Delete models/enhancer_models.py
Browse files- models/enhancer_models.py +0 -215
models/enhancer_models.py
DELETED
|
@@ -1,215 +0,0 @@
|
|
| 1 |
-
from torch import nn
|
| 2 |
-
import torch
|
| 3 |
-
import numpy as np
|
| 4 |
-
import torch.nn.functional as F
|
| 5 |
-
import copy
|
| 6 |
-
import pdb
|
| 7 |
-
|
| 8 |
-
class GaussianFourierProjection(nn.Module):
|
| 9 |
-
"""
|
| 10 |
-
Gaussian random features for encoding time steps.
|
| 11 |
-
"""
|
| 12 |
-
|
| 13 |
-
def __init__(self, embed_dim, scale=30.):
|
| 14 |
-
super().__init__()
|
| 15 |
-
# Randomly sample weights during initialization. These weights are fixed
|
| 16 |
-
# during optimization and are not trainable.
|
| 17 |
-
self.W = nn.Parameter(torch.randn(embed_dim // 2) * scale, requires_grad=False)
|
| 18 |
-
|
| 19 |
-
def forward(self, x):
|
| 20 |
-
x_proj = x[:, None] * self.W[None, :] * 2 * np.pi
|
| 21 |
-
return torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1)
|
| 22 |
-
|
| 23 |
-
class Dense(nn.Module):
|
| 24 |
-
"""
|
| 25 |
-
A fully connected layer that reshapes outputs to feature maps.
|
| 26 |
-
"""
|
| 27 |
-
|
| 28 |
-
def __init__(self, input_dim, output_dim):
|
| 29 |
-
super().__init__()
|
| 30 |
-
self.dense = nn.Linear(input_dim, output_dim)
|
| 31 |
-
|
| 32 |
-
def forward(self, x):
|
| 33 |
-
return self.dense(x)[...]
|
| 34 |
-
|
| 35 |
-
class Swish(nn.Module):
|
| 36 |
-
def __init__(self):
|
| 37 |
-
super().__init__()
|
| 38 |
-
|
| 39 |
-
def forward(self, x):
|
| 40 |
-
return torch.sigmoid(x) * x
|
| 41 |
-
|
| 42 |
-
class CNNModel(nn.Module):
|
| 43 |
-
"""A time-dependent score-based model built upon U-Net architecture."""
|
| 44 |
-
|
| 45 |
-
def __init__(self, alphabet_size=4, embed_dim=256, hidden_dim=256):
|
| 46 |
-
"""
|
| 47 |
-
Args:
|
| 48 |
-
embed_dim (int): Dimensionality of the token and time embeddings.
|
| 49 |
-
"""
|
| 50 |
-
super().__init__()
|
| 51 |
-
self.alphabet_size = alphabet_size
|
| 52 |
-
|
| 53 |
-
self.token_embedding = nn.Embedding(self.alphabet_size, embed_dim)
|
| 54 |
-
|
| 55 |
-
self.time_embed = nn.Sequential(
|
| 56 |
-
GaussianFourierProjection(embed_dim=embed_dim),
|
| 57 |
-
nn.Linear(embed_dim, embed_dim)
|
| 58 |
-
)
|
| 59 |
-
|
| 60 |
-
self.swish = Swish()
|
| 61 |
-
|
| 62 |
-
n = hidden_dim
|
| 63 |
-
|
| 64 |
-
self.linear = nn.Conv1d(embed_dim, n, kernel_size=9, padding=4)
|
| 65 |
-
|
| 66 |
-
self.blocks = nn.ModuleList([
|
| 67 |
-
nn.Conv1d(n, n, kernel_size=9, padding=4),
|
| 68 |
-
nn.Conv1d(n, n, kernel_size=9, padding=4),
|
| 69 |
-
nn.Conv1d(n, n, kernel_size=9, dilation=4, padding=16),
|
| 70 |
-
nn.Conv1d(n, n, kernel_size=9, dilation=16, padding=64),
|
| 71 |
-
nn.Conv1d(n, n, kernel_size=9, dilation=64, padding=256),
|
| 72 |
-
# nn.Conv1d(n, n, kernel_size=9, padding=4),
|
| 73 |
-
# nn.Conv1d(n, n, kernel_size=9, padding=4),
|
| 74 |
-
# nn.Conv1d(n, n, kernel_size=9, dilation=4, padding=16),
|
| 75 |
-
# nn.Conv1d(n, n, kernel_size=9, dilation=16, padding=64),
|
| 76 |
-
# nn.Conv1d(n, n, kernel_size=9, dilation=64, padding=256),
|
| 77 |
-
# nn.Conv1d(n, n, kernel_size=9, padding=4),
|
| 78 |
-
