Upload 3 files
Browse filesAdd model .pth, training files.
- phishing_mlp_model.pth +3 -0
- training.py +830 -0
- training_results.png +0 -0
phishing_mlp_model.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7dc2bd19101c1eb353d5e9bbf22bf2c76c457a998799e194e409a372ea421353
|
| 3 |
+
size 9348
|
training.py
ADDED
|
@@ -0,0 +1,830 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.optim as optim
|
| 4 |
+
from torch.utils.data import Dataset, DataLoader, random_split
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import numpy as np
|
| 7 |
+
import json
|
| 8 |
+
import os
|
| 9 |
+
import re
|
| 10 |
+
import urllib.parse
|
| 11 |
+
import matplotlib.pyplot as plt
|
| 12 |
+
from collections import Counter
|
| 13 |
+
from sklearn.model_selection import train_test_split
|
| 14 |
+
from sklearn.preprocessing import StandardScaler
|
| 15 |
+
import tqdm
|
| 16 |
+
|
| 17 |
+
# --- Healthcare URL Detection Components ---
|
| 18 |
+
|
| 19 |
+
# Healthcare-related keywords for domain detection
|
| 20 |
+
HEALTHCARE_KEYWORDS = [
|
| 21 |
+
'health', 'medical', 'hospital', 'clinic', 'pharma', 'patient', 'care', 'med',
|
| 22 |
+
'doctor', 'physician', 'nurse', 'therapy', 'rehab', 'dental', 'cardio', 'neuro',
|
| 23 |
+
'oncology', 'pediatric', 'orthopedic', 'surgery', 'diagnostic', 'wellbeing',
|
| 24 |
+
'wellness', 'ehr', 'emr', 'mychart', 'medicare', 'medicaid', 'insurance'
|
| 25 |
+
]
|
| 26 |
+
|
| 27 |
+
# Common healthcare institutions and systems
|
| 28 |
+
HEALTHCARE_INSTITUTIONS = [
|
| 29 |
+
'mayo', 'cleveland', 'hopkins', 'kaiser', 'mount sinai', 'cedars', 'baylor',
|
| 30 |
+
'nhs', 'quest', 'labcorp', 'cvs', 'walgreens', 'aetna', 'cigna', 'unitedhealthcare',
|
| 31 |
+
'bluecross', 'anthem', 'humana', 'va.gov', 'cdc', 'who', 'nih'
|
| 32 |
+
]
|
| 33 |
+
|
| 34 |
+
# Healthcare TLDs and specific domains
|
| 35 |
+
HEALTHCARE_DOMAINS = ['.health', '.healthcare', '.medicine', '.hospital', '.clinic', 'mychart.']
|
| 36 |
+
|
| 37 |
+
# --- Feature Extraction Functions ---
|
| 38 |
+
|
| 39 |
+
def url_length(url):
|
| 40 |
+
"""Return the length of the URL."""
|
| 41 |
+
return len(url)
|
| 42 |
+
|
| 43 |
+
def num_dots(url):
|
| 44 |
+
"""Return the number of dots in the URL."""
|
| 45 |
+
return url.count('.')
|
| 46 |
+
|
| 47 |
+
def num_hyphens(url):
|
| 48 |
+
"""Return the number of hyphens in the URL."""
|
| 49 |
+
return url.count('-')
|
| 50 |
+
|
| 51 |
+
def num_at(url):
|
| 52 |
+
"""Return the number of @ symbols in the URL."""
|
| 53 |
+
return url.count('@')
|
| 54 |
+
|
| 55 |
+
def num_tilde(url):
|
| 56 |
+
"""Return the number of ~ symbols in the URL."""
|
| 57 |
+
return url.count('~')
|
| 58 |
+
|
| 59 |
+
def num_underscore(url):
|
| 60 |
+
"""Return the number of underscores in the URL."""
|
| 61 |
+
return url.count('_')
|
| 62 |
+
|
| 63 |
+
def num_percent(url):
|
| 64 |
+
"""Return the number of percent symbols in the URL."""
|
| 65 |
+
return url.count('%')
|
| 66 |
+
|
| 67 |
+
def num_ampersand(url):
|
| 68 |
+
"""Return the number of ampersands in the URL."""
|
| 69 |
+
return url.count('&')
|
| 70 |
+
|
| 71 |
+
def num_hash(url):
|
| 72 |
+
"""Return the number of hash symbols in the URL."""
|
| 73 |
+
return url.count('#')
|
| 74 |
+
|
| 75 |
+
def has_https(url):
|
| 76 |
+
"""Return 1 if the URL uses HTTPS, 0 otherwise."""
|
| 77 |
+
return int(url.startswith('https://'))
|
| 78 |
+
|
| 79 |
+
def has_ip_address(url):
|
| 80 |
+
"""Check if the URL contains an IP address instead of a domain name."""
|
| 81 |
+
try:
|
| 82 |
+
parsed_url = urllib.parse.urlparse(url)
|
| 83 |
+
if re.match(r'^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$', parsed_url.netloc):
|
| 84 |
+
return 1
|
| 85 |
+
# Check for IPv6
|
| 86 |
+
if re.match(r'^\[[0-9a-fA-F:]+\]$', parsed_url.netloc):
|
| 87 |
+
return 1
|
| 88 |
+
return 0
|
| 89 |
+
except:
|
| 90 |
+
return 0
|
| 91 |
+
|
| 92 |
+
def get_hostname_length(url):
|
| 93 |
+
"""Return the length of the hostname."""
