File size: 13,223 Bytes
fac603b
db31262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
941fa2e
db31262
1f83805
db31262
 
 
 
4b0c02e
 
 
 
db31262
 
 
 
 
 
8648078
 
 
4b0c02e
1f83805
4b0c02e
 
db31262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8648078
db31262
 
 
 
 
 
8648078
 
db31262
8648078
 
 
 
 
 
 
 
 
 
db31262
 
 
 
 
 
 
 
 
1f83805
db31262
 
 
 
 
4b0c02e
 
 
db31262
4b0c02e
db31262
 
 
 
 
 
 
 
 
 
 
 
fac603b
db31262
 
 
 
 
 
 
 
 
fac603b
db31262
 
 
 
 
4b0c02e
db31262
 
1f83805
db31262
 
 
 
 
4b0c02e
 
 
 
db31262
 
 
 
 
8648078
 
 
 
 
db31262
 
 
 
 
 
 
 
 
 
 
 
 
8648078
db31262
 
 
 
 
 
 
 
 
8648078
 
db31262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8648078
db31262
 
 
 
8648078
db31262
 
 
 
4b0c02e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
<h1 align='center'>EchoMimicV2: Towards Striking, Simplified, and Semi-Body Human Animation</h1>

<div align='center'>
    <a href='https://github.com/mengrang' target='_blank'>Rang Meng</a><sup></sup>&emsp;
    <a href='https://github.com/' target='_blank'>Xingyu Zhang</a><sup></sup>&emsp;
    <a href='https://lymhust.github.io/' target='_blank'>Yuming Li</a><sup></sup>&emsp;
    <a href='https://github.com/' target='_blank'>Chenguang Ma</a><sup></sup>
</div>


<div align='center'>
Terminal Technology Department, Alipay, Ant Group.
</div>
<br>
<div align='center'>
    <a href='https://antgroup.github.io/ai/echomimic_v2/'><img src='https://img.shields.io/badge/Project-Page-blue'></a>
    <a href='https://huggingface.co/BadToBest/EchoMimicV2'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Model-yellow'></a>
    <!--<a href='https://antgroup.github.io/ai/echomimic_v2/'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Demo-yellow'></a>-->
    <a href='https://modelscope.cn/models/BadToBest/EchoMimicV2'><img src='https://img.shields.io/badge/ModelScope-Model-purple'></a>
    <!--<a href='https://antgroup.github.io/ai/echomimic_v2/'><img src='https://img.shields.io/badge/ModelScope-Demo-purple'></a>-->
    <a href='https://arxiv.org/abs/2411.10061'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
    <a href='https://github.com/antgroup/echomimic_v2/blob/main/assets/halfbody_demo/wechat_group.png'><img src='https://badges.aleen42.com/src/wechat.svg'></a>
</div>
<div align='center'>
    <a href='https://github.com/antgroup/echomimic_v2/discussions/53'><img src='https://img.shields.io/badge/English-Common Problems-orange'></a>
    <a href='https://github.com/antgroup/echomimic_v2/discussions/40'><img src='https://img.shields.io/badge/ไธญๆ–‡็‰ˆ-ๅธธ่ง้—ฎ้ข˜ๆฑ‡ๆ€ป-orange'></a>
</div>

## &#x1F680; EchoMimic Series
* EchoMimicV1: Lifelike Audio-Driven Portrait Animations through Editable Landmark Conditioning. [GitHub](https://github.com/antgroup/echomimic)
* EchoMimicV2: Towards Striking, Simplified, and Semi-Body Human Animation. [GitHub](https://github.com/antgroup/echomimic_v2)

## &#x1F4E3; Updates
* [2025.01.03] ๐Ÿš€๐Ÿ”ฅ **One Minute is All You Need to Generate Video**. [Accelerated EchoMimicV2](https://github.com/antgroup/echomimic_v2/blob/main/infer_acc.py) are released. The inference speed can be improved by 9x (from ~7mins/120frames to ~50s/120frames on A100 GPU).
* [2024.12.16] ๐Ÿ”ฅ [RefImg-Pose Alignment Demo](https://github.com/antgroup/echomimic_v2/blob/main/demo.ipynb) is now available, which involves aligning reference image, extracting pose from driving video, and generating video.
* [2024.11.27] ๐Ÿ”ฅ [Installation tutorial](https://www.youtube.com/watch?v=2ab6U1-nVTQ) is now available. Thanks [AiMotionStudio](https://www.youtube.com/@AiMotionStudio) for the contribution.
* [2024.11.22] ๐Ÿ”ฅ [GradioUI](https://github.com/antgroup/echomimic_v2/blob/main/app.py) is now available. Thanks @gluttony-10 for the contribution.
* [2024.11.22] ๐Ÿ”ฅ [ComfyUI](https://github.com/smthemex/ComfyUI_EchoMimic) is now available. Thanks @smthemex for the contribution.
* [2024.11.21] ๐Ÿ”ฅ We release the EMTD dataset list and processing scripts.
* [2024.11.21] ๐Ÿ”ฅ We release our [EchoMimicV2](https://github.com/antgroup/echomimic_v2) codes and models.
* [2024.11.15] ๐Ÿ”ฅ Our [paper](https://arxiv.org/abs/2411.10061) is in public on arxiv.

