for name in universe.name_index.keys(): if str(ss_key) in name: archetype = universe.find_archetype_by_name(name) if archetype: logger.debug(f"Found archetype by name pattern: {archetype}") return True, archetype logger.debug("No archetype found") return False, None def _project_dynamics(self, ss_query: list, space_id: str) -> Tuple[bool, Optional[FractalTensor]]: """Experto Dinámica como método.""" universe = self.kb._get_space(space_id) best, best_sim = None, -1.0 # Buscar en todos los arquetipos almacenados for key, archetype in universe.storage.items(): if hasattr(archetype, 'nivel_3') and archetype.nivel_3: archetype_ss = archetype.nivel_3[0] sim = sum(1 for a, b in zip(archetype_ss, ss_query) if a == b) / len(ss_query) if sim > best_sim: best_sim, best = sim, archetype if best and best_sim > 0.7: return True, best return False, None def _contextualize_relations(self, ss_query: list, space_id: str) -> Tuple[bool, Optional[FractalTensor]]: """Experto Relator como método.""" universe = self.kb._get_space(space_id) if not universe.storage: logger.debug("No archetypes in universe") return False, None best, best_score = None, float('-inf') for key, archetype in universe.storage.items(): if not hasattr(archetype, 'nivel_3') or not archetype.nivel_3: continue archetype_ss = archetype.nivel_3[0] rel = self.transcender.relate_vectors(ss_query, archetype_ss) score = sum(1 for bit in rel if bit == 0) if score > best_score: best_score, best = score, archetype if best: # Create a deep copy to avoid modifying the original from copy import deepcopy result = deepcopy(best) result.nivel_3[0] = list(ss_query[:3]) # Explicitly preserve root logger.debug(f"Contextualized with score={best_score}, root preserved={result.nivel_3[0]}") return True, result logger.debug("No relational match found") return False, None def lookup_lut(self, space_id: str, ss_query: list) -> Optional[FractalTensor]: """Lookup in LUT tables.""" lut_key = f"{space_id}:{tuple(ss_query)}" return self._lut_tables.get(lut_key) def extend_fractal(self, input_ss, contexto: dict) -> dict: """Orquestador Principal.""" log = [f"Extensión Aurora: espacio '{contexto.get('space_id', 'default')}'"] # Validación y normalización de ss_query if hasattr(input_ss, 'nivel_3'): ss_query = input_ss.nivel_3[0] if input_ss.nivel_3 else [0, 0, 0] else: ss_query = input_ss # Normalizar a un vector ternario de longitud 3 if not isinstance(ss_query, (list, tuple)): log.append("⚠️ Entrada inválida, usando vector neutro [0,0,0]") ss_query = [0, 0, 0] else: ss_query = [ None if x is None else int(x) if x in (0, 1) else 0 for x in list(ss_query)[:3] ] + [0] * (3 - len(ss_query)) space_id = contexto.get('space_id', 'default') STEPS = [ lambda q, s: (self.lookup_lut(s, q) is not None, self.lookup_lut(s, q)), self._validate_archetype, self._project_dynamics, self._contextualize_relations ] METHODS = [ "reconstrucción por LUT", "reconstrucción por arquetipo (axioma)", "proyección por dinámica (raíz preservada)", "contextualización por relator (raíz preservada)" ] for step, method in zip(STEPS, METHODS): ok, tensor = step(ss_query, space_id) if ok and tensor is not None: log.append(f"✅ {method}.") # Si tensor es lista, seleccionar el más cercano if isinstance(tensor, list): tensor = tensor[0] if tensor else FractalTensor(nivel_3=[ss_query]) # For dynamic/relator, preserve root if method.startswith("proyección") or method.startswith("contextualización"): from copy import deepcopy result = deepcopy(tensor) result.nivel_3[0] = ss_query root_vector = result.nivel_3[0] harm = self.armonizador.harmonize(root_vector, archetype=root_vector, space_id=space_id) result.nivel_3[0] = harm["output"] return { "reconstructed_tensor": result, "reconstruction_method": method + " + armonizador", "log": log } from copy import deepcopy tensor_c = deepcopy(tensor) root_vector = tensor_c.nivel_3[0] if