End of training
Browse files- README.md +21 -40
- emissions.csv +1 -1
- model.safetensors +1 -1
README.md
CHANGED
|
@@ -1,52 +1,37 @@
|
|
| 1 |
---
|
| 2 |
-
base_model: hfl/chinese-macbert-base
|
| 3 |
-
datasets:
|
| 4 |
-
- CIRCL/Vulnerability-CNVD
|
| 5 |
library_name: transformers
|
| 6 |
license: apache-2.0
|
| 7 |
-
|
| 8 |
-
- accuracy
|
| 9 |
tags:
|
| 10 |
- generated_from_trainer
|
| 11 |
-
|
| 12 |
-
-
|
| 13 |
-
- nlp
|
| 14 |
-
- chinese
|
| 15 |
-
- vulnerability
|
| 16 |
-
pipeline_tag: text-classification
|
| 17 |
-
language: zh
|
| 18 |
model-index:
|
| 19 |
- name: vulnerability-severity-classification-chinese-macbert-base
|
| 20 |
results: []
|
| 21 |
---
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
This model is a fine-tuned version of [hfl/chinese-macbert-base](https://huggingface.co/hfl/chinese-macbert-base) on the dataset [CIRCL/Vulnerability-CNVD](https://huggingface.co/datasets/CIRCL/Vulnerability-CNVD).
|
| 26 |
-
|
| 27 |
-
For more information, visit the [Vulnerability-Lookup project page](https://vulnerability.circl.lu) or the [ML-Gateway GitHub repository](https://github.com/vulnerability-lookup/ML-Gateway), which demonstrates its usage in a FastAPI server.
|
| 28 |
|
|
|
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
##
|
| 32 |
|
| 33 |
-
|
| 34 |
|
| 35 |
-
|
| 36 |
-
from transformers import pipeline
|
| 37 |
|
| 38 |
-
|
| 39 |
-
"text-classification",
|
| 40 |
-
model="CIRCL/vulnerability-severity-classification-chinese-macbert-base"
|
| 41 |
-
)
|
| 42 |
|
| 43 |
-
|
| 44 |
-
description_chinese = "TOTOLINK A3600R是中国吉翁电子(TOTOLINK)公司的一款6天线1200M无线路由器。TOTOLINK A3600R存在缓冲区溢出漏洞,该漏洞源于/cgi-bin/cstecgi.cgi文件的UploadCustomModule函数中的File参数未能正确验证输入数据的长度大小,攻击者可利用该漏洞在系统上执行任意代码或者导致拒绝服务。"
|
| 45 |
-
result_chinese = classifier(description_chinese)
|
| 46 |
-
print(result_chinese)
|
| 47 |
-
# Expected output example: [{'label': '高', 'score': 0.9802}]
|
| 48 |
-
```
|
| 49 |
|
|
|
|
| 50 |
|
| 51 |
## Training procedure
|
| 52 |
|
|
@@ -61,19 +46,15 @@ The following hyperparameters were used during training:
|
|
| 61 |
- lr_scheduler_type: linear
|
| 62 |
- num_epochs: 5
|
| 63 |
|
| 64 |
-
It achieves the following results on the evaluation set:
|
| 65 |
-
- Loss: 0.6086
|
| 66 |
-
- Accuracy: 0.7746
|
| 67 |
-
|
| 68 |
### Training results
|
| 69 |
|
| 70 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
| 71 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
| 72 |
-
| 0.
|
| 73 |
-
| 0.
|
| 74 |
-
| 0.
|
| 75 |
-
| 0.
|
| 76 |
-
| 0.
|
| 77 |
|
| 78 |
|
| 79 |
### Framework versions
|
|
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
| 2 |
library_name: transformers
|
| 3 |
license: apache-2.0
|
| 4 |
+
base_model: hfl/chinese-macbert-base
|
|
|
|
| 5 |
tags:
|
| 6 |
- generated_from_trainer
|
| 7 |
+
metrics:
|
| 8 |
+
- accuracy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
model-index:
|
| 10 |
- name: vulnerability-severity-classification-chinese-macbert-base
|
| 11 |
results: []
|
| 12 |
---
|
| 13 |
|
| 14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 15 |
+
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
# vulnerability-severity-classification-chinese-macbert-base
|
| 18 |
|
| 19 |
+
This model is a fine-tuned version of [hfl/chinese-macbert-base](https://huggingface.co/hfl/chinese-macbert-base) on an unknown dataset.
|
| 20 |
+
It achieves the following results on the evaluation set:
|
| 21 |
+
- Loss: 0.5997
|
| 22 |
+
- Accuracy: 0.7846
|
| 23 |
|
| 24 |
+
## Model description
|
| 25 |
|
| 26 |
+
More information needed
|
| 27 |
|
| 28 |
+
## Intended uses & limitations
|
|
|
|
| 29 |
|
| 30 |
+
More information needed
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
+
## Training and evaluation data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
More information needed
|
| 35 |
|
| 36 |
## Training procedure
|
| 37 |
|
|
|
|
| 46 |
- lr_scheduler_type: linear
|
| 47 |
- num_epochs: 5
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
### Training results
|
| 50 |
|
| 51 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
| 52 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
| 53 |
+
| 0.6264 | 1.0 | 3548 | 0.5766 | 0.7565 |
|
| 54 |
+
| 0.5523 | 2.0 | 7096 | 0.5536 | 0.7724 |
|
| 55 |
+
| 0.4184 | 3.0 | 10644 | 0.5440 | 0.7836 |
|
| 56 |
+
| 0.3236 | 4.0 | 14192 | 0.5629 | 0.7889 |
|
| 57 |
+
| 0.2604 | 5.0 | 17740 | 0.5997 | 0.7846 |
|
| 58 |
|
| 59 |
|
| 60 |
### Framework versions
|
emissions.csv
CHANGED
|
@@ -1,2 +1,2 @@
|
|
| 1 |
timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,water_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,cpu_utilization_percent,gpu_utilization_percent,ram_utilization_percent,ram_used_gb,on_cloud,pue,wue
|
| 2 |
-
2026-01-
|
|
|
|
| 1 |
timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,water_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,cpu_utilization_percent,gpu_utilization_percent,ram_utilization_percent,ram_used_gb,on_cloud,pue,wue
|
| 2 |
+
2026-01-13T13:57:37,codecarbon,85a26bf8-77b9-458a-9437-1473bb66bf37,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,4124.957966918,0.10612537972916668,2.572762694318052e-05,218.5363534014986,591.4396810084689,70.0,0.25085537126080304,0.6772140403819091,0.08012320807329996,1.008192619716013,0.0,Luxembourg,LUX,,,,Linux-6.8.0-90-generic-x86_64-with-glibc2.39,3.12.3,3.2.1,224,Intel(R) Xeon(R) Platinum 8480+,2,2 x NVIDIA H100 NVL,6.1661,49.7498,2015.3354682922363,machine,0.4483949416342412,61.773589494163424,0.9129863813229573,18.926386515917944,N,1.0,0.0
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 409103316
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9b3a3afb006e317c428eb5eca7da7263ad56dcca690af003aa7e035767c6d606
|
| 3 |
size 409103316
|