Commit
·
822deaf
1
Parent(s):
e150e1a
Upload sklearn_practice.ipynb
Browse filesin machine learning, model validation is referred to as the process where a trained model is evaluated with a testing data set.
- sklearn_practice.ipynb +633 -0
sklearn_practice.ipynb
ADDED
|
@@ -0,0 +1,633 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 2,
|
| 6 |
+
"id": "6452ab53",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": [
|
| 10 |
+
"import pandas as pd\n",
|
| 11 |
+
"df=pd.read_csv(\"Advertising.csv\")"
|
| 12 |
+
]
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"cell_type": "code",
|
| 16 |
+
"execution_count": 3,
|
| 17 |
+
"id": "5533bf4b",
|
| 18 |
+
"metadata": {},
|
| 19 |
+
"outputs": [
|
| 20 |
+
{
|
| 21 |
+
"data": {
|
| 22 |
+
"text/html": [
|
| 23 |
+
"<div>\n",
|
| 24 |
+
"<style scoped>\n",
|
| 25 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 26 |
+
" vertical-align: middle;\n",
|
| 27 |
+
" }\n",
|
| 28 |
+
"\n",
|
| 29 |
+
" .dataframe tbody tr th {\n",
|
| 30 |
+
" vertical-align: top;\n",
|
| 31 |
+
" }\n",
|
| 32 |
+
"\n",
|
| 33 |
+
" .dataframe thead th {\n",
|
| 34 |
+
" text-align: right;\n",
|
| 35 |
+
" }\n",
|
| 36 |
+
"</style>\n",
|
| 37 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 38 |
+
" <thead>\n",
|
| 39 |
+
" <tr style=\"text-align: right;\">\n",
|
| 40 |
+
" <th></th>\n",
|
| 41 |
+
" <th>Unnamed: 0</th>\n",
|
| 42 |
+
" <th>TV</th>\n",
|
| 43 |
+
" <th>radio</th>\n",
|
| 44 |
+
" <th>newspaper</th>\n",
|
| 45 |
+
" <th>sales</th>\n",
|
| 46 |
+
" </tr>\n",
|
| 47 |
+
" </thead>\n",
|
| 48 |
+
" <tbody>\n",
|
| 49 |
+
" <tr>\n",
|
| 50 |
+
" <th>0</th>\n",
|
| 51 |
+
" <td>1</td>\n",
|
| 52 |
+
" <td>230.1</td>\n",
|
| 53 |
+
" <td>37.8</td>\n",
|
| 54 |
+
" <td>69.2</td>\n",
|
| 55 |
+
" <td>22.1</td>\n",
|
| 56 |
+
" </tr>\n",
|
| 57 |
+
" <tr>\n",
|
| 58 |
+
" <th>1</th>\n",
|
| 59 |
+
" <td>2</td>\n",
|
| 60 |
+
" <td>44.5</td>\n",
|
| 61 |
+
" <td>39.3</td>\n",
|
| 62 |
+
" <td>45.1</td>\n",
|
| 63 |
+
" <td>10.4</td>\n",
|
| 64 |
+
" </tr>\n",
|
| 65 |
+
" <tr>\n",
|
| 66 |
+
" <th>2</th>\n",
|
| 67 |
+
" <td>3</td>\n",
|
| 68 |
+
" <td>17.2</td>\n",
|
| 69 |
+
" <td>45.9</td>\n",
|
| 70 |
+
" <td>69.3</td>\n",
|
| 71 |
+
" <td>9.3</td>\n",
|
| 72 |
+
" </tr>\n",
|
| 73 |
+
" <tr>\n",
|
| 74 |
+
