--- license: mit tags: - yolov11 - object-detection - neuropathology - medical-imaging - tdp-43 - frontotemporal-dementia - als library_name: ultralytics pipeline_tag: object-detection --- # TDP-43 Inclusion Detection (YOLOv11) Automated detection of TDP-43 inclusions in histopathological images for frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS) and Limbic-predominant Age-related TDP-43 Encephalopathy (LATE) ## Performance - **mAP**: 0.520 - **Accuracy**: 94.2% (highly specific) - **Dataset**: 9 WSI with ~450 expert annotations ## Quick Start ```python from ultralytics import YOLO from huggingface_hub import hf_hub_download # Download and load model model_path = hf_hub_download( repo_id="Center-for-Computational-Neuropathology/TDP-43", filename="best.pt" ) model = YOLO(model_path) # Run inference (use higher confidence for clinical use) results = model.predict("tdp43_stained_image.jpg", conf=0.4, imgsz=640) ``` ## Clinical Relevance Detects TDP-43 inclusions in: - Frontotemporal Dementia (FTD) - Amyotrophic Lateral Sclerosis (ALS) - FTLD-TDP subtypes - Limbic-predominant Age-related TDP-43 Encephalopathy (LATE) ## Key Features ✅ **94.2% accuracy** - High specificity, low false positives ✅ Conservative strategy ideal for clinical screening ✅ Reliable when detection is made ⚠️ May miss subtle or atypical inclusions ## Training Insights This model required **early termination** due to validation instabilities, highlighting the unique computational challenges of TDP-43 morphology compared to other pathologies (e.g., Lewy bodies achieved stable 196-epoch training). ## Limitations - Conservative approach may miss subtle inclusions - Requires TDP-43 immunohistochemistry (phospho-TDP-43) - Cannot distinguish TDP-43 types (A, B, C, etc.) - Requires expert validation for clinical use ## Citation ```bibtex @article{neuropath_yolo_2025, title={Automated Detection of Neurodegenerative Pathology Using YOLOv11}, author={[Authors]}, journal={[Journal]}, year={2025} } ```