Commit
·
4b56aa6
1
Parent(s):
b1df38b
Update README.md
Browse files
README.md
CHANGED
|
@@ -58,40 +58,19 @@ For detailed evaluation results, please refer to the website http://flageval.baa
|
|
| 58 |
```python
|
| 59 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 60 |
import torch
|
| 61 |
-
|
| 62 |
-
device = torch.device("cuda:1")
|
| 63 |
-
|
| 64 |
model_info = "BAAI/AquilaChat-7B"
|
| 65 |
tokenizer = AutoTokenizer.from_pretrained(model_info, trust_remote_code=True)
|
| 66 |
model = AutoModelForCausalLM.from_pretrained(model_info, trust_remote_code=True)
|
| 67 |
model.eval()
|
| 68 |
model.to(device)
|
| 69 |
-
|
| 70 |
text = "请给出10个要到北京旅游的理由。"
|
| 71 |
-
|
| 72 |
tokens = tokenizer.encode_plus(text)['input_ids'][:-1]
|
| 73 |
-
|
| 74 |
tokens = torch.tensor(tokens)[None,].to(device)
|
| 75 |
-
|
| 76 |
-
|
| 77 |
with torch.no_grad():
|
| 78 |
-
out = model.generate(tokens, do_sample=True, max_length=512, eos_token_id=100007)[0]
|
| 79 |
-
|
| 80 |
out = tokenizer.decode(out.cpu().numpy().tolist())
|
| 81 |
-
if "###" in out:
|
| 82 |
-
special_index = out.index("###")
|
| 83 |
-
out = out[: special_index]
|
| 84 |
-
|
| 85 |
-
if "[UNK]" in out:
|
| 86 |
-
special_index = out.index("[UNK]")
|
| 87 |
-
out = out[:special_index]
|
| 88 |
-
|
| 89 |
-
if "</s>" in out:
|
| 90 |
-
special_index = out.index("</s>")
|
| 91 |
-
out = out[: special_index]
|
| 92 |
-
|
| 93 |
-
if len(out) > 0 and out[0] == " ":
|
| 94 |
-
out = out[1:]
|
| 95 |
print(out)
|
| 96 |
```
|
| 97 |
|
|
|
|
| 58 |
```python
|
| 59 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 60 |
import torch
|
| 61 |
+
device = torch.device("cuda")
|
|
|
|
|
|
|
| 62 |
model_info = "BAAI/AquilaChat-7B"
|
| 63 |
tokenizer = AutoTokenizer.from_pretrained(model_info, trust_remote_code=True)
|
| 64 |
model = AutoModelForCausalLM.from_pretrained(model_info, trust_remote_code=True)
|
| 65 |
model.eval()
|
| 66 |
model.to(device)
|
|
|
|
| 67 |
text = "请给出10个要到北京旅游的理由。"
|
|
|
|
| 68 |
tokens = tokenizer.encode_plus(text)['input_ids'][:-1]
|
|
|
|
| 69 |
tokens = torch.tensor(tokens)[None,].to(device)
|
| 70 |
+
stop_tokens = ["###", "[UNK]", "</s>"]
|
|
|
|
| 71 |
with torch.no_grad():
|
| 72 |
+
out = model.generate(tokens, do_sample=True, max_length=512, eos_token_id=100007, bad_words_ids=[[tokenizer.encode(token)[0] for token in stop_tokens]])[0]
|
|
|
|
| 73 |
out = tokenizer.decode(out.cpu().numpy().tolist())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
print(out)
|
| 75 |
```
|
| 76 |
|