# nn.Conv1d(n, n, kernel_size=9, padding=4),
|
| 79 |
-
# nn.Conv1d(n, n, kernel_size=9, dilation=4, padding=16),
|
| 80 |
-
# nn.Conv1d(n, n, kernel_size=9, dilation=16, padding=64),
|
| 81 |
-
# nn.Conv1d(n, n, kernel_size=9, dilation=64, padding=256),
|
| 82 |
-
# nn.Conv1d(n, n, kernel_size=9, padding=4),
|
| 83 |
-
# nn.Conv1d(n, n, kernel_size=9, padding=4),
|
| 84 |
-
# nn.Conv1d(n, n, kernel_size=9, dilation=4, padding=16),
|
| 85 |
-
# nn.Conv1d(n, n, kernel_size=9, dilation=16, padding=64),
|
| 86 |
-
# nn.Conv1d(n, n, kernel_size=9, dilation=64, padding=256)
|
| 87 |
-
])
|
| 88 |
-
|
| 89 |
-
self.denses = nn.ModuleList([Dense(embed_dim, n) for _ in range(5)])
|
| 90 |
-
self.norms = nn.ModuleList([nn.GroupNorm(1, n) for _ in range(5)])
|
| 91 |
-
|
| 92 |
-
self.final = nn.Sequential(
|
| 93 |
-
nn.Conv1d(n, n, kernel_size=1),
|
| 94 |
-
nn.GELU(),
|
| 95 |
-
nn.Conv1d(n, self.alphabet_size, kernel_size=1)
|
| 96 |
-
)
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
def forward(self, x, t):
|
| 100 |
-
"""
|
| 101 |
-
Args:
|
| 102 |
-
x: Tensor of shape (B, L) containing DNA token indices.
|
| 103 |
-
t: Tensor of shape (B,) containing the time steps.
|
| 104 |
-
Returns:
|
| 105 |
-
out: Tensor of shape (B, L, 4) with output logits for each DNA base.
|
| 106 |
-
"""
|
| 107 |
-
x = self.token_embedding(x) # (B, L) -> (B, L, embed_dim)
|
| 108 |
-
|
| 109 |
-
time_embed = self.swish(self.time_embed(t)) # (B, embed_dim)
|
| 110 |
-
|
| 111 |
-
out = x.permute(0, 2, 1) # (B, L, embed_dim) -> (B, embed_dim, L)
|
| 112 |
-
out = self.swish(self.linear(out)) # (B, n, L)
|
| 113 |
-
|
| 114 |
-
# Process through convolutional blocks, adding time conditioning via dense layers.
|
| 115 |
-
for block, dense, norm in zip(self.blocks, self.denses, self.norms):
|
| 116 |
-
# dense(embed) gives (B, n); unsqueeze to (B, n, 1) for broadcasting.
|
| 117 |
-
h = self.swish(block(norm(out + dense(time_embed)[:, :, None])))
|
| 118 |
-
# Residual connection if shapes match.
|
| 119 |
-
if h.shape == out.shape:
|
| 120 |
-
out = h + out
|
| 121 |
-
else:
|
| 122 |
-
out = h
|
| 123 |
-
|
| 124 |
-
out = self.final(out) # (B, 4, L)
|
| 125 |
-
out = out.permute(0, 2, 1) # (B, L, 4)
|
| 126 |
-
|
| 127 |
-
# Normalization
|
| 128 |
-
out = out - out.mean(dim=-1, keepdim=True)
|
| 129 |
-
return out
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
class MLPModel(nn.Module):
|
| 133 |
-
def __init__(
|
| 134 |
-
self, input_dim: int = 128, time_dim: int = 1, hidden_dim=128, length=500):
|
| 135 |
-
super().__init__()
|
| 136 |
-
self.input_dim = input_dim
|
| 137 |
-
self.time_dim = time_dim
|
| 138 |
-
self.hidden_dim = hidden_dim
|
| 139 |
-
|
| 140 |
-
self.time_embedding = nn.Linear(1, time_dim)
|
| 141 |
-
self.token_embedding = torch.nn.Embedding(self.input_dim, hidden_dim)
|
| 142 |
-
|
| 143 |
-
self.swish = Swish()
|
| 144 |
-
|
| 145 |
-
self.main = nn.Sequential(
|
| 146 |
-
self.swish,
|
| 147 |
-
nn.Linear(hidden_dim * length + time_dim, hidden_dim),
|
| 148 |
-
self.swish,
|
| 149 |
-
nn.Linear(hidden_dim, hidden_dim),
|
| 150 |
-
self.swish,
|
| 151 |
-
nn.Linear(hidden_dim, hidden_dim),
