Beijuka commited on
Commit
ae1d6d4
·
verified ·
1 Parent(s): 356fc8d

End of training

Browse files
Files changed (2) hide show
  1. README.md +100 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: xlm-roberta-base
5
+ tags:
6
+ - named-entity-recognition
7
+ - kanuri
8
+ - african-language
9
+ - pii-detection
10
+ - token-classification
11
+ - generated_from_trainer
12
+ datasets:
13
+ - Beijuka/Multilingual_PII_NER_dataset
14
+ metrics:
15
+ - precision
16
+ - recall
17
+ - f1
18
+ - accuracy
19
+ model-index:
20
+ - name: multilingual-xlm-roberta-base-kanuri-ner-v1
21
+ results:
22
+ - task:
23
+ name: Token Classification
24
+ type: token-classification
25
+ dataset:
26
+ name: Beijuka/Multilingual_PII_NER_dataset
27
+ type: Beijuka/Multilingual_PII_NER_dataset
28
+ args: 'split: train+validation+test'
29
+ metrics:
30
+ - name: Precision
31
+ type: precision
32
+ value: 0.9064220183486239
33
+ - name: Recall
34
+ type: recall
35
+ value: 0.9415501905972046
36
+ - name: F1
37
+ type: f1
38
+ value: 0.9236522281084449
39
+ - name: Accuracy
40
+ type: accuracy
41
+ value: 0.9821651859164199
42
+ ---
43
+
44
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
45
+ should probably proofread and complete it, then remove this comment. -->
46
+
47
+ # multilingual-xlm-roberta-base-kanuri-ner-v1
48
+
49
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the Beijuka/Multilingual_PII_NER_dataset dataset.
50
+ It achieves the following results on the evaluation set:
51
+ - Loss: 0.0719
52
+ - Precision: 0.9064
53
+ - Recall: 0.9416
54
+ - F1: 0.9237
55
+ - Accuracy: 0.9822
56
+
57
+ ## Model description
58
+
59
+ More information needed
60
+
61
+ ## Intended uses & limitations
62
+
63
+ More information needed
64
+
65
+ ## Training and evaluation data
66
+
67
+ More information needed
68
+
69
+ ## Training procedure
70
+
71
+ ### Training hyperparameters
72
+
73
+ The following hyperparameters were used during training:
74
+ - learning_rate: 5e-05
75
+ - train_batch_size: 8
76
+ - eval_batch_size: 8
77
+ - seed: 42
78
+ - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
79
+ - lr_scheduler_type: linear
80
+ - num_epochs: 20
81
+
82
+ ### Training results
83
+
84
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
85
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
86
+ | No log | 1.0 | 301 | 0.1158 | 0.9102 | 0.8262 | 0.8662 | 0.9666 |
87
+ | 0.229 | 2.0 | 602 | 0.0918 | 0.8883 | 0.9287 | 0.9080 | 0.9736 |
88
+ | 0.229 | 3.0 | 903 | 0.0924 | 0.8654 | 0.9401 | 0.9012 | 0.9751 |
89
+ | 0.0702 | 4.0 | 1204 | 0.1025 | 0.8772 | 0.9461 | 0.9103 | 0.9750 |
90
+ | 0.0514 | 5.0 | 1505 | 0.1446 | 0.8542 | 0.8670 | 0.8605 | 0.9671 |
91
+ | 0.0514 | 6.0 | 1806 | 0.1227 | 0.8946 | 0.9203 | 0.9073 | 0.9732 |
92
+ | 0.034 | 7.0 | 2107 | 0.1240 | 0.8949 | 0.9233 | 0.9089 | 0.9747 |
93
+
94
+
95
+ ### Framework versions
96
+
97
+ - Transformers 4.55.4
98
+ - Pytorch 2.8.0+cu126
99
+ - Datasets 4.0.0
100
+ - Tokenizers 0.21.4
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0bb3c63a2e10bdc19c351f7961dcf4b382f0d130d88dba8e13a90342e4896fda
3
  size 1109925476
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ef66adde99ed9a0df82d09805badf0ac6c2fffd6cfd64d84f3c31b774460ecb
3
  size 1109925476