Joblib
File size: 16,094 Bytes
baf3373
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
import os, json
from pathlib import Path
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import optuna
from datasets import load_from_disk, DatasetDict
from scipy.stats import spearmanr
from lightning.pytorch import seed_everything
seed_everything(1986)

DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")


def safe_spearmanr(y_true: np.ndarray, y_pred: np.ndarray) -> float:
    rho = spearmanr(y_true, y_pred).correlation
    if rho is None or np.isnan(rho):
        return 0.0
    return float(rho)


# -----------------------------
# Affinity class thresholds (final spec)
# High >= 9 ; Moderate 7-9 ; Low < 7
# 0=High, 1=Moderate, 2=Low
# -----------------------------
def affinity_to_class_tensor(y: torch.Tensor) -> torch.Tensor:
    high = y >= 9.0
    low  = y < 7.0
    mid  = ~(high | low)
    cls = torch.zeros_like(y, dtype=torch.long)
    cls[mid] = 1
    cls[low] = 2
    return cls


# -----------------------------
# Load paired DatasetDict
# -----------------------------
def load_split_paired(path: str):
    dd = load_from_disk(path)
    if not isinstance(dd, DatasetDict):
        raise ValueError(f"Expected DatasetDict at {path}")
    if "train" not in dd or "val" not in dd:
        raise ValueError(f"DatasetDict missing train/val at {path}")
    return dd["train"], dd["val"]


# -----------------------------
# Collate: pooled paired
# -----------------------------
def collate_pair_pooled(batch):
    Pt = torch.tensor([x["target_embedding"] for x in batch], dtype=torch.float32)  # (B,Ht)
    Pb = torch.tensor([x["binder_embedding"] for x in batch], dtype=torch.float32)  # (B,Hb)
    y  = torch.tensor([float(x["label"]) for x in batch], dtype=torch.float32)
    return Pt, Pb, y


# -----------------------------
# Collate: unpooled paired
# -----------------------------
def collate_pair_unpooled(batch):
    B = len(batch)
    Ht = len(batch[0]["target_embedding"][0])
    Hb = len(batch[0]["binder_embedding"][0])
    Lt_max = max(int(x["target_length"]) for x in batch)
    Lb_max = max(int(x["binder_length"]) for x in batch)

    Pt = torch.zeros(B, Lt_max, Ht, dtype=torch.float32)
    Pb = torch.zeros(B, Lb_max, Hb, dtype=torch.float32)
    Mt = torch.zeros(B, Lt_max, dtype=torch.bool)
    Mb = torch.zeros(B, Lb_max, dtype=torch.bool)
    y  = torch.tensor([float(x["label"]) for x in batch], dtype=torch.float32)

    for i, x in enumerate(batch):
        t = torch.tensor(x["target_embedding"], dtype=torch.float32)
        b = torch.tensor(x["binder_embedding"], dtype=torch.float32)
        lt, lb = t.shape[0], b.shape[0]
        Pt[i, :lt] = t
        Pb[i, :lb] = b
        Mt[i, :lt] = torch.tensor(x["target_attention_mask"][:lt], dtype=torch.bool)
        Mb[i, :lb] = torch.tensor(x["binder_attention_mask"][:lb], dtype=torch.bool)

    return Pt, Mt, Pb, Mb, y


# -----------------------------
# Cross-attention models
# -----------------------------
class CrossAttnPooled(nn.Module):
    """
    pooled vectors -> treat as single-token sequences for cross attention
    """
    def __init__(self, Ht, Hb, hidden=512, n_heads=8, n_layers=3, dropout=0.1):
        super().__init__()
        self.t_proj = nn.Sequential(nn.Linear(Ht, hidden), nn.LayerNorm(hidden))
        self.b_proj = nn.Sequential(nn.Linear(Hb, hidden), nn.LayerNorm(hidden))

        self.layers = nn.ModuleList([])
        for _ in range(n_layers):
            self.layers.append(nn.ModuleDict({
                "attn_tb": nn.MultiheadAttention(hidden, n_heads, dropout=dropout, batch_first=False),
                "attn_bt": nn.MultiheadAttention(hidden, n_heads, dropout=dropout, batch_first=False),
                "n1t": nn.LayerNorm(hidden),
                "n2t": nn.LayerNorm(hidden),
                "n1b": nn.LayerNorm(hidden),
                "n2b": nn.LayerNorm(hidden),
                "fft": nn.Sequential(nn.Linear(hidden, 4*hidden), nn.GELU(), nn.Dropout(dropout), nn.Linear(4*hidden, hidden)),
                "ffb": nn.Sequential(nn.Linear(hidden, 4*hidden), nn.GELU(), nn.Dropout(dropout), nn.Linear(4*hidden, hidden)),
            }))