|
| 152 |
-
self.swish,
|
| 153 |
-
nn.Linear(hidden_dim, self.input_dim * length),
|
| 154 |
-
)
|
| 155 |
-
|
| 156 |
-
def forward(self, x, t):
|
| 157 |
-
'''
|
| 158 |
-
x shape (B,L)
|
| 159 |
-
t shape (B,)
|
| 160 |
-
'''
|
| 161 |
-
t = self.time_embedding(t.unsqueeze(-1))
|
| 162 |
-
x = self.token_embedding(x)
|
| 163 |
-
|
| 164 |
-
B, N, d = x.shape
|
| 165 |
-
x = x.reshape(B, N * d)
|
| 166 |
-
|
| 167 |
-
h = torch.cat([x, t], dim=1)
|
| 168 |
-
h = self.main(h)
|
| 169 |
-
|
| 170 |
-
h = h.reshape(B, N, self.input_dim)
|
| 171 |
-
|
| 172 |
-
return h
|
| 173 |
-
|
| 174 |
-
class DirichletCNNModel(nn.Module):
|
| 175 |
-
def __init__(self, args, alphabet_size):
|
| 176 |
-
super().__init__()
|
| 177 |
-
self.alphabet_size = alphabet_size
|
| 178 |
-
self.args = args
|
| 179 |
-
expanded_simplex_input = args.cls_expanded_simplex and (args.mode == 'dirichlet' or args.mode == 'riemannian')
|
| 180 |
-
inp_size = self.alphabet_size * (2 if expanded_simplex_input else 1)
|
| 181 |
-
self.linear = nn.Conv1d(inp_size, args.hidden_dim, kernel_size=9, padding=4)
|
| 182 |
-
self.time_embedder = nn.Sequential(GaussianFourierProjection(embed_dim= args.hidden_dim),nn.Linear(args.hidden_dim, args.hidden_dim))
|
| 183 |
-
|
| 184 |
-
self.num_layers = 5 * args.num_cnn_stacks
|
| 185 |
-
self.convs = [nn.Conv1d(args.hidden_dim, args.hidden_dim, kernel_size=9, padding=4),
|
| 186 |
-
nn.Conv1d(args.hidden_dim, args.hidden_dim, kernel_size=9, padding=4),
|
| 187 |
-
nn.Conv1d(args.hidden_dim, args.hidden_dim, kernel_size=9, dilation=4, padding=16),
|
| 188 |
-
nn.Conv1d(args.hidden_dim, args.hidden_dim, kernel_size=9, dilation=16, padding=64),
|
| 189 |
-
nn.Conv1d(args.hidden_dim, args.hidden_dim, kernel_size=9, dilation=64, padding=256)]
|
| 190 |
-
self.convs = nn.ModuleList([copy.deepcopy(layer) for layer in self.convs for i in range(args.num_cnn_stacks)])
|
| 191 |
-
self.time_layers = nn.ModuleList([Dense(args.hidden_dim, args.hidden_dim) for _ in range(self.num_layers)])
|
| 192 |
-
self.norms = nn.ModuleList([nn.LayerNorm(args.hidden_dim) for _ in range(self.num_layers)])
|
| 193 |
-
self.final_conv = nn.Sequential(nn.Conv1d(args.hidden_dim, args.hidden_dim, kernel_size=1),
|
| 194 |
-
nn.ReLU(),
|
| 195 |
-
nn.Conv1d(args.hidden_dim, self.alphabet_size, kernel_size=1))
|
| 196 |
-
self.dropout = nn.Dropout(args.dropout)
|
| 197 |
-
|
| 198 |
-
def forward(self, seq, t):
|
| 199 |
-
time_emb = F.relu(self.time_embedder(t))
|
| 200 |
-
feat = seq.permute(0, 2, 1)
|
| 201 |
-
feat = F.relu(self.linear(feat))
|
| 202 |
-
|
| 203 |
-
for i in range(self.num_layers):
|
| 204 |
-
h = self.dropout(feat.clone())
|
| 205 |
-
if not self.args.clean_data:
|
| 206 |
-
h = h + self.time_layers[i](time_emb)[:, :, None]
|
| 207 |
-
h = self.norms[i]((h).permute(0, 2, 1))
|
| 208 |
-
h = F.relu(self.convs[i](h.permute(0, 2, 1)))
|
| 209 |
-
if h.shape == feat.shape:
|
| 210 |
-
feat = h + feat
|
| 211 |
-
else:
|
| 212 |
-
feat = h
|
| 213 |
-
feat = self.final_conv(feat)
|
| 214 |
-
feat = feat.permute(0, 2, 1)
|
| 215 |
-
return feat
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|