|
| 94 |
+
try:
|
| 95 |
+
parsed_url = urllib.parse.urlparse(url)
|
| 96 |
+
return len(parsed_url.netloc)
|
| 97 |
+
except:
|
| 98 |
+
return 0
|
| 99 |
+
|
| 100 |
+
def get_path_length(url):
|
| 101 |
+
"""Return the length of the path."""
|
| 102 |
+
try:
|
| 103 |
+
parsed_url = urllib.parse.urlparse(url)
|
| 104 |
+
return len(parsed_url.path)
|
| 105 |
+
except:
|
| 106 |
+
return 0
|
| 107 |
+
|
| 108 |
+
def get_path_level(url):
|
| 109 |
+
"""Return the number of directories in the path."""
|
| 110 |
+
try:
|
| 111 |
+
parsed_url = urllib.parse.urlparse(url)
|
| 112 |
+
return parsed_url.path.count('/')
|
| 113 |
+
except:
|
| 114 |
+
return 0
|
| 115 |
+
|
| 116 |
+
def get_subdomain_level(url):
|
| 117 |
+
"""Return the number of subdomains in the URL."""
|
| 118 |
+
try:
|
| 119 |
+
parsed_url = urllib.parse.urlparse(url)
|
| 120 |
+
hostname = parsed_url.netloc
|
| 121 |
+
if has_ip_address(url):
|
| 122 |
+
return 0 # IP addresses don't have subdomains
|
| 123 |
+
|
| 124 |
+
parts = hostname.split('.')
|
| 125 |
+
# Remove top-level and second-level domains
|
| 126 |
+
if len(parts) > 2:
|
| 127 |
+
return len(parts) - 2 # Count remaining parts as subdomain levels
|
| 128 |
+
else:
|
| 129 |
+
return 0 # No subdomains
|
| 130 |
+
except:
|
| 131 |
+
return 0
|
| 132 |
+
|
| 133 |
+
def has_double_slash_in_path(url):
|
| 134 |
+
"""Check if the path contains a double slash."""
|
| 135 |
+
try:
|
| 136 |
+
parsed_url = urllib.parse.urlparse(url)
|
| 137 |
+
return int('//' in parsed_url.path)
|
| 138 |
+
except:
|
| 139 |
+
return 0
|
| 140 |
+
|
| 141 |
+
def get_tld(url):
|
| 142 |
+
"""Extract the top-level domain from a URL."""
|
| 143 |
+
try:
|
| 144 |
+
parsed_url = urllib.parse.urlparse(url)
|
| 145 |
+
hostname = parsed_url.netloc.lower()
|
| 146 |
+
parts = hostname.split('.')
|
| 147 |
+
if len(parts) > 1:
|
| 148 |
+
return parts[-1]
|
| 149 |
+
return ''
|
| 150 |
+
except:
|
| 151 |
+
return ''
|
| 152 |
+
|
| 153 |
+
def count_digits(url):
|
| 154 |
+
"""Count the number of digits in the URL."""
|
| 155 |
+
return sum(c.isdigit() for c in url)
|
| 156 |
+
|
| 157 |
+
def digit_ratio(url):
|
| 158 |
+
"""Calculate the ratio of digits to the total URL length."""
|
| 159 |
+
if len(url) == 0:
|
| 160 |
+
return 0
|
| 161 |
+
return count_digits(url) / len(url)
|
| 162 |
+
|
| 163 |
+
def count_letters(url):
|
| 164 |
+
"""Count the number of letters in the URL."""
|
| 165 |
+
return sum(c.isalpha() for c in url)
|
| 166 |
+
|
| 167 |
+
def letter_ratio(url):
|
| 168 |
+
"""Calculate the ratio of letters to the total URL length."""
|
| 169 |
+
if len(url) == 0:
|
| 170 |
+
return 0
|
| 171 |
+
return count_letters(url) / len(url)
|
| 172 |
+
|
| 173 |
+
def count_special_chars(url):
|
| 174 |
+
"""Count the number of special characters in the URL."""
|
| 175 |
+
return sum(not c.isalnum() and not c.isspace() for c in url)
|
| 176 |
+
|
| 177 |
+
def special_char_ratio(url):
|
| 178 |
+
"""Calculate the ratio of special characters to the total URL length."""
|
| 179 |
+
if len(url) == 0:
|
| 180 |
+
return 0
|
| 181 |
+
return count_special_chars(url) / len(url)
|
| 182 |
+
|
| 183 |
+
def get_query_length(url):
|
| 184 |
+
"""Return the length of the query string."""
|
| 185 |
+
try:
|
| 186 |
+
parsed_url = urllib.parse.urlparse(url)
|
| 187 |
+
return len(parsed_url.query)
|
| 188 |
+
except:
|
| 189 |
+
return 0
|
| 190 |
+
|
| 191 |
+
def get_fragment_length(url):
|
| 192 |
+
"""Return the length of the fragment."""
|
| 193 |
+
try:
|
| 194 |
+
parsed_url = urllib.parse.urlparse(url)
|
| 195 |
+
return len(parsed_url.fragment)
|
| 196 |
+
except:
|
| 197 |
+
return 0
|
| 198 |
+
|
| 199 |
+
def healthcare_relevance_score(url):
|
| 200 |
+
"""
|
| 201 |
+
Calculate a relevance score for healthcare-related URLs.
|
| 202 |
+
Higher scores indicate stronger relation to healthcare.
