--- license: mit pipeline_tag: graph-ml --- # Shift Current Prediction (DPA3-$\sigma$) This model is based on the DPA3 architecture for predicting shift current in materials. The training data follow a **long-tail distribution**, thus the model is trained in **log1p space** using `log1p(x) = log(1 + x)`. Predictions are also in log1p space. ## Dependency Install DeepMD: ```bash pip install deepmd-kit ```` ## Usage Basic command: ```bash dp --pt test \ -m model.weights.pt \ -f [INPUT_FILE] \ -n 0 \ -d [OUTPUT_PREFIX] ``` * `-m model.weights.pt`: path to the trained model. * `-f [INPUT_FILE]`: a text file listing all systems to be evaluated. * `-d [OUTPUT_PREFIX]`: prefix of the output result files. Example: ```bash dp --pt test \ -m model.weights.pt \ -f sys_test.txt \ -n 0 \ -d test_result ``` ## Input format ### 1. System list file (`[INPUT_FILE]`) `[INPUT_FILE]` is a plain text file. Each line contains the path to a DeepMD-format system directory, for example: ```text .../mp-14_Se_32_spg152_gap0.88eV/ .../mp-19_Te_32_spg152_gap0.19eV/ .../mp-154_N2_23_spg198_gap7.34eV/ .../mp-181_KGa3_spg119_gap0.22eV/ .../mp-189_SiRu_23_spg198_gap0.23eV/ ``` ### 2. System directory layout (DeepMD npy format) Each system directory must follow the standard DeepMD **npy** structure, such as: ```text system_X/ └── set.000/ ├── box.npy ├── coord.npy ├── v.npy ├── type_map.raw └── type.raw ``` Notes: * The `.npy` dataset can be converted from VASP using official DeepMD tools. * A placeholder `v.npy` file is required; writing zeros in it is sufficient. ## Output Running inference produces a file like: ```text test_result_property.out.0 ``` A typical block looks like: ```text # /path/to/system_X/: data_property pred_property 0.0000000000000000e+00 2.04... # /path/to/system_Y/: data_property pred_property 0.0000000000000000e+00 2.35... ``` * Lines starting with `#` indicate the system being evaluated. * Each numeric line contains the reference value (if available) and the model prediction.