        self.shared = nn.Sequential(nn.Linear(2*hidden, hidden), nn.GELU(), nn.Dropout(dropout))
        self.reg = nn.Linear(hidden, 1)
        self.cls = nn.Linear(hidden, 3)

    def forward(self, t_vec, b_vec):
        # (B,Ht),(B,Hb)
        t = self.t_proj(t_vec).unsqueeze(0)  # (1,B,H)
        b = self.b_proj(b_vec).unsqueeze(0)  # (1,B,H)

        for L in self.layers:
            t_attn, _ = L["attn_tb"](t, b, b)
            t = L["n1t"]((t + t_attn).transpose(0,1)).transpose(0,1)
            t = L["n2t"]((t + L["fft"](t)).transpose(0,1)).transpose(0,1)

            b_attn, _ = L["attn_bt"](b, t, t)
            b = L["n1b"]((b + b_attn).transpose(0,1)).transpose(0,1)
            b = L["n2b"]((b + L["ffb"](b)).transpose(0,1)).transpose(0,1)

        t0 = t[0]
        b0 = b[0]
        z = torch.cat([t0, b0], dim=-1)
        h = self.shared(z)
        return self.reg(h).squeeze(-1), self.cls(h)


class CrossAttnUnpooled(nn.Module):
    """
    token sequences with masks; alternating cross attention.
    """
    def __init__(self, Ht, Hb, hidden=512, n_heads=8, n_layers=3, dropout=0.1):
        super().__init__()
        self.t_proj = nn.Sequential(nn.Linear(Ht, hidden), nn.LayerNorm(hidden))
        self.b_proj = nn.Sequential(nn.Linear(Hb, hidden), nn.LayerNorm(hidden))

        self.layers = nn.ModuleList([])
        for _ in range(n_layers):
            self.layers.append(nn.ModuleDict({
                "attn_tb": nn.MultiheadAttention(hidden, n_heads, dropout=dropout, batch_first=True),
                "attn_bt": nn.MultiheadAttention(hidden, n_heads, dropout=dropout, batch_first=True),
                "n1t": nn.LayerNorm(hidden),
                "n2t": nn.LayerNorm(hidden),
                "n1b": nn.LayerNorm(hidden),
                "n2b": nn.LayerNorm(hidden),
                "fft": nn.Sequential(nn.Linear(hidden, 4*hidden), nn.GELU(), nn.Dropout(dropout), nn.Linear(4*hidden, hidden)),
                "ffb": nn.Sequential(nn.Linear(hidden, 4*hidden), nn.GELU(), nn.Dropout(dropout), nn.Linear(4*hidden, hidden)),
            }))

        self.shared = nn.Sequential(nn.Linear(2*hidden, hidden), nn.GELU(), nn.Dropout(dropout))
        self.reg = nn.Linear(hidden, 1)
        self.cls = nn.Linear(hidden, 3)

    def masked_mean(self, X, M):
        Mf = M.unsqueeze(-1).float()
        denom = Mf.sum(dim=1).clamp(min=1.0)
        return (X * Mf).sum(dim=1) / denom

    def forward(self, T, Mt, B, Mb):
        # T:(B,Lt,Ht), Mt:(B,Lt) ; B:(B,Lb,Hb), Mb:(B,Lb)
        T = self.t_proj(T)
        Bx = self.b_proj(B)

        kp_t = ~Mt  # key_padding_mask True = pad
        kp_b = ~Mb

        for L in self.layers:
            # T attends to B
            T_attn, _ = L["attn_tb"](T, Bx, Bx, key_padding_mask=kp_b)
            T = L["n1t"](T + T_attn)
            T = L["n2t"](T + L["fft"](T))

            # B attends to T
            B_attn, _ = L["attn_bt"](Bx, T, T, key_padding_mask=kp_t)
            Bx = L["n1b"](Bx + B_attn)
            Bx = L["n2b"](Bx + L["ffb"](Bx))

        t_pool = self.masked_mean(T, Mt)
        b_pool = self.masked_mean(Bx, Mb)
        z = torch.cat([t_pool, b_pool], dim=-1)
        h = self.shared(z)
        return self.reg(h).squeeze(-1), self.cls(h)


# -----------------------------
# Train/eval
# -----------------------------
@torch.no_grad()
def eval_spearman_pooled(model, loader):
    model.eval()
    ys, ps = [], []
    for t, b, y in loader:
        t = t.to(DEVICE, non_blocking=True)
        b = b.to(DEVICE, non_blocking=True)
        pred, _ = model(t, b)
        ys.append(y.numpy())
        ps.append(pred.detach().cpu().numpy())
    return safe_spearmanr(np.concatenate(ys), np.concatenate(ps))