|
| 203 |
+
"""
|
| 204 |
+
url_lower = url.lower()
|
| 205 |
+
parsed_url = urllib.parse.urlparse(url_lower)
|
| 206 |
+
domain = parsed_url.netloc
|
| 207 |
+
path = parsed_url.path
|
| 208 |
+
|
| 209 |
+
score = 0
|
| 210 |
+
|
| 211 |
+
# Check for healthcare keywords in domain
|
| 212 |
+
for keyword in HEALTHCARE_KEYWORDS:
|
| 213 |
+
if keyword in domain:
|
| 214 |
+
score += 3
|
| 215 |
+
elif keyword in path:
|
| 216 |
+
score += 1
|
| 217 |
+
|
| 218 |
+
# Check for healthcare institutions
|
| 219 |
+
for institution in HEALTHCARE_INSTITUTIONS:
|
| 220 |
+
if institution in domain:
|
| 221 |
+
score += 4
|
| 222 |
+
elif institution in path:
|
| 223 |
+
score += 2
|
| 224 |
+
|
| 225 |
+
# Check for healthcare-specific domains and TLDs
|
| 226 |
+
for healthcare_domain in HEALTHCARE_DOMAINS:
|
| 227 |
+
if healthcare_domain in domain:
|
| 228 |
+
score += 3
|
| 229 |
+
|
| 230 |
+
# Check for EHR/patient portal indicators
|
| 231 |
+
if 'portal' in domain or 'portal' in path:
|
| 232 |
+
score += 2
|
| 233 |
+
if 'patient' in domain or 'mychart' in domain:
|
| 234 |
+
score += 3
|
| 235 |
+
if 'ehr' in domain or 'emr' in domain:
|
| 236 |
+
score += 3
|
| 237 |
+
|
| 238 |
+
# Normalize score to be between 0 and 1
|
| 239 |
+
return min(score / 10.0, 1.0)
|
| 240 |
+
|
| 241 |
+
def extract_features(url):
|
| 242 |
+
"""Extract all features from a given URL."""
|
| 243 |
+
features = [
|
| 244 |
+
# Core features (the original 17)
|
| 245 |
+
num_dots(url),
|
| 246 |
+
get_subdomain_level(url),
|
| 247 |
+
get_path_level(url),
|
| 248 |
+
url_length(url),
|
| 249 |
+
num_hyphens(url),
|
| 250 |
+
num_at(url),
|
| 251 |
+
num_tilde(url),
|
| 252 |
+
num_underscore(url),
|
| 253 |
+
num_percent(url),
|
| 254 |
+
num_ampersand(url),
|
| 255 |
+
num_hash(url),
|
| 256 |
+
has_https(url),
|
| 257 |
+
has_ip_address(url),
|
| 258 |
+
get_hostname_length(url),
|
| 259 |
+
get_path_length(url),
|
| 260 |
+
has_double_slash_in_path(url),
|
| 261 |
+
|
| 262 |
+
# Additional features
|
| 263 |
+
digit_ratio(url),
|
| 264 |
+
letter_ratio(url),
|
| 265 |
+
special_char_ratio(url),
|
| 266 |
+
get_query_length(url),
|
| 267 |
+
get_fragment_length(url),
|
| 268 |
+
healthcare_relevance_score(url)
|
| 269 |
+
]
|
| 270 |
+
return features
|
| 271 |
+
|
| 272 |
+
def get_feature_names():
|
| 273 |
+
"""Get names of all features in the order they are extracted."""
|
| 274 |
+
return [
|
| 275 |
+
'num_dots', 'subdomain_level', 'path_level', 'url_length',
|
| 276 |
+
'num_hyphens', 'num_at', 'num_tilde', 'num_underscore',
|
| 277 |
+
'num_percent', 'num_ampersand', 'num_hash', 'has_https',
|
| 278 |
+
'has_ip_address', 'hostname_length', 'path_length',
|
| 279 |
+
'double_slash_in_path', 'digit_ratio', 'letter_ratio',
|
| 280 |
+
'special_char_ratio', 'query_length', 'fragment_length',
|
| 281 |
+
'healthcare_relevance'
|
| 282 |
+
]
|
| 283 |
+
|
| 284 |
+
# --- Dataset Loading and Processing ---
|
| 285 |
+
|
| 286 |
+
class URLDataset(Dataset):
|
| 287 |
+
def __init__(self, features, labels):
|
| 288 |
+
"""
|
| 289 |
+
Custom PyTorch Dataset for URL features and labels.
|
| 290 |
+
|
| 291 |
+
Args:
|
| 292 |
+
features (numpy.ndarray): Feature vectors for each URL
|
| 293 |
+
labels (numpy.ndarray): Labels for each URL (0 for benign, 1 for malicious)
|
| 294 |
+
"""
|
| 295 |
+
self.features = torch.tensor(features, dtype=torch.float32)
|
| 296 |
+
self.labels = torch.tensor(labels, dtype=torch.long)
|
| 297 |
+
|
| 298 |
+
def __len__(self):
|
| 299 |
+
return len(self.labels)
|
| 300 |
+
|
| 301 |
+
def __getitem__(self, idx):
|
| 302 |
+
return self.features[idx], self.labels[idx]
|
| 303 |
+
|
| 304 |
+
def load_huggingface_data(file_path):
|
| 305 |
+
"""
|
| 306 |
+
Load the Hugging Face dataset from a JSON file.
|
| 307 |
+
|
| 308 |
+
Args:
|
| 309 |
+
file_path: Path to the JSON file
|
| 310 |
+
|
| 311 |
+
Returns:
|
| 312 |
+
List of tuples containing (url, label)
|
| 313 |
+
"""
|
| 314 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
| 315 |
+
data = json.load(f)
|
| 316 |
+
|
| 317 |
+
url_data = []
|
| 318 |
+
for item in data:
|
| 319 |
+
url = item.get('text', '')
|
| 320 |
+
label = item.get('label', -1)
|
| 321 |
+
if url and label != -1: # Only add entries with valid URLs and labels
|
| 322 |
+
url_data.append((url, label))
|
| 323 |
+
|
| 324 |
+
print(f"Loaded {len(url_data)} URLs from Hugging Face dataset")
|
| 325 |
+
return url_data
|
| 326 |
+
|
| 327 |
+
def load_phiusiil_data(file_path):
|
| 328 |
+
"""
|
| 329 |
+
Load the PhiUSIIL dataset from a CSV file.