" <th>3</th>\n",
|
| 75 |
+
" <td>4</td>\n",
|
| 76 |
+
" <td>151.5</td>\n",
|
| 77 |
+
" <td>41.3</td>\n",
|
| 78 |
+
" <td>58.5</td>\n",
|
| 79 |
+
" <td>18.5</td>\n",
|
| 80 |
+
" </tr>\n",
|
| 81 |
+
" <tr>\n",
|
| 82 |
+
" <th>4</th>\n",
|
| 83 |
+
" <td>5</td>\n",
|
| 84 |
+
" <td>180.8</td>\n",
|
| 85 |
+
" <td>10.8</td>\n",
|
| 86 |
+
" <td>58.4</td>\n",
|
| 87 |
+
" <td>12.9</td>\n",
|
| 88 |
+
" </tr>\n",
|
| 89 |
+
" </tbody>\n",
|
| 90 |
+
"</table>\n",
|
| 91 |
+
"</div>"
|
| 92 |
+
],
|
| 93 |
+
"text/plain": [
|
| 94 |
+
" Unnamed: 0 TV radio newspaper sales\n",
|
| 95 |
+
"0 1 230.1 37.8 69.2 22.1\n",
|
| 96 |
+
"1 2 44.5 39.3 45.1 10.4\n",
|
| 97 |
+
"2 3 17.2 45.9 69.3 9.3\n",
|
| 98 |
+
"3 4 151.5 41.3 58.5 18.5\n",
|
| 99 |
+
"4 5 180.8 10.8 58.4 12.9"
|
| 100 |
+
]
|
| 101 |
+
},
|
| 102 |
+
"execution_count": 3,
|
| 103 |
+
"metadata": {},
|
| 104 |
+
"output_type": "execute_result"
|
| 105 |
+
}
|
| 106 |
+
],
|
| 107 |
+
"source": [
|
| 108 |
+
"df.head()"
|
| 109 |
+
]
|
| 110 |
+
},
|
| 111 |
+
{
|
| 112 |
+
"cell_type": "code",
|
| 113 |
+
"execution_count": 4,
|
| 114 |
+
"id": "5f2f38b5",
|
| 115 |
+
"metadata": {},
|
| 116 |
+
"outputs": [
|
| 117 |
+
{
|
| 118 |
+
"data": {
|
| 119 |
+
"text/plain": [
|
| 120 |
+
"Unnamed: 0 0\n",
|
| 121 |
+
"TV 0\n",
|
| 122 |
+
"radio 0\n",
|
| 123 |
+
"newspaper 0\n",
|
| 124 |
+
"sales 0\n",
|
| 125 |
+
"dtype: int64"
|
| 126 |
+
]
|
| 127 |
+
},
|
| 128 |
+
"execution_count": 4,
|
| 129 |
+
"metadata": {},
|
| 130 |
+
"output_type": "execute_result"
|
| 131 |
+
}
|
| 132 |
+
],
|
| 133 |
+
"source": [
|
| 134 |
+
"df.isnull().sum()"
|
| 135 |
+
]
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"cell_type": "code",
|
| 139 |
+
"execution_count": 6,
|
| 140 |
+
"id": "a3c652b1",
|
| 141 |
+
"metadata": {},
|
| 142 |
+
"outputs": [
|
| 143 |
+
{
|
| 144 |
+
"data": {
|
| 145 |
+
"text/plain": [
|
| 146 |
+
"(200, 5)"
|
| 147 |
+
]
|
| 148 |
+
},
|
| 149 |
+
"execution_count": 6,
|
| 150 |
+
"metadata": {},
|
| 151 |
+
"output_type": "execute_result"
|
| 152 |
+
}
|
| 153 |
+
],
|
| 154 |
+
"source": [
|
| 155 |
+
"df.shape"
|
| 156 |
+
]
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"cell_type": "code",
|
| 160 |
+
"execution_count": 8,
|
| 161 |
+
"id": "c80ca9d4",
|
| 162 |
+
"metadata": {},
