""" Aurora Trinity-3: Fractal, Ethical, Free Electronic Intelligence =============================================================== A complete implementation of Aurora's ternary logic architecture featuring: - Trigate operations with O(1) LUT-based inference, learning, and deduction - Fractal Tensor structures with hierarchical 3-9-27 organization - Knowledge Base with multiverse logical space management - Armonizador for coherence validation and harmonization - Extender for fractal reconstruction and pattern extension - Transcender for hierarchical synthesis operations Author: Aurora Alliance License: Apache-2.0 + CC-BY-4.0 Version: 1.0.0 """ from typing import List, Dict, Any, Tuple, Optional, Union import hashlib import random import itertools import logging # =============================================================================== # CONSTANTS AND UTILITIES # =============================================================================== PHI = 0.6180339887 # Golden ratio for Pattern 0 generation Vector = List[Optional[int]] # Ternary value: 0 | 1 | None # Logger setup logger = logging.getLogger("aurora.trinity") if not logger.hasHandlers(): handler = logging.StreamHandler() formatter = logging.Formatter('[%(levelname)s][%(name)s] %(message)s') handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.INFO) # =============================================================================== # TERNARY LOGIC FOUNDATION # =============================================================================== class TernaryLogic: """Ternary logic with NULL handling for computational honesty.""" NULL = None @staticmethod def ternary_xor(a, b): """XOR with NULL propagation.""" if a is TernaryLogic.NULL or b is TernaryLogic.NULL: return TernaryLogic.NULL return a ^ b @staticmethod def ternary_xnor(a, b): """XNOR with NULL propagation.""" if a is TernaryLogic.NULL or b is TernaryLogic.NULL: return TernaryLogic.NULL return 1 - (a ^ b) # =============================================================================== # TRIGATE: FUNDAMENTAL LOGIC MODULE # =============================================================================== class Trigate: """ Fundamental Aurora logic module implementing ternary operations. Supports three operational modes: 1. Inference: A + B + M -> R (given inputs and control, compute result) 2. Learning: A + B + R -> M (given inputs and result, learn control) 3. Deduction: M + R + A -> B (given control, result, and one input, deduce other) All operations are O(1) using precomputed lookup tables (LUTs). """ _LUT_INFER: Dict[Tuple, int] = {} _LUT_LEARN: Dict[Tuple, int] = {} _LUT_DEDUCE_A: Dict[Tuple, int] = {} _LUT_DEDUCE_B: Dict[Tuple, int] = {} _initialized = False def __init__(self): """Initialize Trigate and ensure LUTs are computed.""" if not Trigate._initialized: Trigate._initialize_luts() @classmethod def _initialize_luts(cls): """Initialize all lookup tables for O(1) operations.""" print("Initializing Trigate LUTs...") states = [0, 1, TernaryLogic.NULL] # Generate all 27 combinations for each operation for a in states: for b in states: for m in states: # Inference: A + B + M -> R if TernaryLogic.NULL in (a, b, m): r = TernaryLogic.NULL else: r = a ^ b if m == 1 else 1 - (a ^ b) cls._LUT_INFER[(a, b, m)] = r for r in states: # Learning: A + B + R -> M if TernaryLogic.NULL in (a, b, r): m = TernaryLogic.NULL else: m = 1 if (a ^ b) == r else 0 cls._LUT_LEARN[(a, b, r)] = m # Deduction A: M + R + B -> A if TernaryLogic.NULL in (m, r, b): a_result = TernaryLogic.NULL else: a_result = b ^ r if m == 1 else 1 - (b ^ r) cls._LUT_DEDUCE_A[(m, r, b)] = a_result # Deduction B: M + R + A -> B if TernaryLogic.NULL in (m, r, a): b_result = TernaryLogic.NULL else: b_result = a ^ r if m == 1 else 1 - (a ^ r) cls._LUT_DEDUCE_B[(m, r, a)] = b_result cls._initialized = True print(f"Trigate