0-layer transformer described in [A Mathematical Framework for Transformer Circuits](https://transformer-circuits.pub/2021/framework/index.html). Load with ```python class ZeroLayerTransformer(PreTrainedModel): config_class = LlamaConfig def __init__(self, config: LlamaConfig): super().__init__(config) self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) def forward(self, input_ids=None, attention_mask=None, labels=None, **kwargs): hidden_states = self.embed_tokens(input_ids) logits = self.lm_head(hidden_states) loss = None if labels is not None: shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() loss_fct = nn.CrossEntropyLoss() loss = loss_fct( shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1) ) return {"loss": loss, "logits": logits} model = ZeroLayerTransformer.from_pretrained('Butanium/simple-stories-zero-layer-simple-transformer') ``` The model is trained on the SimpleStories dataset.