|
| 163 |
+
"outputs": [],
|
| 164 |
+
"source": [
|
| 165 |
+
"from sklearn.tree import DecisionTreeRegressor"
|
| 166 |
+
]
|
| 167 |
+
},
|
| 168 |
+
{
|
| 169 |
+
"cell_type": "code",
|
| 170 |
+
"execution_count": 15,
|
| 171 |
+
"id": "64f6ec0f",
|
| 172 |
+
"metadata": {},
|
| 173 |
+
"outputs": [],
|
| 174 |
+
"source": [
|
| 175 |
+
"df_features=df.columns\n",
|
| 176 |
+
"y=df.sales\n",
|
| 177 |
+
"X=df[df_features]"
|
| 178 |
+
]
|
| 179 |
+
},
|
| 180 |
+
{
|
| 181 |
+
"cell_type": "code",
|
| 182 |
+
"execution_count": 16,
|
| 183 |
+
"id": "f863cb72",
|
| 184 |
+
"metadata": {},
|
| 185 |
+
"outputs": [
|
| 186 |
+
{
|
| 187 |
+
"name": "stdout",
|
| 188 |
+
"output_type": "stream",
|
| 189 |
+
"text": [
|
| 190 |
+
"Index(['Unnamed: 0', 'TV', 'radio', 'newspaper', 'sales'], dtype='object')\n"
|
| 191 |
+
]
|
| 192 |
+
}
|
| 193 |
+
],
|
| 194 |
+
"source": [
|
| 195 |
+
"print(df_features)"
|
| 196 |
+
]
|
| 197 |
+
},
|
| 198 |
+
{
|
| 199 |
+
"cell_type": "code",
|
| 200 |
+
"execution_count": 17,
|
| 201 |
+
"id": "6cbf836d",
|
| 202 |
+
"metadata": {},
|
| 203 |
+
"outputs": [
|
| 204 |
+
{
|
| 205 |
+
"name": "stdout",
|
| 206 |
+
"output_type": "stream",
|
| 207 |
+
"text": [
|
| 208 |
+
"0 22.1\n",
|
| 209 |
+
"1 10.4\n",
|
| 210 |
+
"2 9.3\n",
|
| 211 |
+
"3 18.5\n",
|
| 212 |
+
"4 12.9\n",
|
| 213 |
+
" ... \n",
|
| 214 |
+
"195 7.6\n",
|
| 215 |
+
"196 9.7\n",
|
| 216 |
+
"197 12.8\n",
|
| 217 |
+
"198 25.5\n",
|
| 218 |
+
"199 13.4\n",
|
| 219 |
+
"Name: sales, Length: 200, dtype: float64\n"
|
| 220 |
+
]
|
| 221 |
+
}
|
| 222 |
+
],
|
| 223 |
+
"source": [
|
| 224 |
+
"print(y)"
|
| 225 |
+
]
|
| 226 |
+
},
|
| 227 |
+
{
|
| 228 |
+
"cell_type": "code",
|
| 229 |
+
"execution_count": 18,
|
| 230 |
+
"id": "889e08ad",
|
| 231 |
+
"metadata": {},
|
| 232 |
+
"outputs": [
|
| 233 |
+
{
|
| 234 |
+
"name": "stdout",
|
| 235 |
+
"output_type": "stream",
|
| 236 |
+
"text": [
|
| 237 |
+
" Unnamed: 0 TV radio newspaper sales\n",
|
| 238 |
+
"0 1 230.1 37.8 69.2 22.1\n",
|
| 239 |
+
"1 2 44.5 39.3 45.1 10.4\n",
|
| 240 |
+
"2 3 17.2 45.9 69.3 9.3\n",
|
| 241 |
+
"3 4 151.5 41.3 58.5 18.5\n",
|
| 242 |
+
"4 5 180.8 10.8 58.4 12.9\n",
|
| 243 |
+
".. ... ... ... ... ...\n",
|
| 244 |
+
"195 196 38.2 3.7 13.8 7.6\n",
|
| 245 |
+
"196 197 94.2 4.9 8.1 9.7\n",