## &#x1F305; Gallery
### Introduction
<table class="center">
<tr>
    <td width=50% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/f544dfc0-7d1a-4c2c-83c0-608f28ffda25" muted="false"></video>
    </td>
    <td width=50% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/7f626b65-725c-4158-a96b-062539874c63" muted="false"></video>
    </td>
</tr>
</table>

### English Driven Audio
<table class="center">
<tr>
    <td width=100% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/3d5ac52c-62e4-41bc-8b27-96f005bbd781" muted="false"></video>
    </td>
</tr>
</table>
<table class="center">
<tr>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/e8dd6919-665e-4343-931f-54c93dc49a7d" muted="false"></video>
    </td>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/2a377391-a0d3-4a9d-8dde-cc59006e7e5b" muted="false"></video>
    </td>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/462bf3bb-0af2-43e2-a2dc-559e79953f3c" muted="false"></video>
    </td>
</tr>
<tr>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/0e988e7f-6346-4b54-9061-9cfc7a80e9c8" muted="false"></video>
    </td>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/56f739bd-afbf-4ed3-ab15-73a811c1bc46" muted="false"></video>
    </td>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/1b2f7827-111d-4fc0-a773-e1731bba285d" muted="false"></video>
    </td>
</tr>
<tr>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/a76b6cc8-89b9-4f7e-b1ce-c85a657b6dc7" muted="false"></video>
    </td>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/bf03b407-5033-4a30-aa59-b8680a515181" muted="false"></video>
    </td>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/f98b3985-572c-499f-ae1a-1b9befe3086f" muted="false"></video>
    </td>
</tr>
</table>

### Chinese Driven Audio
<table class="center">
<tr>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/a940a332-2fd1-48e7-b3c4-f88f63fd1c9d" muted="false"></video>
    </td>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/8f185829-c67f-45f4-846c-fcbe012c3acf" muted="false"></video>
    </td>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/a49ab9be-f17b-41c5-96dd-20dc8d759b45" muted="false"></video>
    </td>
</tr>
<tr>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/1136ec68-a13c-4ee7-ab31-5621530bf9df" muted="false"></video>
    </td>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/fc16d512-8806-4662-ae07-8fcf45c75a83" muted="false"></video>
    </td>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/f8559cd1-f555-4781-9251-dfcef10b5b01" muted="false"></video>
    </td>
</tr>
<tr>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/c7473e3a-ab51-4ad5-be96-6c4691fc0c6e" muted="false"></video>
    </td>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/ca69eac0-5126-41ee-8cac-c9722004d771" muted="false"></video>
    </td>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/e66f1712-b66d-46b5-8bbd-811fbcfea4fd" muted="false"></video>
    </td>
</tr>
</table>

## โš’๏ธ Automatic Installation
### Download the Codes

```bash
  git clone https://github.com/antgroup/echomimic_v2
  cd echomimic_v2
```
### Automatic Setup
- CUDA >= 11.7, Python == 3.10

```bash
   sh linux_setup.sh
```
## โš’๏ธ Manual Installation
### Download the Codes

```bash
  git clone https://github.com/antgroup/echomimic_v2
  cd echomimic_v2
```
### Python Environment Setup

- Tested System Environment: Centos 7.2/Ubuntu 22.04, Cuda >= 11.7
- Tested GPUs: A100(80G) / RTX4090D (24G) / V100(16G)
- Tested Python Version: 3.8 / 3.10 / 3.11

Create conda environment (Recommended):

```bash
  conda create -n echomimic python=3.10
  conda activate echomimic
```

Install packages with `pip`
```bash
  pip install pip -U
  pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 xformers==0.0.28.post3 --index-url https://download.pytorch.org/whl/cu124
  pip install torchao --index-url https://download.pytorch.org/whl/nightly/cu124
  pip install -r requirements.txt
  pip install --no-deps facenet_pytorch==2.6.0
```

### Download ffmpeg-static
Download and decompress [ffmpeg-static](https://www.johnvansickle.com/ffmpeg/old-releases/ffmpeg-4.4-amd64-static.tar.xz), then
```
export FFMPEG_PATH=/path/to/ffmpeg-4.4-amd64-static
```