|
| 330 |
+
|
| 331 |
+
Args:
|
| 332 |
+
file_path: Path to the CSV file
|
| 333 |
+
|
| 334 |
+
Returns:
|
| 335 |
+
List of tuples containing (url, label)
|
| 336 |
+
"""
|
| 337 |
+
df = pd.read_csv(file_path)
|
| 338 |
+
|
| 339 |
+
url_data = []
|
| 340 |
+
for _, row in df.iterrows():
|
| 341 |
+
url = row['URL']
|
| 342 |
+
label = row['label']
|
| 343 |
+
if isinstance(url, str) and url.strip() and not pd.isna(label):
|
| 344 |
+
url_data.append((url, label))
|
| 345 |
+
|
| 346 |
+
print(f"Loaded {len(url_data)} URLs from PhiUSIIL dataset")
|
| 347 |
+
return url_data
|
| 348 |
+
|
| 349 |
+
def load_kaggle_data(file_path):
|
| 350 |
+
"""
|
| 351 |
+
Load the Kaggle malicious_phish.csv dataset.
|
| 352 |
+
|
| 353 |
+
Args:
|
| 354 |
+
file_path: Path to the CSV file
|
| 355 |
+
|
| 356 |
+
Returns:
|
| 357 |
+
List of tuples containing (url, label)
|
| 358 |
+
"""
|
| 359 |
+
df = pd.read_csv(file_path)
|
| 360 |
+
|
| 361 |
+
url_data = []
|
| 362 |
+
for _, row in df.iterrows():
|
| 363 |
+
url = row['url']
|
| 364 |
+
type_val = row['type']
|
| 365 |
+
|
| 366 |
+
# Convert to binary classification (0 for benign, 1 for all others)
|
| 367 |
+
label = 0 if type_val.lower() == 'benign' else 1
|
| 368 |
+
|
| 369 |
+
if isinstance(url, str) and url.strip():
|
| 370 |
+
url_data.append((url, label))
|
| 371 |
+
|
| 372 |
+
print(f"Loaded {len(url_data)} URLs from Kaggle dataset")
|
| 373 |
+
return url_data
|
| 374 |
+
|
| 375 |
+
def combine_and_deduplicate(datasets):
|
| 376 |
+
"""
|
| 377 |
+
Combine multiple datasets and remove duplicates by URL.
|
| 378 |
+
|
| 379 |
+
Args:
|
| 380 |
+
datasets: List of datasets, each containing (url, label) tuples
|
| 381 |
+
|
| 382 |
+
Returns:
|
| 383 |
+
Tuple of (urls, labels) with duplicates removed
|
| 384 |
+
"""
|
| 385 |
+
url_to_label = {}
|
| 386 |
+
|
| 387 |
+
# Process each dataset
|
| 388 |
+
for dataset in datasets:
|
| 389 |
+
for url, label in dataset:
|
| 390 |
+
# If we've seen this URL before with a different label,
|
| 391 |
+
# prefer the malicious label (1) for safety
|
| 392 |
+
if url in url_to_label:
|
| 393 |
+
url_to_label[url] = max(url_to_label[url], label)
|
| 394 |
+
else:
|
| 395 |
+
url_to_label[url] = label
|
| 396 |
+
|
| 397 |
+
# Convert to lists
|
| 398 |
+
urls = list(url_to_label.keys())
|
| 399 |
+
labels = list(url_to_label.values())
|
| 400 |
+
|
| 401 |
+
print(f"After deduplication: {len(urls)} unique URLs")
|
| 402 |
+
|
| 403 |
+
# Report class distribution
|
| 404 |
+
label_counts = Counter(labels)
|
| 405 |
+
print(f"Class distribution - Benign (0): {label_counts[0]}, Malicious (1): {label_counts[1]}")
|
| 406 |
+
|
| 407 |
+
return urls, labels
|
| 408 |
+
|
| 409 |
+
def extract_all_features(urls):
|
| 410 |
+
"""
|
| 411 |
+
Extract features from a list of URLs.
|
| 412 |
+
|
| 413 |
+
Args:
|
| 414 |
+
urls: List of URL strings
|
| 415 |
+
|
| 416 |
+
Returns:
|
| 417 |
+
Numpy array of feature vectors
|
| 418 |
+
"""
|
| 419 |
+
feature_vectors = []
|
| 420 |
+
|
| 421 |
+
# Use tqdm for a progress bar
|
| 422 |
+
for url in tqdm.tqdm(urls, desc="Extracting features"):
|
| 423 |
+
try:
|
| 424 |
+
features = extract_features(url)
|
| 425 |
+
feature_vectors.append(features)
|
| 426 |
+
except Exception as e:
|
| 427 |
+
print(f"Error extracting features from {url}: {str(e)}")
|
| 428 |
+
# Insert a vector of zeros in case of error
|
| 429 |
+
feature_vectors.append([0] * len(get_feature_names()))
|
| 430 |
+
|
| 431 |
+
return np.array(feature_vectors, dtype=np.float32)
|
| 432 |
+
|
| 433 |
+
# --- MLP Model ---
|
| 434 |
+
class PhishingMLP(nn.Module):
|
| 435 |
+
def __init__(self, input_size=22, hidden_sizes=[22, 30, 10], output_size=1):
|
| 436 |
+
"""
|
| 437 |
+
Multilayer Perceptron for Phishing URL Detection.