|
| 246 |
+
"197 198 177.0 9.3 6.4 12.8\n",
|
| 247 |
+
"198 199 283.6 42.0 66.2 25.5\n",
|
| 248 |
+
"199 200 232.1 8.6 8.7 13.4\n",
|
| 249 |
+
"\n",
|
| 250 |
+
"[200 rows x 5 columns]\n"
|
| 251 |
+
]
|
| 252 |
+
}
|
| 253 |
+
],
|
| 254 |
+
"source": [
|
| 255 |
+
"print(X)"
|
| 256 |
+
]
|
| 257 |
+
},
|
| 258 |
+
{
|
| 259 |
+
"cell_type": "code",
|
| 260 |
+
"execution_count": 9,
|
| 261 |
+
"id": "e486a41a",
|
| 262 |
+
"metadata": {},
|
| 263 |
+
"outputs": [],
|
| 264 |
+
"source": [
|
| 265 |
+
"#model cretaed\n",
|
| 266 |
+
"df_model=DecisionTreeRegressor()"
|
| 267 |
+
]
|
| 268 |
+
},
|
| 269 |
+
{
|
| 270 |
+
"cell_type": "code",
|
| 271 |
+
"execution_count": 10,
|
| 272 |
+
"id": "c7070799",
|
| 273 |
+
"metadata": {},
|
| 274 |
+
"outputs": [
|
| 275 |
+
{
|
| 276 |
+
"data": {
|
| 277 |
+
"text/plain": [
|
| 278 |
+
"DecisionTreeRegressor()"
|
| 279 |
+
]
|
| 280 |
+
},
|
| 281 |
+
"execution_count": 10,
|
| 282 |
+
"metadata": {},
|
| 283 |
+
"output_type": "execute_result"
|
| 284 |
+
}
|
| 285 |
+
],
|
| 286 |
+
"source": [
|
| 287 |
+
"df_model"
|
| 288 |
+
]
|
| 289 |
+
},
|
| 290 |
+
{
|
| 291 |
+
"cell_type": "code",
|
| 292 |
+
"execution_count": 19,
|
| 293 |
+
"id": "b796e14e",
|
| 294 |
+
"metadata": {},
|
| 295 |
+
"outputs": [
|
| 296 |
+
{
|
| 297 |
+
"data": {
|
| 298 |
+
"text/plain": [
|
| 299 |
+
"DecisionTreeRegressor()"
|
| 300 |
+
]
|
| 301 |
+
},
|
| 302 |
+
"execution_count": 19,
|
| 303 |
+
"metadata": {},
|
| 304 |
+
"output_type": "execute_result"
|
| 305 |
+
}
|
| 306 |
+
],
|
| 307 |
+
"source": [
|
| 308 |
+
"#fit model\n",
|
| 309 |
+
"df_model.fit(X,y)"
|
| 310 |
+
]
|
| 311 |
+
},
|
| 312 |
+
{
|
| 313 |
+
"cell_type": "code",
|
| 314 |
+
"execution_count": 22,
|
| 315 |
+
"id": "650afd98",
|
| 316 |
+
"metadata": {},
|
| 317 |
+
"outputs": [],
|
| 318 |
+
"source": [
|
| 319 |
+
"#calculateing the MAE\n",
|
| 320 |
+
"from sklearn.metrics import mean_absolute_error"
|
| 321 |
+
]
|
| 322 |
+
},
|
| 323 |
+
{
|
| 324 |
+
"cell_type": "code",
|
| 325 |
+
"execution_count": 23,
|
| 326 |
+
"id": "b8292980",
|
| 327 |
+
"metadata": {},
|
| 328 |
+
"outputs": [],
|
| 329 |
+
"source": [
|
| 330 |
+
"predicted_sales=df_model.predict(X)"
|
| 331 |
+
]
|
| 332 |
+
},
|
| 333 |
+
{
|
| 334 |
+
"cell_type": "code",