@torch.no_grad()
def eval_spearman_unpooled(model, loader):
    model.eval()
    ys, ps = [], []
    for T, Mt, B, Mb, y in loader:
        T = T.to(DEVICE, non_blocking=True)
        Mt = Mt.to(DEVICE, non_blocking=True)
        B = B.to(DEVICE, non_blocking=True)
        Mb = Mb.to(DEVICE, non_blocking=True)
        pred, _ = model(T, Mt, B, Mb)
        ys.append(y.numpy())
        ps.append(pred.detach().cpu().numpy())
    return safe_spearmanr(np.concatenate(ys), np.concatenate(ps))

def train_one_epoch_pooled(model, loader, opt, loss_reg, loss_cls, cls_w=1.0, clip=1.0):
    model.train()
    for t, b, y in loader:
        t = t.to(DEVICE, non_blocking=True)
        b = b.to(DEVICE, non_blocking=True)
        y = y.to(DEVICE, non_blocking=True)
        y_cls = affinity_to_class_tensor(y)

        opt.zero_grad(set_to_none=True)
        pred, logits = model(t, b)
        L = loss_reg(pred, y) + cls_w * loss_cls(logits, y_cls)
        L.backward()
        if clip is not None:
            torch.nn.utils.clip_grad_norm_(model.parameters(), clip)
        opt.step()

def train_one_epoch_unpooled(model, loader, opt, loss_reg, loss_cls, cls_w=1.0, clip=1.0):
    model.train()
    for T, Mt, B, Mb, y in loader:
        T = T.to(DEVICE, non_blocking=True)
        Mt = Mt.to(DEVICE, non_blocking=True)
        B = B.to(DEVICE, non_blocking=True)
        Mb = Mb.to(DEVICE, non_blocking=True)
        y = y.to(DEVICE, non_blocking=True)
        y_cls = affinity_to_class_tensor(y)

        opt.zero_grad(set_to_none=True)
        pred, logits = model(T, Mt, B, Mb)
        L = loss_reg(pred, y) + cls_w * loss_cls(logits, y_cls)
        L.backward()
        if clip is not None:
            torch.nn.utils.clip_grad_norm_(model.parameters(), clip)
        opt.step()


# -----------------------------
# Optuna objective
# -----------------------------
def objective_crossattn(trial: optuna.Trial, mode: str, train_ds, val_ds) -> float:
    lr = trial.suggest_float("lr", 1e-5, 3e-3, log=True)
    wd = trial.suggest_float("weight_decay", 1e-10, 1e-2, log=True)
    dropout = trial.suggest_float("dropout", 0.0, 0.4)
    hidden = trial.suggest_categorical("hidden_dim", [256, 384, 512, 768])
    n_heads = trial.suggest_categorical("n_heads", [4, 8])
    n_layers = trial.suggest_int("n_layers", 1, 4)
    cls_w = trial.suggest_float("cls_weight", 0.1, 2.0, log=True)
    batch = trial.suggest_categorical("batch_size", [16, 32, 64, 128])

    # infer dims from first row
    if mode == "pooled":
        Ht = len(train_ds[0]["target_embedding"])
        Hb = len(train_ds[0]["binder_embedding"])
        collate = collate_pair_pooled
        model = CrossAttnPooled(Ht, Hb, hidden=hidden, n_heads=n_heads, n_layers=n_layers, dropout=dropout).to(DEVICE)
        train_loader = DataLoader(train_ds, batch_size=batch, shuffle=True, num_workers=4, pin_memory=True, collate_fn=collate)
        val_loader   = DataLoader(val_ds,   batch_size=batch, shuffle=False, num_workers=4, pin_memory=True, collate_fn=collate)
        eval_fn = eval_spearman_pooled
        train_fn = train_one_epoch_pooled

    else:
        Ht = len(train_ds[0]["target_embedding"][0])
        Hb = len(train_ds[0]["binder_embedding"][0])
        collate = collate_pair_unpooled
        model = CrossAttnUnpooled(Ht, Hb, hidden=hidden, n_heads=n_heads, n_layers=n_layers, dropout=dropout).to(DEVICE)
        train_loader = DataLoader(train_ds, batch_size=batch, shuffle=True, num_workers=4, pin_memory=True, collate_fn=collate)
        val_loader   = DataLoader(val_ds,   batch_size=batch, shuffle=False, num_workers=4, pin_memory=True, collate_fn=collate)
        eval_fn = eval_spearman_unpooled
        train_fn = train_one_epoch_unpooled

    opt = torch.optim.AdamW(model.parameters(), lr=lr, weight_decay=wd)
    loss_reg = nn.MSELoss()
    loss_cls = nn.CrossEntropyLoss()

    best = -1e9
    bad = 0
    patience = 10

    for ep in range(1, 61):
        train_fn(model, train_loader, opt, loss_reg, loss_cls, cls_w=cls_w)
        rho = eval_fn(model, val_loader)

        trial.report(rho, ep)
        if trial.should_prune():
            raise optuna.TrialPruned()

        if rho > best + 1e-6:
            best = rho
            bad = 0
        else:
            bad += 1
            if bad >= patience:
                break

    return float(best)