|
| 438 |
+
|
| 439 |
+
Args:
|
| 440 |
+
input_size: Number of input features (default: 22)
|
| 441 |
+
hidden_sizes: List of neurons in each hidden layer
|
| 442 |
+
output_size: Number of output classes (1 for binary)
|
| 443 |
+
"""
|
| 444 |
+
super(PhishingMLP, self).__init__()
|
| 445 |
+
|
| 446 |
+
self.layers = nn.ModuleList()
|
| 447 |
+
|
| 448 |
+
# Input layer to first hidden layer
|
| 449 |
+
self.layers.append(nn.Linear(input_size, hidden_sizes[0]))
|
| 450 |
+
self.layers.append(nn.ReLU())
|
| 451 |
+
|
| 452 |
+
# Hidden layers
|
| 453 |
+
for i in range(len(hidden_sizes) - 1):
|
| 454 |
+
self.layers.append(nn.Linear(hidden_sizes[i], hidden_sizes[i+1]))
|
| 455 |
+
self.layers.append(nn.ReLU())
|
| 456 |
+
|
| 457 |
+
# Output layer
|
| 458 |
+
self.layers.append(nn.Linear(hidden_sizes[-1], output_size))
|
| 459 |
+
self.layers.append(nn.Sigmoid())
|
| 460 |
+
|
| 461 |
+
def forward(self, x):
|
| 462 |
+
"""Forward pass through the network."""
|
| 463 |
+
for layer in self.layers:
|
| 464 |
+
x = layer(x)
|
| 465 |
+
return x
|
| 466 |
+
|
| 467 |
+
# --- Training Functions ---
|
| 468 |
+
def train_mlp(model, train_loader, val_loader, epochs=25, learning_rate=0.001, device="cpu"):
|
| 469 |
+
"""
|
| 470 |
+
Train the MLP model.
|
| 471 |
+
|
| 472 |
+
Args:
|
| 473 |
+
model: The MLP model
|
| 474 |
+
train_loader: DataLoader for training data
|
| 475 |
+
val_loader: DataLoader for validation data
|
| 476 |
+
epochs: Number of training epochs
|
| 477 |
+
learning_rate: Learning rate for optimization
|
| 478 |
+
device: Device to train on (cpu or cuda)
|
| 479 |
+
|
| 480 |
+
Returns:
|
| 481 |
+
Tuple of (trained_model, train_losses, val_losses, val_accuracies)
|
| 482 |
+
"""
|
| 483 |
+
model.to(device)
|
| 484 |
+
criterion = nn.BCELoss()
|
| 485 |
+
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
| 486 |
+
|
| 487 |
+
train_losses = []
|
| 488 |
+
val_losses = []
|
| 489 |
+
val_accuracies = []
|
| 490 |
+
|
| 491 |
+
print(f"Training on {device}...")
|
| 492 |
+
for epoch in range(epochs):
|
| 493 |
+
# Training phase
|
| 494 |
+
model.train()
|
| 495 |
+
running_loss = 0.0
|
| 496 |
+
|
| 497 |
+
for inputs, labels in train_loader:
|
| 498 |
+
inputs, labels = inputs.to(device), labels.to(device)
|
| 499 |
+
|
| 500 |
+
# Zero the parameter gradients
|
| 501 |
+
optimizer.zero_grad()
|
| 502 |
+
|
| 503 |
+
# Forward + backward + optimize
|
| 504 |
+
outputs = model(inputs)
|
| 505 |
+
loss = criterion(outputs, labels.unsqueeze(1).float())
|
| 506 |
+
loss.backward()
|
| 507 |
+
optimizer.step()
|
| 508 |
+
|
| 509 |
+
running_loss += loss.item()
|
| 510 |
+
|
| 511 |
+
# Calculate average training loss
|
| 512 |
+
epoch_train_loss = running_loss / len(train_loader)
|
| 513 |
+
train_losses.append(epoch_train_loss)
|
| 514 |
+
|
| 515 |
+
# Validation phase
|
| 516 |
+
model.eval()
|
| 517 |
+
val_loss = 0.0
|
| 518 |
+
correct = 0
|
| 519 |
+
total = 0
|
| 520 |
+
|
| 521 |
+
with torch.no_grad():
|
| 522 |
+
for inputs, labels in val_loader:
|
| 523 |
+
inputs, labels = inputs.to(device), labels.to(device)
|
| 524 |
+
outputs = model(inputs)
|
| 525 |
+
|
| 526 |
+
# Calculate validation loss
|
| 527 |
+
loss = criterion(outputs, labels.unsqueeze(1).float())
|
| 528 |
+
val_loss += loss.item()
|
| 529 |
+
|
| 530 |
+
# Calculate accuracy
|
| 531 |
+
predicted = (outputs > 0.5).float()
|
| 532 |
+
total += labels.size(0)
|
| 533 |
+
correct += (predicted.squeeze() == labels.float()).sum().item()
|
| 534 |
+
|
| 535 |
+
# Calculate average validation loss and accuracy
|
| 536 |
+
epoch_val_loss = val_loss / len(val_loader)
|
| 537 |
+
val_losses.append(epoch_val_loss)
|
| 538 |
+
|
| 539 |
+
val_accuracy = 100 * correct / total
|
| 540 |
+
val_accuracies.append(val_accuracy)
|
| 541 |
+
|
| 542 |
+
# Print progress
|
| 543 |
+
print(f"Epoch {epoch+1}/{epochs}, Train Loss: {epoch_train_loss:.4f}, Val Loss: {epoch_val_loss:.4f}, Val Acc: {val_accuracy:.2f}%")
|
| 544 |
+
|
| 545 |
+
return model, train_losses, val_losses, val_accuracies
|
| 546 |
+
|
| 547 |
+
def evaluate_model(model, test_loader, device):
|
| 548 |
+
"""
|
| 549 |
+
Evaluate the trained model on test data.