|
| 335 |
+
"execution_count": 28,
|
| 336 |
+
"id": "776ea1bb",
|
| 337 |
+
"metadata": {},
|
| 338 |
+
"outputs": [
|
| 339 |
+
{
|
| 340 |
+
"data": {
|
| 341 |
+
"text/plain": [
|
| 342 |
+
"array([22.1, 10.4, 9.3, 18.5, 12.9, 7.2, 11.8, 13.2, 4.8, 10.6, 8.6,\n",
|
| 343 |
+
" 17.4, 9.2, 9.7, 19. , 22.4, 12.5, 24.4, 11.3, 14.6, 18. , 12.5,\n",
|
| 344 |
+
" 5.6, 15.5, 9.7, 12. , 15. , 15.9, 18.9, 10.5, 21.4, 11.9, 9.6,\n",
|
| 345 |
+
" 17.4, 9.5, 12.8, 25.4, 14.7, 10.1, 21.5, 16.6, 17.1, 20.7, 12.9,\n",
|
| 346 |
+
" 8.5, 14.9, 10.6, 23.2, 14.8, 9.7, 11.4, 10.7, 22.6, 21.2, 20.2,\n",
|
| 347 |
+
" 23.7, 5.5, 13.2, 23.8, 18.4, 8.1, 24.2, 15.7, 14. , 18. , 9.3,\n",
|
| 348 |
+
" 9.5, 13.4, 18.9, 22.3, 18.3, 12.4, 8.8, 11. , 17. , 8.7, 6.9,\n",
|
| 349 |
+
" 14.2, 5.3, 11. , 11.8, 12.3, 11.3, 13.6, 21.7, 15.2, 12. , 16. ,\n",
|
| 350 |
+
" 12.9, 16.7, 11.2, 7.3, 19.4, 22.2, 11.5, 16.9, 11.7, 15.5, 25.4,\n",
|
| 351 |
+
" 17.2, 11.7, 23.8, 14.8, 14.7, 20.7, 19.2, 7.2, 8.7, 5.3, 19.8,\n",
|
| 352 |
+
" 13.4, 21.8, 14.1, 15.9, 14.6, 12.6, 12.2, 9.4, 15.9, 6.6, 15.5,\n",
|
| 353 |
+
" 7. , 11.6, 15.2, 19.7, 10.6, 6.6, 8.8, 24.7, 9.7, 1.6, 12.7,\n",
|
| 354 |
+
" 5.7, 19.6, 10.8, 11.6, 9.5, 20.8, 9.6, 20.7, 10.9, 19.2, 20.1,\n",
|
| 355 |
+
" 10.4, 11.4, 10.3, 13.2, 25.4, 10.9, 10.1, 16.1, 11.6, 16.6, 19. ,\n",
|
| 356 |
+
" 15.6, 3.2, 15.3, 10.1, 7.3, 12.9, 14.4, 13.3, 14.9, 18. , 11.9,\n",
|
| 357 |
+
" 11.9, 8. , 12.2, 17.1, 15. , 8.4, 14.5, 7.6, 11.7, 11.5, 27. ,\n",
|
| 358 |
+
" 20.2, 11.7, 11.8, 12.6, 10.5, 12.2, 8.7, 26.2, 17.6, 22.6, 10.3,\n",
|
| 359 |
+
" 17.3, 15.9, 6.7, 10.8, 9.9, 5.9, 19.6, 17.3, 7.6, 9.7, 12.8,\n",
|
| 360 |
+
" 25.5, 13.4])"
|
| 361 |
+
]
|
| 362 |
+
},
|
| 363 |
+
"execution_count": 28,
|
| 364 |
+
"metadata": {},
|
| 365 |
+
"output_type": "execute_result"
|
| 366 |
+
}
|
| 367 |
+
],
|
| 368 |
+
"source": [
|
| 369 |
+
"predicted_sales"
|
| 370 |
+
]
|
| 371 |
+
},
|
| 372 |
+
{
|
| 373 |
+
"cell_type": "code",
|
| 374 |
+
"execution_count": 29,
|
| 375 |
+
"id": "785db183",
|
| 376 |
+
"metadata": {},
|
| 377 |
+
"outputs": [
|
| 378 |
+
{
|
| 379 |
+
"data": {
|
| 380 |
+
"text/plain": [
|
| 381 |
+
"5.329070518200751e-17"
|
| 382 |
+
]
|
| 383 |
+
},
|
| 384 |
+
"execution_count": 29,
|
| 385 |
+
"metadata": {},
|
| 386 |
+