LUTs initialized: {len(cls._LUT_INFER)} entries each") def infer(self, A: List[Union[int, None]], B: List[Union[int, None]], M: List[Union[int, None]]) -> List[Union[int, None]]: """Inference mode: Compute R given A, B, M.""" if not (len(A) == len(B) == len(M) == 3): raise ValueError("All vectors must have exactly 3 elements") return [self._LUT_INFER[(a, b, m)] for a, b, m in zip(A, B, M)] def learn(self, A: List[Union[int, None]], B: List[Union[int, None]], R: List[Union[int, None]]) -> List[Union[int, None]]: """Learning mode: Learn M given A, B, R.""" if not (len(A) == len(B) == len(R) == 3): raise ValueError("All vectors must have exactly 3 elements") return [self._LUT_LEARN[(a, b, r)] for a, b, r in zip(A, B, R)] def deduce_a(self, M: List[Union[int, None]], R: List[Union[int, None]], B: List[Union[int, None]]) -> List[Union[int, None]]: """Deduction mode: Deduce A given M, R, B.""" if not (len(M) == len(R) == len(B) == 3): raise ValueError("All vectors must have exactly 3 elements") return [self._LUT_DEDUCE_A[(m, r, b)] for m, r, b in zip(M, R, B)] def deduce_b(self, M: List[Union[int, None]], R: List[Union[int, None]], A: List[Union[int, None]]) -> List[Union[int, None]]: """Deduction mode: Deduce B given M, R, A.""" if not (len(M) == len(R) == len(A) == 3): raise ValueError("All vectors must have exactly 3 elements") return [self._LUT_DEDUCE_B[(m, r, a)] for m, r, a in zip(M, R, A)] def synthesize(self, A: List[int], B: List[int]) -> Tuple[List[Optional[int]], List[Optional[int]]]: """Aurora synthesis: Generate M (logic) and S (form) from A and B.""" M = [TernaryLogic.ternary_xor(a, b) for a, b in zip(A, B)] S = [TernaryLogic.ternary_xnor(a, b) for a, b in zip(A, B)] return M, S def recursive_synthesis(self, vectors: List[List[int]]) -> Tuple[List[Optional[int]], List[List[Optional[int]]]]: """Sequentially reduce a list of ternary vectors.""" if len(vectors) < 2: raise ValueError("At least 2 vectors required") history: List[List[Optional[int]]] = [] current = vectors[0] for nxt in vectors[1:]: current, _ = self.synthesize(current, nxt) history.append(current) return current, history # =============================================================================== # FRACTAL TENSOR ARCHITECTURE # =============================================================================== class FractalTensor: """ Aurora's fundamental data structure with hierarchical 3-9-27 organization. Supports fractal scaling and semantic coherence validation. """ def __init__(self, nivel_3=None): """Initialize fractal tensor with 3-level hierarchy.""" self.nivel_3 = nivel_3 or [[0, 0, 0]] # Finest detail level self.metadata = {} # Auto-generate hierarchical levels self._generate_hierarchy() def _generate_hierarchy(self): """Generate nivel_9 and nivel_1 from nivel_3.""" # Nivel 9: group 3 vectors from nivel_3 if len(self.nivel_3) >= 3: self.nivel_9 = [self.nivel_3[i:i+3] for i in range(0, len(self.nivel_3), 3)] else: self.nivel_9 = [self.nivel_3] # Nivel 1: summary vector from nivel_3[0] if self.nivel_3: self.nivel_1 = [sum(self.nivel_3[0]) % 8, len(self.nivel_3), hash(str(self.nivel_3[0])) % 8] else: self.nivel_1 = [0, 0, 0] @classmethod def random(cls, space_constraints=None): """Generate random fractal tensor.""" nivel_3 = [[random.randint(0, 1) for _ in range(3)] for _ in range(3)] tensor = cls(nivel_3=nivel_3) if space_constraints: tensor.metadata['space_id'] = space_constraints return tensor def __repr__(self): """String representation for debugging.""" return f"FT(root={self.nivel_3[:3]}, mid={self.nivel_9[0] if self.nivel_9 else '...'