File size: 8,986 Bytes
55500d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
# SPDX-License-Identifier: Apache-2.0
# usage:
# VLLM_USE_V1=1 python examples/offline_inference/data_parallel.py
# we need to have a launcher to create multiple data parallel
# ranks. And each rank will create a vLLM instance to process its own prompts.
import os
from vllm import LLM, SamplingParams
from vllm.utils import get_open_port
import random
random.seed(42)
from prompt import object_recognition_prompt_miradata, prompt_miradata_based_text
prompt_generate = [prompt_miradata_based_text]
from transformers import AutoTokenizer
import jsonlines
import json
from multiprocessing import Process
import time
import argparse
import gc
import torch
import psutil
import pdb
from tqdm import tqdm
def get_agrs():
parser = argparse.ArgumentParser()
parser.add_argument("--save_dir", type=str, default="/share/minghao/VideoProjects/Sythesis/LongVideoCaption/CaptionResults")
parser.add_argument("--model", type=str, default="Qwen2.5-VL-72B-Instruct-AWQ")
parser.add_argument("--GPUs_per_dp_rank", type=int, default=2)
parser.add_argument("--DP_size", type=int, default=4)
parser.add_argument("--start", type=int, default=0)
parser.add_argument("--end", type=int, default=10000)
parser.add_argument("--max_num_seqs", type=int, default=4)
parser.add_argument("--max_model_len", type=int, default=32768)
parser.add_argument("--max_tokens", type=int, default=8192)
args = parser.parse_args()
return args
def get_have_processed(save_dir):
names = os.listdir(save_dir)
paths = [ os.path.join(save_dir, tmp) for tmp in names ]
record_video_id = []
for path in paths:
datas = load_jsonl(path)
for data in datas:
video_id = datas['clip_id']
if video_id in record_video_id:
continue
else:
record_video_id.append(video_id)
return record_video_id
def load_jsonl(path):
datas = []
# 读取 JSONL 文件
with jsonlines.open(path, "r") as reader:
for obj in reader:
datas.append(obj)
return datas
def load_json(path):
with open(path, "r") as reader:
datas = json.load(reader)
return datas
def main(dp_size, dp_rank, dp_master_ip, dp_master_port, GPUs_per_dp_rank, data_inps):
os.environ["VLLM_DP_RANK"] = str(dp_rank)
os.environ["VLLM_DP_SIZE"] = str(dp_size)
os.environ["VLLM_DP_MASTER_IP"] = dp_master_ip
os.environ["VLLM_DP_MASTER_PORT"] = str(dp_master_port)
# set devices for each dp_rank
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(
str(i) for i in range(dp_rank * GPUs_per_dp_rank, (dp_rank + 1) *
GPUs_per_dp_rank))
# Sample prompts.
# prompts = [
# "Hello, my name is",
# "The president of the United States is",
# "The capital of France is",
# "The future of AI is",
# ]
# with DP, each rank should process different prompts.
# usually all the DP ranks process a full dataset,
# and each rank processes a different part of the dataset.
promts_per_rank = len(data_inps) // dp_size
start = dp_rank * promts_per_rank
end = start + promts_per_rank
this_data_inps = data_inps[start:end]
if len(this_data_inps) == 0:
# if any rank has no prompts to process,
# we need to set a placeholder prompt
this_data_inps = ["Placeholder"]
print(f"DP rank {dp_rank} needs to process {len(this_data_inps)} prompts")
# Create a sampling params object.
# since we are doing data parallel, every rank can have different
# sampling params. here we set different max_tokens for different
# ranks for demonstration.
max_tokens = args.max_tokens
sampling_params = SamplingParams(temperature=0.1, top_k=20, top_p=0.8, repetition_penalty=1.05, max_tokens=max_tokens)
model_name = f"/share/minghao/Models/{args.model}"