"output_type": "execute_result"
|
| 387 |
+
}
|
| 388 |
+
],
|
| 389 |
+
"source": [
|
| 390 |
+
"mean_absolute_error(y,predicted_sales)"
|
| 391 |
+
]
|
| 392 |
+
},
|
| 393 |
+
{
|
| 394 |
+
"cell_type": "markdown",
|
| 395 |
+
"id": "7c56805f",
|
| 396 |
+
"metadata": {},
|
| 397 |
+
"source": [
|
| 398 |
+
"# splitting the data"
|
| 399 |
+
]
|
| 400 |
+
},
|
| 401 |
+
{
|
| 402 |
+
"cell_type": "code",
|
| 403 |
+
"execution_count": 55,
|
| 404 |
+
"id": "c9a97954",
|
| 405 |
+
"metadata": {},
|
| 406 |
+
"outputs": [],
|
| 407 |
+
"source": []
|
| 408 |
+
},
|
| 409 |
+
{
|
| 410 |
+
"cell_type": "code",
|
| 411 |
+
"execution_count": 35,
|
| 412 |
+
"id": "592afda8",
|
| 413 |
+
"metadata": {},
|
| 414 |
+
"outputs": [],
|
| 415 |
+
"source": [
|
| 416 |
+
"#split the data and make ordiction on the slaes\n",
|
| 417 |
+
"from sklearn.model_selection import train_test_split\n",
|
| 418 |
+
"train_X, value_X, train_y, value_y = train_test_split(X,y,random_state=0)"
|
| 419 |
+
]
|
| 420 |
+
},
|
| 421 |
+
{
|
| 422 |
+
"cell_type": "code",
|
| 423 |
+
"execution_count": 37,
|
| 424 |
+
"id": "9b16c96b",
|
| 425 |
+
"metadata": {},
|
| 426 |
+
"outputs": [
|
| 427 |
+
{
|
| 428 |
+
"name": "stdout",
|
| 429 |
+
"output_type": "stream",
|
| 430 |
+
"text": [
|
| 431 |
+
" Unnamed: 0 TV radio newspaper sales\n",
|
| 432 |
+
"71 72 109.8 14.3 31.7 12.4\n",
|
| 433 |
+
"124 125 229.5 32.3 74.2 19.7\n",
|
| 434 |
+
"184 185 253.8 21.3 30.0 17.6\n",
|
| 435 |
+
"97 98 184.9 21.0 22.0 15.5\n",
|
| 436 |
+
"149 150 44.7 25.8 20.6 10.1\n"
|
| 437 |
+
]
|
| 438 |
+
}
|
| 439 |
+
],
|
| 440 |
+
"source": [
|
| 441 |
+
"#model defining for the splitted data\n",
|
| 442 |
+
"print(train_X.head())"
|
| 443 |
+
]
|
| 444 |
+
},
|
| 445 |
+
{
|
| 446 |
+
"cell_type": "code",
|
| 447 |
+
"execution_count": 42,
|
| 448 |
+
"id": "ccb49d15",
|
| 449 |
+
"metadata": {},
|
| 450 |
+
"outputs": [
|
| 451 |
+
{
|
| 452 |
+
"name": "stdout",
|
| 453 |
+
"output_type": "stream",
|
| 454 |
+
"text": [
|
| 455 |
+
" Unnamed: 0 TV radio newspaper sales\n",
|
| 456 |
+
"18 19 69.2 20.5 18.3 11.3\n",
|
| 457 |
+
"170 171 50.0 11.6 18.4 8.4\n",
|
| 458 |
+
"107 108 90.4 0.3 23.2 8.7\n",
|
| 459 |
+
"98 99 289.7 42.3 51.2 25.4\n",
|
| 460 |
+
"177 178 170.2 7.8 35.2 11.7\n"
|
| 461 |
+
]
|
| 462 |