|
| 550 |
+
|
| 551 |
+
Args:
|
| 552 |
+
model: Trained model
|
| 553 |
+
test_loader: DataLoader for test data
|
| 554 |
+
device: Device to evaluate on
|
| 555 |
+
|
| 556 |
+
Returns:
|
| 557 |
+
Tuple of (accuracy, precision, recall, f1_score)
|
| 558 |
+
"""
|
| 559 |
+
model.to(device)
|
| 560 |
+
model.eval()
|
| 561 |
+
|
| 562 |
+
correct = 0
|
| 563 |
+
total = 0
|
| 564 |
+
true_positives = 0
|
| 565 |
+
false_positives = 0
|
| 566 |
+
false_negatives = 0
|
| 567 |
+
healthcare_correct = 0
|
| 568 |
+
healthcare_total = 0
|
| 569 |
+
|
| 570 |
+
feature_idx = get_feature_names().index('healthcare_relevance')
|
| 571 |
+
healthcare_threshold = 0.5 # Threshold for considering a URL healthcare-related
|
| 572 |
+
|
| 573 |
+
with torch.no_grad():
|
| 574 |
+
for inputs, labels in test_loader:
|
| 575 |
+
inputs, labels = inputs.to(device), labels.to(device)
|
| 576 |
+
|
| 577 |
+
# Forward pass
|
| 578 |
+
outputs = model(inputs)
|
| 579 |
+
predicted = (outputs > 0.5).float().squeeze()
|
| 580 |
+
|
| 581 |
+
# Update counts
|
| 582 |
+
total += labels.size(0)
|
| 583 |
+
correct += (predicted == labels.float()).sum().item()
|
| 584 |
+
|
| 585 |
+
# Metrics calculation
|
| 586 |
+
for i in range(labels.size(0)):
|
| 587 |
+
if labels[i] == 1 and predicted[i] == 1:
|
| 588 |
+
true_positives += 1
|
| 589 |
+
elif labels[i] == 0 and predicted[i] == 1:
|
| 590 |
+
false_positives += 1
|
| 591 |
+
elif labels[i] == 1 and predicted[i] == 0:
|
| 592 |
+
false_negatives += 1
|
| 593 |
+
|
| 594 |
+
# Check healthcare relevance
|
| 595 |
+
if inputs[i, feature_idx] >= healthcare_threshold:
|
| 596 |
+
healthcare_total += 1
|
| 597 |
+
if predicted[i] == labels[i]:
|
| 598 |
+
healthcare_correct += 1
|
| 599 |
+
|
| 600 |
+
# Calculate metrics
|
| 601 |
+
accuracy = 100 * correct / total
|
| 602 |
+
precision = true_positives / (true_positives + false_positives) if (true_positives + false_positives) > 0 else 0.0
|
| 603 |
+
recall = true_positives / (true_positives + false_negatives) if (true_positives + false_negatives) > 0 else 0.0
|
| 604 |
+
f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0.0
|
| 605 |
+
|
| 606 |
+
# Healthcare-specific accuracy
|
| 607 |
+
healthcare_accuracy = 100 * healthcare_correct / healthcare_total if healthcare_total > 0 else 0.0
|
| 608 |
+
|
| 609 |
+
print(f"Overall Test Accuracy: {accuracy:.2f}%")
|
| 610 |
+
print(f"Precision: {precision:.4f}, Recall: {recall:.4f}, F1-Score: {f1:.4f}")
|
| 611 |
+
print(f"Healthcare URLs identified: {healthcare_total} ({healthcare_total/total*100:.2f}%)")
|
| 612 |
+
print(f"Healthcare URL Detection Accuracy: {healthcare_accuracy:.2f}%")
|
| 613 |
+
|
| 614 |
+
return accuracy, precision, recall, f1, healthcare_accuracy
|
| 615 |
+
|
| 616 |
+
def plot_training_results(train_losses, val_losses, val_accuracies):
|
| 617 |
+
"""
|
| 618 |
+
Plot training metrics.
|
| 619 |
+
|
| 620 |
+
Args:
|
| 621 |
+
train_losses: List of training losses
|
| 622 |
+
val_losses: List of validation losses
|
| 623 |
+
val_accuracies: List of validation accuracies
|
| 624 |
+
"""
|
| 625 |
+
plt.figure(figsize=(15, 5))
|
| 626 |
+
|
| 627 |
+
# Plot losses
|
| 628 |
+
plt.subplot(1, 2, 1)
|
| 629 |
+
plt.plot(train_losses, label='Training Loss')
|
| 630 |
+
plt.plot(val_losses, label='Validation Loss')
|
| 631 |
+
plt.xlabel('Epoch')
|
| 632 |
+
plt.ylabel('Loss')
|
| 633 |
+
plt.title('Training and Validation Loss')
|
| 634 |
+
plt.legend()
|
| 635 |
+
|
| 636 |
+
# Plot accuracy
|
| 637 |
+
plt.subplot(1, 2, 2)
|
| 638 |
+
plt.plot(val_accuracies, label='Validation Accuracy')
|
| 639 |
+
plt.xlabel('Epoch')
|
| 640 |
+
plt.ylabel('Accuracy (%)')
|
| 641 |
+
plt.title('Validation Accuracy')
|
| 642 |
+
plt.legend()
|
| 643 |
+
|
| 644 |
+
plt.tight_layout()
|
| 645 |
+
plt.savefig('training_results.png')
|
| 646 |
+
plt.show()
|
| 647 |
+
|
| 648 |
+
def analyze_healthcare_features(features, labels, pred_labels):
|
| 649 |
+
"""
|
| 650 |
+
Analyze how the model performs on healthcare-related URLs.
