File size: 5,741 Bytes
3527383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the CC-by-NC license found in the
# LICENSE file in the root directory of this source tree.

from abc import ABC, abstractmethod
from dataclasses import dataclass, field

from typing import Union

import torch

from torch import Tensor


@dataclass
class SchedulerOutput:
    r"""Represents a sample of a conditional-flow generated probability path.

    Attributes:
        alpha_t (Tensor): :math:`\alpha_t`, shape (...).
        sigma_t (Tensor): :math:`\sigma_t`, shape (...).
        d_alpha_t (Tensor): :math:`\frac{\partial}{\partial t}\alpha_t`, shape (...).
        d_sigma_t (Tensor): :math:`\frac{\partial}{\partial t}\sigma_t`, shape (...).

    """

    alpha_t: Tensor = field(metadata={"help": "alpha_t"})
    sigma_t: Tensor = field(metadata={"help": "sigma_t"})
    d_alpha_t: Tensor = field(metadata={"help": "Derivative of alpha_t."})
    d_sigma_t: Tensor = field(metadata={"help": "Derivative of sigma_t."})


class Scheduler(ABC):
    """Base Scheduler class."""

    @abstractmethod
    def __call__(self, t: Tensor) -> SchedulerOutput:
        r"""
        Args:
            t (Tensor): times in [0,1], shape (...).

        Returns:
            SchedulerOutput: :math:`\alpha_t,\sigma_t,\frac{\partial}{\partial t}\alpha_t,\frac{\partial}{\partial t}\sigma_t`
        """
        ...

    @abstractmethod
    def snr_inverse(self, snr: Tensor) -> Tensor:
        r"""
        Computes :math:`t` from the signal-to-noise ratio :math:`\frac{\alpha_t}{\sigma_t}`.

        Args:
            snr (Tensor): The signal-to-noise, shape (...)

        Returns:
            Tensor: t, shape (...)
        """
        ...


class ConvexScheduler(Scheduler):
    @abstractmethod
    def __call__(self, t: Tensor) -> SchedulerOutput:
        """Scheduler for convex paths.

        Args:
            t (Tensor): times in [0,1], shape (...).

        Returns:
            SchedulerOutput: :math:`\alpha_t,\sigma_t,\frac{\partial}{\partial t}\alpha_t,\frac{\partial}{\partial t}\sigma_t`
        """
        ...

    @abstractmethod
    def kappa_inverse(self, kappa: Tensor) -> Tensor:
        """
        Computes :math:`t` from :math:`\kappa_t`.

        Args:
            kappa (Tensor): :math:`\kappa`, shape (...)

        Returns:
            Tensor: t, shape (...)
        """
        ...

    def snr_inverse(self, snr: Tensor) -> Tensor:
        r"""
        Computes :math:`t` from the signal-to-noise ratio :math:`\frac{\alpha_t}{\sigma_t}`.

        Args:
            snr (Tensor): The signal-to-noise, shape (...)

        Returns:
            Tensor: t, shape (...)
        """
        kappa_t = snr / (1.0 + snr)

        return self.kappa_inverse(kappa=kappa_t)


class CondOTScheduler(ConvexScheduler):
    """CondOT Scheduler."""

    def __call__(self, t: Tensor) -> SchedulerOutput:
        return SchedulerOutput(
            alpha_t=t,
            sigma_t=1 - t,
            d_alpha_t=torch.ones_like(t),
            d_sigma_t=-torch.ones_like(t),
        )

    def kappa_inverse(self, kappa: Tensor) -> Tensor:
        return kappa


class PolynomialConvexScheduler(ConvexScheduler):
    """Polynomial Scheduler."""

    def __init__(self, n: Union[float, int]) -> None:
        assert isinstance(
            n, (float, int)
        ), f"`n` must be a float or int. Got {type(n)=}."
        assert n > 0, f"`n` must be positive. Got {n=}."

        self.n = n

    def __call__(self, t: Tensor) -> SchedulerOutput:
        return SchedulerOutput(
            alpha_t=t**self.n,
            sigma_t=1 - t**self.n,
            d_alpha_t=self.n * (t ** (self.n - 1)),
            d_sigma_t=-self.n * (t ** (self.n - 1)),
        )

    def kappa_inverse(self, kappa: Tensor) -> Tensor:
        return torch.pow(kappa, 1.0 / self.n)


class VPScheduler(Scheduler):
    """Variance Preserving Scheduler."""

    def __init__(self, beta_min: float = 0.1, beta_max: float = 20.0) -> None:
        self.beta_min = beta_min
        self.beta_max = beta_max
        super().__init__()

    def __call__(self, t: Tensor) -> SchedulerOutput:
        b = self.beta_min
        B = self.beta_max
        T = 0.5 * (1 - t) ** 2 * (B - b) + (1 - t) * b
        dT = -(1 - t) * (B - b) - b

        return SchedulerOutput(
            alpha_t=torch.exp(-0.5 * T),
            sigma_t=torch.sqrt(1 - torch.exp(-T)),
            d_alpha_t=-0.5 * dT * torch.exp(-0.5 * T),
            d_sigma_t=0.5 * dT * torch.exp(-T) / torch.sqrt(1 - torch.exp(-T)),
        )

    def snr_inverse(self, snr: Tensor) -> Tensor:
        T = -torch.log(snr**2 / (snr**2 + 1))
        b = self.beta_min
        B = self.beta_max
        t = 1 - ((-b + torch.sqrt(b**2 + 2 * (B - b) * T)) / (B - b))
        return t


class LinearVPScheduler(Scheduler):
    """Linear Variance Preserving Scheduler."""

    def __call__(self, t: Tensor) -> SchedulerOutput:
        return SchedulerOutput(
            alpha_t=t,
            sigma_t=(1 - t**2) ** 0.5,
            d_alpha_t=torch.ones_like(t),
            d_sigma_t=-t / (1 - t**2) ** 0.5,
        )

    def snr_inverse(self, snr: Tensor) -> Tensor:
        return torch.sqrt(snr**2 / (1 + snr**2))


class CosineScheduler(Scheduler):
    """Cosine Scheduler."""

    def __call__(self, t: Tensor) -> SchedulerOutput:
        pi = torch.pi
        return SchedulerOutput(
            alpha_t=torch.sin(pi / 2 * t),
            sigma_t=torch.cos(pi / 2 * t),
            d_alpha_t=pi / 2 * torch.cos(pi / 2 * t),
            d_sigma_t=-pi / 2 * torch.sin(pi / 2 * t),
        )

    def snr_inverse(self, snr: Tensor) -> Tensor:
        return 2.0 * torch.atan(snr) / torch.pi