### Download pretrained weights

```shell
git lfs install
git clone https://huggingface.co/BadToBest/EchoMimicV2 pretrained_weights
```

The **pretrained_weights** is organized as follows.

```
./pretrained_weights/
โ”œโ”€โ”€ denoising_unet.pth
โ”œโ”€โ”€ reference_unet.pth
โ”œโ”€โ”€ motion_module.pth
โ”œโ”€โ”€ pose_encoder.pth
โ”œโ”€โ”€ sd-vae-ft-mse
โ”‚   โ””โ”€โ”€ ...
โ”œโ”€โ”€ sd-image-variations-diffusers
โ”‚   โ””โ”€โ”€ ...
โ””โ”€โ”€ audio_processor
    โ””โ”€โ”€ tiny.pt
```

In which **denoising_unet.pth** / **reference_unet.pth** / **motion_module.pth** / **pose_encoder.pth** are the main checkpoints of **EchoMimic**. Other models in this hub can be also downloaded from it's original hub, thanks to their brilliant works:
- [sd-vae-ft-mse](https://huggingface.co/stabilityai/sd-vae-ft-mse)
- [sd-image-variations-diffusers](https://huggingface.co/lambdalabs/sd-image-variations-diffusers)
- [audio_processor(whisper)](https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt)

### Inference on Demo 
Run the gradio:
```bash
python app.py
```
Run the python inference script:
```bash
python infer.py --config='./configs/prompts/infer.yaml'
```

Run the python inference script for accelerated version. Make sure to check out the configuration for accelerated inference:
```bash
python infer_acc.py --config='./configs/prompts/infer_acc.yaml'
```

### EMTD Dataset
Download dataset:
```bash
python ./EMTD_dataset/download.py
```
Slice dataset:
```bash
bash ./EMTD_dataset/slice.sh
```
Process dataset:
```bash
python ./EMTD_dataset/preprocess.py
```
Make sure to check out the [discussions](https://github.com/antgroup/echomimic_v2/discussions) to learn how to start the inference.

## ๐Ÿ“ Release Plans

|  Status  | Milestone                                                                | ETA |
|:--------:|:-------------------------------------------------------------------------|:--:|
|    โœ…    | The inference source code of EchoMimicV2 meet everyone on GitHub   | 21st Nov, 2024 |
|    โœ…    | Pretrained models trained on English and Mandarin Chinese on HuggingFace | 21st Nov, 2024 |
|    โœ…    | Pretrained models trained on English and Mandarin Chinese on ModelScope   | 21st Nov, 2024 |
|    โœ…    | EMTD dataset list and processing scripts                | 21st Nov, 2024 |
|    โœ…    | Jupyter demo with pose and reference image alignmnet                | 16st Dec, 2024 |
|    โœ…    | Accelerated models                                        | 3st Jan, 2025 |
|    ๐Ÿš€    | Online Demo on ModelScope to be released            | TBD |
|    ๐Ÿš€    | Online Demo on HuggingFace to be released         | TBD |

## โš–๏ธ Disclaimer
This project is intended for academic research, and we explicitly disclaim any responsibility for user-generated content. Users are solely liable for their actions while using the generative model. The project contributors have no legal affiliation with, nor accountability for, users' behaviors. It is imperative to use the generative model responsibly, adhering to both ethical and legal standards.

## ๐Ÿ™๐Ÿป Acknowledgements

We would like to thank the contributors to the [MimicMotion](https://github.com/Tencent/MimicMotion) and [Moore-AnimateAnyone](https://github.com/MooreThreads/Moore-AnimateAnyone) repositories, for their open research and exploration. 

We are also grateful to [CyberHost](https://cyberhost.github.io/) and [Vlogger](https://enriccorona.github.io/vlogger/) for their outstanding work in the area of audio-driven human animation.

If we missed any open-source projects or related articles, we would like to complement the acknowledgement of this specific work immediately.

## &#x1F4D2; Citation

If you find our work useful for your research, please consider citing the paper :

```
@misc{meng2024echomimicv2,
  title={EchoMimicV2: Towards Striking, Simplified, and Semi-Body Human Animation},
  author={Rang Meng, Xingyu Zhang, Yuming Li, Chenguang Ma},
  year={2024},
  eprint={2411.10061},
  archivePrefix={arXiv}
}
```

## &#x1F31F; Star History
[![Star History Chart](https://api.star-history.com/svg?repos=antgroup/echomimic_v2&type=Date)](https://star-history.com/#antgroup/echomimic_v2&Date)