|
| 651 |
+
|
| 652 |
+
Args:
|
| 653 |
+
features: Feature vectors
|
| 654 |
+
labels: True labels
|
| 655 |
+
pred_labels: Predicted labels
|
| 656 |
+
"""
|
| 657 |
+
healthcare_idx = get_feature_names().index('healthcare_relevance')
|
| 658 |
+
healthcare_scores = features[:, healthcare_idx]
|
| 659 |
+
|
| 660 |
+
# Define thresholds
|
| 661 |
+
thresholds = [0.1, 0.3, 0.5, 0.7, 0.9]
|
| 662 |
+
|
| 663 |
+
print("\n=== Healthcare URL Analysis ===")
|
| 664 |
+
print("Healthcare relevance score distribution:")
|
| 665 |
+
for threshold in thresholds:
|
| 666 |
+
count = np.sum(healthcare_scores >= threshold)
|
| 667 |
+
percent = (count / len(healthcare_scores)) * 100
|
| 668 |
+
print(f" Score >= {threshold}: {count} URLs ({percent:.2f}%)")
|
| 669 |
+
|
| 670 |
+
# Analyze performance at different healthcare relevance levels
|
| 671 |
+
for threshold in thresholds:
|
| 672 |
+
mask = healthcare_scores >= threshold
|
| 673 |
+
if np.sum(mask) == 0:
|
| 674 |
+
continue
|
| 675 |
+
|
| 676 |
+
h_labels = labels[mask]
|
| 677 |
+
h_preds = pred_labels[mask]
|
| 678 |
+
h_accuracy = np.mean(h_labels == h_preds) * 100
|
| 679 |
+
|
| 680 |
+
benign_count = np.sum(h_labels == 0)
|
| 681 |
+
malicious_count = np.sum(h_labels == 1)
|
| 682 |
+
|
| 683 |
+
print(f"\nFor healthcare relevance >= {threshold}:")
|
| 684 |
+
print(f" URLs: {np.sum(mask)} ({benign_count} benign, {malicious_count} malicious)")
|
| 685 |
+
print(f" Accuracy: {h_accuracy:.2f}%")
|
| 686 |
+
|
| 687 |
+
# Calculate healthcare-specific metrics
|
| 688 |
+
tp = np.sum((h_labels == 1) & (h_preds == 1))
|
| 689 |
+
fp = np.sum((h_labels == 0) & (h_preds == 1))
|
| 690 |
+
fn = np.sum((h_labels == 1) & (h_preds == 0))
|
| 691 |
+
|
| 692 |
+
precision = tp / (tp + fp) if (tp + fp) > 0 else 0
|
| 693 |
+
recall = tp / (tp + fn) if (tp + fn) > 0 else 0
|
| 694 |
+
f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
|
| 695 |
+
|
| 696 |
+
print(f" Precision: {precision:.4f}, Recall: {recall:.4f}, F1: {f1:.4f}")
|
| 697 |
+
|
| 698 |
+
# Calculate false positive rate for healthcare URLs
|
| 699 |
+
if benign_count > 0:
|
| 700 |
+
h_fpr = np.sum((h_labels == 0) & (h_preds == 1)) / benign_count
|
| 701 |
+
print(f" False Positive Rate: {h_fpr:.4f}")
|
| 702 |
+
|
| 703 |
+
# Calculate false negative rate for healthcare URLs
|
| 704 |
+
if malicious_count > 0:
|
| 705 |
+
h_fnr = np.sum((h_labels == 1) & (h_preds == 0)) / malicious_count
|
| 706 |
+
print(f" False Negative Rate: {h_fnr:.4f}")
|
| 707 |
+
|
| 708 |
+
# --- Main Function ---
|
| 709 |
+
def main():
|
| 710 |
+
"""Main function to run the entire pipeline."""
|
| 711 |
+
# Configuration
|
| 712 |
+
batch_size = 32
|
| 713 |
+
learning_rate = 0.001
|
| 714 |
+
epochs = 20
|
| 715 |
+
test_size = 0.2
|
| 716 |
+
val_size = 0.2
|
| 717 |
+
random_seed = 42
|
| 718 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 719 |
+
|
| 720 |
+
# Filenames
|
| 721 |
+
huggingface_file = "urls.json"
|
| 722 |
+
phiusiil_file = "PhiUSIIL_Phishing_URL_Dataset.csv"
|
| 723 |
+
kaggle_file = "malicious_phish.csv"
|
| 724 |
+
|
| 725 |
+
# Load datasets
|
| 726 |
+
print("Loading datasets...")
|
| 727 |
+
huggingface_data = load_huggingface_data(huggingface_file)
|
| 728 |
+
phiusiil_data = load_phiusiil_data(phiusiil_file)
|
| 729 |
+
kaggle_data = load_kaggle_data(kaggle_file)
|
| 730 |
+
|
| 731 |
+
# Combine and deduplicate datasets
|
| 732 |
+
print("Combining and deduplicating datasets...")
|
| 733 |
+
urls, labels = combine_and_deduplicate([huggingface_data, phiusiil_data, kaggle_data])
|
| 734 |
+
|
| 735 |
+
# Extract features
|
| 736 |
+
print("Extracting features...")