+
}
|
| 463 |
+
],
|
| 464 |
+
"source": [
|
| 465 |
+
"print(value_X.head())"
|
| 466 |
+
]
|
| 467 |
+
},
|
| 468 |
+
{
|
| 469 |
+
"cell_type": "code",
|
| 470 |
+
"execution_count": 38,
|
| 471 |
+
"id": "1cf49a81",
|
| 472 |
+
"metadata": {},
|
| 473 |
+
"outputs": [
|
| 474 |
+
{
|
| 475 |
+
"name": "stdout",
|
| 476 |
+
"output_type": "stream",
|
| 477 |
+
"text": [
|
| 478 |
+
"71 12.4\n",
|
| 479 |
+
"124 19.7\n",
|
| 480 |
+
"184 17.6\n",
|
| 481 |
+
"97 15.5\n",
|
| 482 |
+
"149 10.1\n",
|
| 483 |
+
"Name: sales, dtype: float64\n"
|
| 484 |
+
]
|
| 485 |
+
}
|
| 486 |
+
],
|
| 487 |
+
"source": [
|
| 488 |
+
"print(train_y.head())"
|
| 489 |
+
]
|
| 490 |
+
},
|
| 491 |
+
{
|
| 492 |
+
"cell_type": "code",
|
| 493 |
+
"execution_count": 43,
|
| 494 |
+
"id": "2a43ddbe",
|
| 495 |
+
"metadata": {},
|
| 496 |
+
"outputs": [
|
| 497 |
+
{
|
| 498 |
+
"name": "stdout",
|
| 499 |
+
"output_type": "stream",
|
| 500 |
+
"text": [
|
| 501 |
+
"18 11.3\n",
|
| 502 |
+
"170 8.4\n",
|
| 503 |
+
"107 8.7\n",
|
| 504 |
+
"98 25.4\n",
|
| 505 |
+
"177 11.7\n",
|
| 506 |
+
"Name: sales, dtype: float64\n"
|
| 507 |
+
]
|
| 508 |
+
}
|
| 509 |
+
],
|
| 510 |
+
"source": [
|
| 511 |
+
"print(value_y.head())"
|
| 512 |
+
]
|
| 513 |
+
},
|
| 514 |
+
{
|
| 515 |
+
"cell_type": "code",
|
| 516 |
+
"execution_count": 44,
|
| 517 |
+
"id": "1d693cd4",
|
| 518 |
+
"metadata": {},
|
| 519 |
+
"outputs": [],
|
| 520 |
+
"source": [
|
| 521 |
+
"model_df2=DecisionTreeRegressor()"
|
| 522 |
+
]
|
| 523 |
+
},
|
| 524 |
+
{
|
| 525 |
+
"cell_type": "code",
|
| 526 |
+
"execution_count": 54,
|
| 527 |
+
"id": "1c9fa0e3",
|
| 528 |
+
"metadata": {},
|
| 529 |
+
"outputs": [
|
| 530 |
+
{
|
| 531 |
+
"data": {
|
| 532 |
+
"text/plain": [
|
| 533 |
+
"DecisionTreeRegressor()"
|
| 534 |
+
]
|
| 535 |
+
},
|
| 536 |
+
"execution_count": 54,
|
| 537 |
+
"metadata": {},
|
| 538 |
+
"output_type": "execute_result"
|
| 539 |
+
}
|
| 540 |
+
],
|
| 541 |
+
"source": [
|
| 542 |
+
"model_df2.fit(train_X,train_y)"
|
| 543 |
+
]
|
| 544 |
+
},
|
| 545 |
+
{
|
| 546 |
+
"cell_type": "code",
|
| 547 |
+
"execution_count": 48,
|
| 548 |
+
"id": "281c1e58",
|
| 549 |
+
"metadata": {},
|
| 550 |
+
"outputs": [],
|
| 551 |
+
"source": [
|
| 552 |
+
"df2_predict=model_df2.predict(value_X)"
|
| 553 |
+
]
