--- base_model: - llava-hf/llama3-llava-next-8b-hf - openbmb/MiniCPM-V-2_6 - microsoft/Phi-3-vision-128k-instruct - Qwen/Qwen2.5-VL-7B-Instruct license: mit metrics: - accuracy pipeline_tag: image-text-to-text library_name: transformers --- **The following models are obtained via supervised fine-tuning (SFT) using the ECD-10k-Images dataset ([URL](https://huggingface.co/datasets/ChartFoundation/ECD-10k-Images)) proposed in our ICCV 2025 paper, "[Effective Training Data Synthesis for Improving MLLM Chart Understanding](https://huggingface.co/papers/2508.06492)" ([Code](https://github.com/yuweiyang-anu/ECD)).** **ECD Dataset Overview**: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6666a432b78b8b6b34a816e9/kKQmAbuLKB7zOmOVegaOe.png) **Comparing 4 MLLMs on six test sets: (CharXiv, ChartQA, ReachQA, ChartBench, ChartX, ECDBench)** ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6666a432b78b8b6b34a816e9/z_kGluaiPHKsXQcwWLYfR.png) **Citation**: If it is helpful to your research, please cite our paper as follows: ``` @inproceedings{yang2025effective, title={Effective Training Data Synthesis for Improving MLLM Chart Understanding}, author={Yang, Yuwei and Zhang, Zeyu and Hou, Yunzhong and Li, Zhuowan and Liu, Gaowen and Payani, Ali and Ting, Yuan-Sen and Zheng, Liang}, booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)}, year={2025} } ```