Update moo.py
Browse files
moo.py
CHANGED
|
@@ -31,12 +31,12 @@ tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t33_650M_UR50D")
|
|
| 31 |
target_sequence = tokenizer(target, return_tensors='pt')['input_ids'].to(device)
|
| 32 |
|
| 33 |
# Load Models
|
| 34 |
-
solver = load_solver('
|
| 35 |
|
| 36 |
-
bindevaluator = load_bindevaluator('/
|
| 37 |
motif_model = MotifModel(bindevaluator, target_sequence, motifs, penalty=args.motif_penalty)
|
| 38 |
|
| 39 |
-
affinity_predictor = load_affinity_predictor('
|
| 40 |
affinity_model = AffinityModel(affinity_predictor, target_sequence)
|
| 41 |
hemolysis_model = HemolysisModel(device=device)
|
| 42 |
nonfouling_model = NonfoulingModel(device=device)
|
|
|
|
| 31 |
target_sequence = tokenizer(target, return_tensors='pt')['input_ids'].to(device)
|
| 32 |
|
| 33 |
# Load Models
|
| 34 |
+
solver = load_solver('./ckpt/peptide/cnn_epoch200_lr0.0001_embed512_hidden256_loss3.1051.ckpt', vocab_size, device)
|
| 35 |
|
| 36 |
+
bindevaluator = load_bindevaluator('./classifier_ckpt/finetuned_BindEvaluator.ckpt', device)
|
| 37 |
motif_model = MotifModel(bindevaluator, target_sequence, motifs, penalty=args.motif_penalty)
|
| 38 |
|
| 39 |
+
affinity_predictor = load_affinity_predictor('./classifier_ckpt/binding_affinity_unpooled.pt', device)
|
| 40 |
affinity_model = AffinityModel(affinity_predictor, target_sequence)
|
| 41 |
hemolysis_model = HemolysisModel(device=device)
|
| 42 |
nonfouling_model = NonfoulingModel(device=device)
|