File size: 5,784 Bytes
eaebbb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
#This is an example that uses the websockets api to know when a prompt execution is done
#Once the prompt execution is done it downloads the images using the /history endpoint

import websocket #NOTE: websocket-client (https://github.com/websocket-client/websocket-client)
import uuid
import json
import urllib.request
import urllib.parse

server_address = "127.0.0.1:8188"
client_id = str(uuid.uuid4())

def queue_prompt(prompt, prompt_id):
    p = {"prompt": prompt, "client_id": client_id, "prompt_id": prompt_id}
    data = json.dumps(p).encode('utf-8')
    req = urllib.request.Request("http://{}/prompt".format(server_address), data=data)
    urllib.request.urlopen(req).read()

def get_image(filename, subfolder, folder_type):
    data = {"filename": filename, "subfolder": subfolder, "type": folder_type}
    url_values = urllib.parse.urlencode(data)
    with urllib.request.urlopen("http://{}/view?{}".format(server_address, url_values)) as response:
        return response.read()

def get_history(prompt_id):
    with urllib.request.urlopen("http://{}/history/{}".format(server_address, prompt_id)) as response:
        return json.loads(response.read())

def get_images(ws, prompt):
    prompt_id = str(uuid.uuid4())
    queue_prompt(prompt, prompt_id)
    output_images = {}
    while True:
        out = ws.recv()
        if isinstance(out, str):
            message = json.loads(out)
            if message['type'] == 'executing':
                data = message['data']
                if data['node'] is None and data['prompt_id'] == prompt_id:
                    break #Execution is done
        else:
            # If you want to be able to decode the binary stream for latent previews, here is how you can do it:
            # bytesIO = BytesIO(out[8:])
            # preview_image = Image.open(bytesIO) # This is your preview in PIL image format, store it in a global
            continue #previews are binary data

    history = get_history(prompt_id)[prompt_id]
    for node_id in history['outputs']:
        node_output = history['outputs'][node_id]
        images_output = []
        if 'images' in node_output:
            for image in node_output['images']:
                image_data = get_image(image['filename'], image['subfolder'], image['type'])
                images_output.append(image_data)
        output_images[node_id] = images_output

    return output_images

prompt_text = """
{
  "3": {
    "inputs": {
      "seed": 473371463840349,
      "steps": 8,
      "cfg": 1,
      "sampler_name": "lcm",
      "scheduler": "beta",
      "denoise": 1,
      "model": [
        "12",
        0
      ],
      "positive": [
        "10",
        0
      ],
      "negative": [
        "7",
        0
      ],
      "latent_image": [
        "16",
        0
      ]
    },
    "class_type": "KSampler",
    "_meta": {
      "title": "KSampler"
    }
  },
  "4": {
    "inputs": {
      "ckpt_name": "novaFurryXL_illustriousV110.safetensors"
    },
    "class_type": "CheckpointLoaderSimple",
    "_meta": {
      "title": "Cargar Punto de Control"
    }
  },
  "7": {
    "inputs": {
      "text": "Xx_NEGPROMPT_xX",
      "clip": [
        "11",
        1
      ]
    },
    "class_type": "CLIPTextEncode",
    "_meta": {
      "title": "Codificar Texto CLIP (Prompt)"
    }
  },
  "8": {
    "inputs": {
      "samples": [
        "3",
        0
      ],
      "vae": [
        "4",
        2
      ]
    },
    "class_type": "VAEDecode",
    "_meta": {
      "title": "Decodificación VAE"
    }
  },
  "9": {
    "inputs": {
      "filename_prefix": "Fast",
      "images": [
        "8",
        0
      ]
    },
    "class_type": "SaveImage",
    "_meta": {
      "title": "Guardar Imagen"
    }
  },
  "10": {
    "inputs": {
      "text": "Xx_PROMPT_xX",
      "clip": [
        "11",
        1
      ]
    },
    "class_type": "CLIPTextEncodeWithBreak",
    "_meta": {
      "title": "CLIPTextEncode with BREAK syntax"
    }
  },
  "11": {
    "inputs": {
      "lora_name": "dmd2_sdxl_4step_lora_fp16.safetensors",
      "strength_model": 1,
      "strength_clip": 1,
      "model": [
        "4",
        0
      ],
      "clip": [
        "4",
        1
      ]
    },
    "class_type": "LoraLoader",
    "_meta": {
      "title": "Cargar LoRA"
    }
  },
  "12": {
    "inputs": {
      "block_number": 3,
      "downscale_factor": 2,
      "start_percent": 0,
      "end_percent": 0.5,
      "downscale_after_skip": true,
      "downscale_method": "bicubic",
      "upscale_method": "bicubic",
      "model": [
        "11",
        0
      ]
    },
    "class_type": "PatchModelAddDownscale",
    "_meta": {
      "title": "PatchModelAddDownscale (Kohya Deep Shrink)"
    }
  },
  "16": {
    "inputs": {
      "width": 1024,
      "height": 1024,
      "batch_size": 1
    },
    "class_type": "EmptyLatentImage",
    "_meta": {
      "title": "Imagen Latente Vacía"
    }
  }
}
"""

prompt = json.loads(prompt_text)
#set the text prompt for our positive CLIPTextEncode
prompt["10"]["inputs"]["text"] = "masterpiece best quality man"

#set the text prompt for our negative CLIPTextEncode
prompt["7"]["inputs"]["text"] = "worst quailty"

#set seed
prompt["3"]["inputs"]["seed"] = 5345435

ws = websocket.WebSocket()
ws.connect("ws://{}/ws?clientId={}".format(server_address, client_id))
images = get_images(ws, prompt)
ws.close() # for in case this example is used in an environment where it will be repeatedly called, like in a Gradio app. otherwise, you'll randomly receive connection timeouts
#Commented out code to display the output images:

 for node_id in images:
     for image_data in images[node_id]:
         from PIL import Image
         import io
         image = Image.open(io.BytesIO(image_data))
         image.show()