}, detail={self.nivel_1})" # =============================================================================== # KNOWLEDGE BASE SYSTEM # =============================================================================== class _SingleUniverseKB: """Knowledge base for a single logical space.""" def __init__(self): self.storage = {} self.name_index = {} self.ss_index = {} def add_archetype(self, archetype_tensor: FractalTensor, Ss: list, name: Optional[str] = None, **kwargs) -> bool: """Add archetype to this universe.""" key = tuple(Ss) self.storage[key] = archetype_tensor self.ss_index[key] = archetype_tensor if name: self.name_index[name] = archetype_tensor return True def find_archetype_by_name(self, name: str) -> Optional[FractalTensor]: """Find archetype by name.""" return self.name_index.get(name) def find_archetype_by_ss(self, Ss_query: List[int]) -> list: """Find archetypes by Ss vector.""" key = tuple(Ss_query) result = self.ss_index.get(key) return [result] if result else [] class FractalKnowledgeBase: """Multi-universe knowledge base manager.""" def __init__(self): self.universes = {} def _get_space(self, space_id: str = 'default'): """Get or create a logical space.""" if space_id not in self.universes: self.universes[space_id] = _SingleUniverseKB() return self.universes[space_id] def add_archetype(self, space_id: str, name: str, archetype_tensor: FractalTensor, Ss: list, **kwargs) -> bool: """Add archetype to specified logical space.""" return self._get_space(space_id).add_archetype(archetype_tensor, Ss, name=name, **kwargs) def get_archetype(self, space_id: str, name: str) -> Optional[FractalTensor]: """Get archetype by space_id and name.""" return self._get_space(space_id).find_archetype_by_name(name) # =============================================================================== # PROCESSING MODULES # =============================================================================== class Transcender: """Hierarchical synthesis component for fractal tensor operations.""" def __init__(self, fractal_vector: Optional[List[int]] = None): self.trigate = Trigate() self.base_vector = fractal_vector or [0, 0, 0] def compute_vector_trio(self, A: List[int], B: List[int], C: List[int]) -> Dict[str, Any]: """Compute synthesis of three vectors.""" # Pairwise synthesis M_AB, S_AB = self.trigate.synthesize(A, B) M_BC, S_BC = self.trigate.synthesize(B, C) M_CA, S_CA = self.trigate.synthesize(C, A) # Meta-synthesis Ms, Ss = self.trigate.synthesize(M_AB, M_BC) return { "Ms": Ms, "Ss": Ss, "pairwise": {"M_AB": M_AB, "M_BC": M_BC, "M_CA": M_CA} } class Evolver: """Synthesis engine for creating fractal archetypes.""" def __init__(self): self.base_transcender = Transcender() def compute_fractal_archetype(self, tensor_family: List[FractalTensor]) -> FractalTensor: """Synthesize multiple tensors into emergent archetype.""" if len(tensor_family) < 3: # For fewer than 3 tensors, create a simple archetype if tensor_family: base_vector = tensor_family[0].nivel_3[0] if tensor_family[0].nivel_3 else [0,0,0] unique_vector = [sum(base_vector) % 2, len(str(base_vector)) % 2, hash(str(base_vector)) % 2] return FractalTensor(nivel_3=[unique_vector]) return FractalTensor(nivel_3=[[1,1,1]]) # Select first 3 tensors for trio synthesis trio = tensor_family[:3] # Extract vectors for synthesis A = trio[0].nivel_3[0] if trio[0].nivel_3 else [0,0,0] B = trio[1].nivel_3[0] if trio[1].nivel_3 else [0,0,0] C = trio[2].nivel_3[0] if trio[2].nivel_3 else [0,0,0] # Compute emergent properties result = self.base_transcender.compute_vector_trio(A, B, C) # Create archetype tensor archetype = FractalTensor(nivel_3=[result["Ms"]]) archetype.metadata = { "synthesis_result": result, "source_family_size": len(tensor_family), "emergent_properties": result["Ss"] } return archetype class Extender: """Reconstruction engine for extending fractal patterns.""" def __init__(self, knowledge_base: FractalKnowledgeBase): self.kb = knowledge_base self.armonizador = None # Will be set if needed def extend_fractal(self, input_ss, contexto: dict) -> dict: """Extend/reconstruct fractal from Ss vector.""" space_id = contexto.get("space_id", "default") # Look up similar archetypes universe = self.kb._get_space(space_id) ss_key = tuple(input_ss) logger.debug(f"Looking up archetype with ss_key={ss_key} in space={space_id}") candidates = universe.find_archetype_by_ss(input_ss) if candidates: logger.debug(f"Found archetype by Ss: {candidates}") reconstructed = candidates[0] else: # Create default reconstruction reconstructed = FractalTensor(nivel_3=[input_ss]) # Apply harmonization if available if self.armonizador: harmonized = self.armonizador.harmonize(input_ss, space_id=space_id) reconstructed = FractalTensor(nivel_3=[harmonized["output"]]) return {"reconstructed_tensor": reconstructed} class Armonizador: """Coherence validator and harmonization engine.""" def __init__(self, knowledge_base=None, *, tau_1: int = 1, tau_2: int = 2, tau_3: int = 3): self.kb = knowledge_base self.tau_1, self.tau_2, self.tau_3 = tau_1, tau_2, tau_3 def harmonize(self, tensor: Vector, *, archetype: Vector = None, space_id: str = "default") -> Dict[str, Any]: """Harmonize vector for coherence.""" result_vector = self._microshift(tensor, archetype or [0, 0, 0]) return { "output": result_vector, "score": 0, "adjustments": ["microshift"] } def _microshift(self, vec: Vector, archetype: Vector) -> Vector: """Apply micro-adjustments to vector.""" logger.info(f"[microshift][ambig=0] Microshift final: {vec} | Score: 0") return vec class TensorPoolManager: """Pool manager for tensor collections.""" def __init__(self): self.tensors = [] def add_tensor(self, tensor: FractalTensor): """Add tensor to pool.""" self.tensors.append(tensor) # =============================================================================== # PATTERN 0: ETHICAL FRACTAL CLUSTER GENERATION # =============================================================================== def apply_ethical_constraint(vector, space_id, kb): """Apply ethical constraints to vector.""" rules = getattr(kb, 'get_ethics', lambda sid: [-1, -1, -1])(space_id) or [-1, -1, -1] return [v ^ r if r != -1 else v for v, r in zip(vector, rules)] def compute_ethical_signature(cluster): """Compute ethical signature for cluster.""" base = str([t.nivel_3[0] for t in cluster]).encode() return hashlib.sha256(base).hexdigest() def golden_ratio_select(N, seed): """Select indices using golden ratio stepping.""" step = int(max(1, round(N * PHI))) return [(seed + i * step) % N for i in range(3)] def pattern0_create_fractal_cluster( *, input_data=None, space_id="default", num_tensors=3, context=None, entropy_seed=PHI, depth_max=3, ): """Generate ethical fractal cluster using Pattern 0.""" random.seed(int(entropy_seed * 1e9)) kb = FractalKnowledgeBase() armonizador = Armonizador(knowledge_base=kb) pool = TensorPoolManager() # Generate tensors tensors = [] for i in range(num_tensors): if input_data and i < len(input_data): vec = apply_ethical_constraint(input_data[i], space_id, kb) tensor = FractalTensor(nivel_3=[vec]) else: try: tensor = FractalTensor.random(space_constraints=space_id) except TypeError: tensor = FractalTensor.random() # Add ethical metadata tensor.metadata.update({ "ethical_hash": compute_ethical_signature([tensor]), "entropy_seed": entropy_seed, "space_id": space_id }) tensors.append(tensor) pool.add_tensor(tensor) # Harmonize cluster for tensor in tensors: harmonized = armonizador.harmonize(tensor.nivel_3[0], space_id=space_id) tensor.nivel_3[0] = harmonized["output"] return tensors # =============================================================================== # PUBLIC API # =============================================================================== # Main exports __all__ = [ 'FractalTensor', 'Trigate', 'TernaryLogic', 'Evolver', 'Extender', 'FractalKnowledgeBase', 'Armonizador', 'TensorPoolManager', 'Transcender', 'pattern0_create_fractal_cluster' ] # Compatibility aliases KnowledgeBase = FractalKnowledgeBase