# -----------------------------
# Run: optuna + refit best
# -----------------------------
def run(dataset_path: str, out_dir: str, mode: str, n_trials: int = 50):
    out_dir = Path(out_dir)
    out_dir.mkdir(parents=True, exist_ok=True)

    train_ds, val_ds = load_split_paired(dataset_path)
    print(f"[Data] Train={len(train_ds)} Val={len(val_ds)} | mode={mode}")

    study = optuna.create_study(direction="maximize", pruner=optuna.pruners.MedianPruner())
    study.optimize(lambda t: objective_crossattn(t, mode, train_ds, val_ds), n_trials=n_trials)

    study.trials_dataframe().to_csv(out_dir / "optuna_trials.csv", index=False)
    best = study.best_trial
    best_params = dict(best.params)

    # refit longer
    lr = float(best_params["lr"])
    wd = float(best_params["weight_decay"])
    dropout = float(best_params["dropout"])
    hidden = int(best_params["hidden_dim"])
    n_heads = int(best_params["n_heads"])
    n_layers = int(best_params["n_layers"])
    cls_w = float(best_params["cls_weight"])
    batch = int(best_params["batch_size"])

    loss_reg = nn.MSELoss()
    loss_cls = nn.CrossEntropyLoss()

    if mode == "pooled":
        Ht = len(train_ds[0]["target_embedding"])
        Hb = len(train_ds[0]["binder_embedding"])
        model = CrossAttnPooled(Ht, Hb, hidden=hidden, n_heads=n_heads, n_layers=n_layers, dropout=dropout).to(DEVICE)
        collate = collate_pair_pooled
        train_loader = DataLoader(train_ds, batch_size=batch, shuffle=True, num_workers=4, pin_memory=True, collate_fn=collate)
        val_loader   = DataLoader(val_ds,   batch_size=batch, shuffle=False, num_workers=4, pin_memory=True, collate_fn=collate)
        eval_fn = eval_spearman_pooled
        train_fn = train_one_epoch_pooled
    else:
        Ht = len(train_ds[0]["target_embedding"][0])
        Hb = len(train_ds[0]["binder_embedding"][0])
        model = CrossAttnUnpooled(Ht, Hb, hidden=hidden, n_heads=n_heads, n_layers=n_layers, dropout=dropout).to(DEVICE)
        collate = collate_pair_unpooled
        train_loader = DataLoader(train_ds, batch_size=batch, shuffle=True, num_workers=4, pin_memory=True, collate_fn=collate)
        val_loader   = DataLoader(val_ds,   batch_size=batch, shuffle=False, num_workers=4, pin_memory=True, collate_fn=collate)
        eval_fn = eval_spearman_unpooled
        train_fn = train_one_epoch_unpooled

    opt = torch.optim.AdamW(model.parameters(), lr=lr, weight_decay=wd)

    best_rho = -1e9
    bad = 0
    patience = 20
    best_state = None

    for ep in range(1, 201):
        train_fn(model, train_loader, opt, loss_reg, loss_cls, cls_w=cls_w)
        rho = eval_fn(model, val_loader)

        if rho > best_rho + 1e-6:
            best_rho = rho
            bad = 0
            best_state = {k: v.detach().cpu().clone() for k, v in model.state_dict().items()}
        else:
            bad += 1
            if bad >= patience:
                break

    if best_state is not None:
        model.load_state_dict(best_state)

    # save
    torch.save({"mode": mode, "best_params": best_params, "state_dict": model.state_dict()}, out_dir / "best_model.pt")
    with open(out_dir / "best_params.json", "w") as f:
        json.dump(best_params, f, indent=2)

    print(f"[DONE] {out_dir} | best_optuna_rho={study.best_value:.4f} | refit_best_rho={best_rho:.4f}")


if __name__ == "__main__":
    import argparse
    ap = argparse.ArgumentParser()
    ap.add_argument("--dataset_path", type=str, required=True, help="Paired DatasetDict path (pair_*)")
    ap.add_argument("--mode", type=str, choices=["pooled", "unpooled"], required=True)
    ap.add_argument("--out_dir", type=str, required=True)
    ap.add_argument("--n_trials", type=int, default=50)
    args = ap.parse_args()

    run(
        dataset_path=args.dataset_path,
        out_dir=args.out_dir,
        mode=args.mode,
        n_trials=args.n_trials,
    )