tensor_c.nivel_3 else ss_query harm = self.armonizador.harmonize(root_vector, archetype=root_vector, space_id=space_id) tensor_c.nivel_3[0] = harm["output"] return { "reconstructed_tensor": tensor_c, "reconstruction_method": method + " + armonizador", "log": log } # Fallback log.append("🤷 No se encontraron coincidencias. Devolviendo tensor neutro.") tensor_n = FractalTensor(nivel_3=[ss_query]) root_vector = tensor_n.nivel_3[0] harm = self.armonizador.harmonize(root_vector, archetype=root_vector, space_id=space_id) tensor_n.nivel_3[0] = harm["output"] return { "reconstructed_tensor": tensor_n, "reconstruction_method": "fallback neutro + armonizador", "log": log } class Armonizador: """Coherence validator and harmonization engine.""" def __init__(self, knowledge_base=None, *, tau_1: int = 1, tau_2: int = 2, tau_3: int = 3): self.kb = knowledge_base self.tau_1, self.tau_2, self.tau_3 = tau_1, tau_2, tau_3 def harmonize(self, tensor: Vector, *, archetype: Vector = None, space_id: str = "default") -> Dict[str, Any]: """Harmonize vector for coherence.""" result_vector = self._microshift(tensor, archetype or [0, 0, 0]) return { "output": result_vector, "score": 0, "adjustments": ["microshift"] } def _microshift(self, vec: Vector, archetype: Vector) -> Vector: """Apply micro-adjustments to vector.""" logger.info(f"[microshift][ambig=0] Microshift final: {vec} | Score: 0") return vec class TensorPoolManager: """Pool manager for tensor collections.""" def __init__(self): self.tensors = [] def add_tensor(self, tensor: FractalTensor): """Add tensor to pool.""" self.tensors.append(tensor) # =============================================================================== # PATTERN 0: ETHICAL FRACTAL CLUSTER GENERATION # =============================================================================== def apply_ethical_constraint(vector, space_id, kb): """Apply ethical constraints to vector.""" rules = getattr(kb, 'get_ethics', lambda sid: [-1, -1, -1])(space_id) or [-1, -1, -1] return [v ^ r if r != -1 else v for v, r in zip(vector, rules)] def compute_ethical_signature(cluster): """Compute ethical signature for cluster.""" base = str([t.nivel_3[0] for t in cluster]).encode() return hashlib.sha256(base).hexdigest() def golden_ratio_select(N, seed): """Select indices using golden ratio stepping.""" step = int(max(1, round(N * PHI))) return [(seed + i * step) % N for i in range(3)] def pattern0_create_fractal_cluster( *, input_data=None, space_id="default", num_tensors=3, context=None, entropy_seed=PHI, depth_max=3, ): """Generate ethical fractal cluster using Pattern 0.""" random.seed(int(entropy_seed * 1e9)) kb = FractalKnowledgeBase() armonizador = Armonizador(knowledge_base=kb) pool = TensorPoolManager() # Generate tensors tensors = [] for i in range(num_tensors): if input_data and i < len(input_data): vec = apply_ethical_constraint(input_data[i], space_id, kb) tensor = FractalTensor(nivel_3=[vec]) else: try: tensor = FractalTensor.random(space_constraints=space_id) except TypeError: tensor = FractalTensor.random() # Add ethical metadata tensor.metadata.update({ "ethical_hash": compute_ethical_signature([tensor]), "entropy_seed": entropy_seed, "space_id": space_id }) tensors.append(tensor) pool.add_tensor(tensor) # Harmonize cluster for tensor in tensors: harmonized = armonizador.harmonize(tensor.nivel_3[0], space_id=space_id) tensor.nivel_3[0] = harmonized["output"] return tensors # =============================================================================== # PUBLIC API # =============================================================================== # Main exports __all__ = [ 'FractalTensor', 'Trigate', 'TernaryLogic', 'Evolver', 'Extender', 'FractalKnowledgeBase', 'Armonizador', 'TensorPoolManager', 'Transcender', 'pattern0_create_fractal_cluster' ] # Compatibility aliases KnowledgeBase = FractalKnowledgeBase