|
| 554 |
+
},
|
| 555 |
+
{
|
| 556 |
+
"cell_type": "code",
|
| 557 |
+
"execution_count": 49,
|
| 558 |
+
"id": "91b05122",
|
| 559 |
+
"metadata": {},
|
| 560 |
+
"outputs": [
|
| 561 |
+
{
|
| 562 |
+
"data": {
|
| 563 |
+
"text/plain": [
|
| 564 |
+
"array([11.3, 8.6, 8.6, 25.5, 11.7, 8.6, 7.3, 13.4, 9.3, 16.9, 24.4,\n",
|
| 565 |
+
" 10.9, 11. , 15.7, 11.8, 13.2, 17.6, 3.2, 14.7, 16.7, 25.4, 10.3,\n",
|
| 566 |
+
" 15.2, 12.9, 8.6, 15.3, 12.5, 22.6, 11.6, 8.6, 12.6, 23.8, 15.9,\n",
|
| 567 |
+
" 21.5, 5.5, 6.6, 9.7, 12.9, 13.2, 7.3, 10.9, 9.5, 15.2, 15.9,\n",
|
| 568 |
+
" 17.4, 14.2, 5.3, 8. , 16. , 11. ])"
|
| 569 |
+
]
|
| 570 |
+
},
|
| 571 |
+
"execution_count": 49,
|
| 572 |
+
"metadata": {},
|
| 573 |
+
"output_type": "execute_result"
|
| 574 |
+
}
|
| 575 |
+
],
|
| 576 |
+
"source": [
|
| 577 |
+
"df2_predict"
|
| 578 |
+
]
|
| 579 |
+
},
|
| 580 |
+
{
|
| 581 |
+
"cell_type": "code",
|
| 582 |
+
"execution_count": 51,
|
| 583 |
+
"id": "22a076e6",
|
| 584 |
+
"metadata": {},
|
| 585 |
+
"outputs": [],
|
| 586 |
+
"source": [
|
| 587 |
+
"mae=mean_absolute_error(value_y,df2_predict)"
|
| 588 |
+
]
|
| 589 |
+
},
|
| 590 |
+
{
|
| 591 |
+
"cell_type": "code",
|
| 592 |
+
"execution_count": 52,
|
| 593 |
+
"id": "4584d26d",
|
| 594 |
+
"metadata": {},
|
| 595 |
+
"outputs": [
|
| 596 |
+
{
|
| 597 |
+
"data": {
|
| 598 |
+
"text/plain": [
|
| 599 |
+
"0.20800000000000002"
|
| 600 |
+
]
|
| 601 |
+
},
|
| 602 |
+
"execution_count": 52,
|
| 603 |
+
"metadata": {},
|
| 604 |
+
"output_type": "execute_result"
|
| 605 |
+
}
|
| 606 |
+
],
|
| 607 |
+
"source": [
|
| 608 |
+
"mae"
|
| 609 |
+
]
|
| 610 |
+
}
|
| 611 |
+
],
|
| 612 |
+
"metadata": {
|
| 613 |
+
"kernelspec": {
|
| 614 |
+
"display_name": "Python 3 (ipykernel)",
|
| 615 |
+
"language": "python",
|
| 616 |
+
"name": "python3"
|
| 617 |
+
},
|
| 618 |
+
"language_info": {
|
| 619 |
+
"codemirror_mode": {
|
| 620 |
+
"name": "ipython",
|
| 621 |
+
"version": 3
|
| 622 |
+
},
|
| 623 |
+
"file_extension": ".py",
|
| 624 |
+
"mimetype": "text/x-python",
|
| 625 |
+
"name": "python",
|
| 626 |
+
"nbconvert_exporter": "python",
|
| 627 |
+
"pygments_lexer": "ipython3",
|
| 628 |
+
"version": "3.9.12"
|
| 629 |
+
}
|
| 630 |
+
},
|
| 631 |
+
"nbformat": 4,
|
| 632 |
+
"nbformat_minor": 5
|
| 633 |
+
}
|