|
|
import os |
|
|
import random |
|
|
import sys |
|
|
import json |
|
|
import argparse |
|
|
import contextlib |
|
|
from typing import Sequence, Mapping, Any, Union |
|
|
import torch |
|
|
from random import randrange |
|
|
|
|
|
|
|
|
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: |
|
|
"""Returns the value at the given index of a sequence or mapping. |
|
|
|
|
|
If the object is a sequence (like list or string), returns the value at the given index. |
|
|
If the object is a mapping (like a dictionary), returns the value at the index-th key. |
|
|
|
|
|
Some return a dictionary, in these cases, we look for the "results" key |
|
|
|
|
|
Args: |
|
|
obj (Union[Sequence, Mapping]): The object to retrieve the value from. |
|
|
index (int): The index of the value to retrieve. |
|
|
|
|
|
Returns: |
|
|
Any: The value at the given index. |
|
|
|
|
|
Raises: |
|
|
IndexError: If the index is out of bounds for the object and the object is not a mapping. |
|
|
""" |
|
|
try: |
|
|
return obj[index] |
|
|
except KeyError: |
|
|
return obj["result"][index] |
|
|
|
|
|
|
|
|
def find_path(name: str, path: str = None) -> str: |
|
|
""" |
|
|
Recursively looks at parent folders starting from the given path until it finds the given name. |
|
|
Returns the path as a Path object if found, or None otherwise. |
|
|
""" |
|
|
|
|
|
if path is None: |
|
|
if args is None or args.comfyui_directory is None: |
|
|
path = os.getcwd() |
|
|
else: |
|
|
path = args.comfyui_directory |
|
|
|
|
|
|
|
|
if name in os.listdir(path): |
|
|
path_name = os.path.join(path, name) |
|
|
print(f"{name} found: {path_name}") |
|
|
return path_name |
|
|
|
|
|
|
|
|
parent_directory = os.path.dirname(path) |
|
|
|
|
|
|
|
|
if parent_directory == path: |
|
|
return None |
|
|
|
|
|
|
|
|
return find_path(name, parent_directory) |
|
|
|
|
|
|
|
|
def add_comfyui_directory_to_sys_path() -> None: |
|
|
""" |
|
|
Add 'ComfyUI' to the sys.path |
|
|
""" |
|
|
comfyui_path = find_path("ComfyUI") |
|
|
if comfyui_path is not None and os.path.isdir(comfyui_path): |
|
|
sys.path.append(comfyui_path) |
|
|
|
|
|
manager_path = os.path.join( |
|
|
comfyui_path, "custom_nodes", "ComfyUI-Manager", "glob" |
|
|
) |
|
|
|
|
|
if os.path.isdir(manager_path) and os.listdir(manager_path): |
|
|
sys.path.append(manager_path) |
|
|
global has_manager |
|
|
has_manager = True |
|
|
|
|
|
import __main__ |
|
|
|
|
|
if getattr(__main__, "__file__", None) is None: |
|
|
__main__.__file__ = os.path.join(comfyui_path, "main.py") |
|
|
|
|
|
print(f"'{comfyui_path}' added to sys.path") |
|
|
|
|
|
|
|
|
def add_extra_model_paths() -> None: |
|
|
""" |
|
|
Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path. |
|
|
""" |
|
|
from comfy.options import enable_args_parsing |
|
|
|
|
|
enable_args_parsing() |
|
|
from utils.extra_config import load_extra_path_config |
|
|
|
|
|
extra_model_paths = find_path("extra_model_paths.yaml") |
|
|
|
|
|
if extra_model_paths is not None: |
|
|
load_extra_path_config(extra_model_paths) |
|
|
else: |
|
|
print("Could not find the extra_model_paths config file.") |
|
|
|
|
|
|
|
|
def import_custom_nodes() -> None: |
|
|
"""Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS |
|
|
|
|
|
This function sets up a new asyncio event loop, initializes the PromptServer, |
|
|
creates a PromptQueue, and initializes the custom nodes. |
|
|
""" |
|
|
if has_manager: |
|
|
try: |
|
|
import manager_core as manager |
|
|
except ImportError: |
|
|
print("Could not import manager_core, proceeding without it.") |
|
|
return |
|
|
else: |
|
|
if hasattr(manager, "get_config"): |
|
|
print("Patching manager_core.get_config to enforce offline mode.") |
|
|
try: |
|
|
get_config = manager.get_config |
|
|
|
|
|
def _get_config(*args, **kwargs): |
|
|
config = get_config(*args, **kwargs) |
|
|