|
| 737 |
+
features = extract_all_features(urls)
|
| 738 |
+
|
| 739 |
+
# Split into train, validation, and test sets
|
| 740 |
+
print("Splitting data...")
|
| 741 |
+
X_train_val, X_test, y_train_val, y_test = train_test_split(
|
| 742 |
+
features, labels, test_size=test_size, random_state=random_seed, stratify=labels
|
| 743 |
+
)
|
| 744 |
+
|
| 745 |
+
X_train, X_val, y_train, y_val = train_test_split(
|
| 746 |
+
X_train_val, y_train_val, test_size=val_size/(1-test_size),
|
| 747 |
+
random_state=random_seed, stratify=y_train_val
|
| 748 |
+
)
|
| 749 |
+
|
| 750 |
+
# Standardize features
|
| 751 |
+
print("Standardizing features...")
|
| 752 |
+
scaler = StandardScaler()
|
| 753 |
+
X_train = scaler.fit_transform(X_train)
|
| 754 |
+
X_val = scaler.transform(X_val)
|
| 755 |
+
X_test = scaler.transform(X_test)
|
| 756 |
+
|
| 757 |
+
# Create PyTorch datasets and dataloaders
|
| 758 |
+
print("Creating DataLoaders...")
|
| 759 |
+
train_dataset = URLDataset(X_train, y_train)
|
| 760 |
+
val_dataset = URLDataset(X_val, y_val)
|
| 761 |
+
test_dataset = URLDataset(X_test, y_test)
|
| 762 |
+
|
| 763 |
+
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
| 764 |
+
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
|
| 765 |
+
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
|
| 766 |
+
|
| 767 |
+
# Initialize and train model
|
| 768 |
+
print("Initializing model...")
|
| 769 |
+
input_size = features.shape[1] # Number of features
|
| 770 |
+
model = PhishingMLP(input_size=input_size)
|
| 771 |
+
|
| 772 |
+
print("Training model...")
|
| 773 |
+
trained_model, train_losses, val_losses, val_accuracies = train_mlp(
|
| 774 |
+
model, train_loader, val_loader, epochs=epochs,
|
| 775 |
+
learning_rate=learning_rate, device=device
|
| 776 |
+
)
|
| 777 |
+
|
| 778 |
+
# Save trained model
|
| 779 |
+
print("Saving model...")
|
| 780 |
+
model_path = "phishing_mlp_model.pth"
|
| 781 |
+
torch.save(trained_model.state_dict(), model_path)
|
| 782 |
+
print(f"Model saved to {model_path}")
|
| 783 |
+
|
| 784 |
+
# Evaluate on test set
|
| 785 |
+
print("\nEvaluating model on test set...")
|
| 786 |
+
acc, prec, rec, f1, healthcare_acc = evaluate_model(trained_model, test_loader, device)
|
| 787 |
+
|
| 788 |
+
# Plot results
|
| 789 |
+
plot_training_results(train_losses, val_losses, val_accuracies)
|
| 790 |
+
|
| 791 |
+
# Further healthcare analysis
|
| 792 |
+
y_pred = []
|
| 793 |
+
trained_model.eval()
|
| 794 |
+
with torch.no_grad():
|
| 795 |
+
for inputs, _ in test_loader:
|
| 796 |
+
inputs = inputs.to(device)
|
| 797 |
+
outputs = trained_model(inputs)
|
| 798 |
+
predicted = (outputs > 0.5).float().squeeze().cpu().numpy()
|
| 799 |
+
y_pred.extend(predicted.tolist())
|
| 800 |
+
|
| 801 |
+
analyze_healthcare_features(X_test, np.array(y_test), np.array(y_pred))
|
| 802 |
+
|
| 803 |
+
# Print feature importance summary
|
| 804 |
+
feature_names = get_feature_names()
|
| 805 |
+
healthcare_idx = feature_names.index('healthcare_relevance')
|
| 806 |
+
healthcare_scores = features[:, healthcare_idx]
|
| 807 |
+
high_healthcare = healthcare_scores >= 0.5
|
| 808 |
+
|
| 809 |
+
print("\n=== Healthcare URL Examples ===")
|
| 810 |
+
high_healthcare_indices = np.where(high_healthcare)[0][:5] # Get first 5 indices
|
| 811 |
+
for idx in high_healthcare_indices:
|
| 812 |
+
print(f"URL: {urls[idx]}")
|
| 813 |
+
print(f"Healthcare Score: {healthcare_scores[idx]:.2f}")
|
| 814 |
+
print(f"Label: {'Malicious' if labels[idx] == 1 else 'Benign'}")
|
| 815 |
+
print()
|
| 816 |
+
|
| 817 |
+
# Summary
|
| 818 |
+
print("\n=== Summary ===")
|
| 819 |
+
print(f"Total URLs processed: {len(urls)}")
|
| 820 |
+
print(f"Training set: {len(X_train)} URLs")
|
| 821 |
+
print(f"Validation set: {len(X_val)} URLs")
|
| 822 |
+
print(f"Test set: {len(X_test)} URLs")
|
| 823 |
+
print(f"Model input features: {input_size}")
|
| 824 |
+
print(f"Test Accuracy: {acc:.2f}%")
|
| 825 |
+
print(f"Healthcare URL Accuracy: {healthcare_acc:.2f}%")
|
| 826 |
+
print(f"Precision: {prec:.4f}, Recall: {rec:.4f}, F1-Score: {f1:.4f}")
|
| 827 |
+
print("\nTraining complete!")
|
| 828 |
+
|
| 829 |
+
if __name__ == "__main__":
|
| 830 |
+
main()
|
training_results.png
ADDED
|