max_model_len = args.max_model_len
max_num_seqs = args.max_num_seqs
# Create an LLM.
llm = LLM(model=model_name,
tensor_parallel_size=GPUs_per_dp_rank,max_model_len=max_model_len,enforce_eager=True,gpu_memory_utilization=0.9, max_num_seqs=max_num_seqs) #
batch_size = 2000
save_dir = args.save_dir
os.makedirs(save_dir, exist_ok=True)
save_name = f'{dp_rank}.jsonl'
save_path = os.path.join(save_dir, save_name)
with open(save_path, 'a') as file:
for i in range(0, len(this_data_inps), batch_size):
start = time.time()
batch_this_data_inps = this_data_inps[i:i+batch_size]
batch_prompts = [tmp['qa_prompt'] for tmp in batch_this_data_inps]
outputs = llm.generate(batch_prompts, sampling_params)
print(f'推理完成 Total Finish:{len(outputs)}')
for idx, output in enumerate(outputs):
this_inp = batch_this_data_inps[idx]
prompt = output.prompt
generated_qa = output.outputs[0].text
this_inp['qa_prompt'] = prompt
this_inp.update({"generated_qa": generated_qa})
file.write(json.dumps(this_inp) + "\n")
file.flush() # 加上 flush 进一步保险
end = time.time()
del batch_this_data_inps, batch_prompts, outputs
gc.collect()
print(f'batch time cost: {end-start}s')
print(f"[Memory] CPU: {psutil.Process(os.getpid()).memory_info().rss / 1024 ** 2:.2f} MB")
print(f"[Memory] GPU: {torch.cuda.memory_allocated() / 1024 ** 2:.2f} MB")
def read_all_captions(root_caption_dir, caption_file_names):
caption_file_dir_list = [os.path.join(root_caption_dir, file_name) for file_name in caption_file_names]
datas = []
for caption_dir in caption_file_dir_list:
caption_file_names = sorted(os.listdir(caption_dir))
caption_file_paths = [os.path.join(caption_dir, name) for name in caption_file_names]
for path in caption_file_paths:
datas += load_jsonl(path)
return datas
if __name__ == "__main__":
args = get_agrs()
datas = load_json('/share/minghao/VideoProjects/Sythesis2/Candidates/miradata_youtube_31k_5_10min_filter_clips.json')
print(f'Total Video Size: {len(datas)}')
# 整理成以clip为单位,并且适合合成
new_datas = []
for data in tqdm(datas):
clips = data['clips']
for clip in clips:
clip['clip_id'] = str(clip['clip_id']) + '_' + clip['video_id']
new_datas.extend(clips)
print(f'Total Clips Size: {len(new_datas)}')
datas = new_datas
start = args.start
end = args.end
datas = datas[start:end]
print(f'Start: {start}, End: {end}')
print(f'to process size: {len(datas)}')
save_dir = args.save_dir
if os.path.exists(save_dir):
have_downloaded = get_have_processed(save_dir)
filter_datas = []
for data in tqdm(datas, desc='Filtering 2...'):
if data['clip_id'] in have_downloaded:
continue
else:
filter_datas.append(data)
datas = filter_datas
print(f'have_downloaded size : {len(have_downloaded)}')
print(f'rest to process size : {len(datas)}')
model_name = f"/share/minghao/Models/{args.model}"
# Initialize the tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompts = []
data_inps = []
for data in datas:
this_prompt = random.choice(prompt_generate)
dense_caption = data['dense_caption']
background_caption = data['background_caption']
main_object_caption = data['main_object_caption']
system_prompt, user_prompt = this_prompt(dense_caption, background_caption, main_object_caption)
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
prompts.append(prompt)
data['qa_prompt'] = prompt
data_inps.append(data)
print(f'Total size: {len(prompts)}')
print(f'Sample show: {prompts[0]}')
# start = time.time()
# dp_master_ip = "127.0.0.1"
# dp_master_port = get_open_port()
# procs = []
# GPUs_per_dp_rank = args.GPUs_per_dp_rank
# DP_size = args.DP_size
# for i in range(DP_size):
# proc = Process(target=main,
# args=(DP_size, i, dp_master_ip, dp_master_port,
# GPUs_per_dp_rank, data_inps))
# proc.start()
# procs.append(proc)
# print(f'OOM了没有?')
# exit_code = 0
# for proc in procs:
# proc.join()
# if proc.exitcode:
# exit_code = proc.exitcode
# end = time.time()
# print(f'Total size: {len(prompts)}', f'Total time cost: {end-start}s')
# exit(exit_code) |