Update README.md
Browse files
README.md
CHANGED
|
@@ -24,6 +24,64 @@ MOMENT is a family of foundation models for general-purpose time-series analysis
|
|
| 24 |
|
| 25 |
For details on MOMENT models, training data, and experimental results, please refer to the paper [MOMENT: A Family of Open Time-series Foundation Models](https://arxiv.org/pdf/2402.03885.pdf).
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
## Model Details
|
| 29 |
|
|
|
|
| 24 |
|
| 25 |
For details on MOMENT models, training data, and experimental results, please refer to the paper [MOMENT: A Family of Open Time-series Foundation Models](https://arxiv.org/pdf/2402.03885.pdf).
|
| 26 |
|
| 27 |
+
# Usage
|
| 28 |
+
|
| 29 |
+
Install the package using:
|
| 30 |
+
```bash
|
| 31 |
+
pip install git+https://github.com/moment-timeseries-foundation-model/moment-test.git
|
| 32 |
+
```
|
| 33 |
+
|
| 34 |
+
To load the pre-trained model for one of the tasks, use one of the following code snippets:
|
| 35 |
+
|
| 36 |
+
**Forecasting**
|
| 37 |
+
```python
|
| 38 |
+
from moment import MOMENTPipeline
|
| 39 |
+
|
| 40 |
+
model = MOMENTPipeline.from_pretrained(
|
| 41 |
+
"AutonLab/MOMENT-1-large",
|
| 42 |
+
model_kwargs={
|
| 43 |
+
'task_name': 'forecasting',
|
| 44 |
+
'forecast_horizon': 96
|
| 45 |
+
},
|
| 46 |
+
)
|
| 47 |
+
model.init()
|
| 48 |
+
```
|
| 49 |
+
|
| 50 |
+
**Classification**
|
| 51 |
+
```python
|
| 52 |
+
from moment import MOMENTPipeline
|
| 53 |
+
|
| 54 |
+
model = MOMENTPipeline.from_pretrained(
|
| 55 |
+
"AutonLab/MOMENT-1-large",
|
| 56 |
+
model_kwargs={
|
| 57 |
+
'task_name': 'classification',
|
| 58 |
+
'n_channels': 1,
|
| 59 |
+
'num_class': 2
|
| 60 |
+
},
|
| 61 |
+
)
|
| 62 |
+
model.init()
|
| 63 |
+
```
|
| 64 |
+
|
| 65 |
+
**Anomaly Detection/Imputation/Pre-training**
|
| 66 |
+
```python
|
| 67 |
+
from moment import MOMENTPipeline
|
| 68 |
+
|
| 69 |
+
model = MOMENTPipeline.from_pretrained(
|
| 70 |
+
"AutonLab/MOMENT-1-large",
|
| 71 |
+
model_kwargs={"task_name": "reconstruction"},
|
| 72 |
+
)
|
| 73 |
+
mode.init()
|
| 74 |
+
```
|
| 75 |
+
|
| 76 |
+
**Embedding**
|
| 77 |
+
```python
|
| 78 |
+
from moment import MOMENTPipeline
|
| 79 |
+
|
| 80 |
+
model = MOMENTPipeline.from_pretrained(
|
| 81 |
+
"AutonLab/MOMENT-1-large",
|
| 82 |
+
model_kwargs={'task_name': 'embedding'},
|
| 83 |
+
)
|
| 84 |
+
```
|
| 85 |
|
| 86 |
## Model Details
|
| 87 |
|