config["network_mode"] = "offline" |
|
|
return config |
|
|
|
|
|
manager.get_config = _get_config |
|
|
except Exception as e: |
|
|
print("Failed to patch manager_core.get_config:", e) |
|
|
|
|
|
import asyncio |
|
|
import execution |
|
|
from nodes import init_extra_nodes |
|
|
import server |
|
|
|
|
|
|
|
|
loop = asyncio.new_event_loop() |
|
|
asyncio.set_event_loop(loop) |
|
|
|
|
|
async def inner(): |
|
|
|
|
|
server_instance = server.PromptServer(loop) |
|
|
execution.PromptQueue(server_instance) |
|
|
|
|
|
|
|
|
await init_extra_nodes(init_custom_nodes=True) |
|
|
|
|
|
loop.run_until_complete(inner()) |
|
|
|
|
|
|
|
|
def save_image_wrapper(context, cls): |
|
|
if args.output is None: |
|
|
return cls |
|
|
|
|
|
from PIL import Image, ImageOps, ImageSequence |
|
|
from PIL.PngImagePlugin import PngInfo |
|
|
|
|
|
import numpy as np |
|
|
|
|
|
class WrappedSaveImage(cls): |
|
|
counter = 0 |
|
|
|
|
|
def save_images( |
|
|
self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None |
|
|
): |
|
|
if args.output is None: |
|
|
return super().save_images( |
|
|
images, filename_prefix, prompt, extra_pnginfo |
|
|
) |
|
|
else: |
|
|
if len(images) > 1 and args.output == "-": |
|
|
raise ValueError("Cannot save multiple images to stdout") |
|
|
filename_prefix += self.prefix_append |
|
|
|
|
|
results = list() |
|
|
for batch_number, image in enumerate(images): |
|
|
i = 255.0 * image.cpu().numpy() |
|
|
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) |
|
|
metadata = None |
|
|
if not args.disable_metadata: |
|
|
metadata = PngInfo() |
|
|
if prompt is not None: |
|
|
metadata.add_text("prompt", json.dumps(prompt)) |
|
|
if extra_pnginfo is not None: |
|
|
for x in extra_pnginfo: |
|
|
metadata.add_text(x, json.dumps(extra_pnginfo[x])) |
|
|
|
|
|
if args.output == "-": |
|
|
|
|
|
if context is not None: |
|
|
context.__exit__(None, None, None) |
|
|
try: |
|
|
img.save( |
|
|
sys.stdout.buffer, |
|
|
format="png", |
|
|
pnginfo=metadata, |
|
|
compress_level=self.compress_level, |
|
|
) |
|
|
finally: |
|
|
if context is not None: |
|
|
context.__enter__() |
|
|
else: |
|
|
subfolder = "" |
|
|
if len(images) == 1: |
|
|
if os.path.isdir(args.output): |
|
|
subfolder = args.output |
|
|
file = "output.png" |
|
|
else: |
|
|
subfolder, file = os.path.split(args.output) |
|
|
if subfolder == "": |
|
|
subfolder = os.getcwd() |
|
|
else: |
|
|
if os.path.isdir(args.output): |
|
|
subfolder = args.output |
|
|
file = filename_prefix |
|
|
else: |
|
|
subfolder, file = os.path.split(args.output) |
|
|
|
|
|
if subfolder == "": |
|
|
subfolder = os.getcwd() |
|
|
|
|
|
files = os.listdir(subfolder) |
|
|
file_pattern = file |
|
|
while True: |
|
|
filename_with_batch_num = file_pattern.replace( |
|
|
"%batch_num%", str(batch_number) |
|
|
) |
|
|
file = ( |
|
|
f"{filename_with_batch_num}_{self.counter:05}.png" |
|
|
) |
|
|
self.counter += 1 |
|
|
|
|
|
if file not in files: |
|
|
break |
|
|
|
|
|
img.save( |
|
|
os.path.join(subfolder, file), |
|
|
pnginfo=metadata, |
|
|
compress_level=self.compress_level, |
|
|
) |
|
|
print("Saved image to", os.path.join(subfolder, file)) |
|
|
results.append( |
|
|
{ |
|
|
"filename": file, |
|
|
"subfolder": subfolder, |
|
|
"type": self.type, |
|
|
} |
|
|
) |
|
|
|
|
|
return {"ui": {"images": results}} |
|
|
|
|
|
return WrappedSaveImage |
|
|
|
|
|
|
|
|
def parse_arg(s: Any, default: Any = None) -> Any: |
|
|
"""Parses a JSON string, returning it unchanged if the parsing fails.""" |
|
|
if __name__ == "__main__" or not isinstance(s, str): |
|
|
return s |
|
|
|
|
|
try: |
|
|
return json.loads(s) |
|
|
except json.JSONDecodeError: |
|
|
return s |
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser( |
|
|
description="A converted ComfyUI workflow. Node inputs listed below. Values passed should be valid JSON (assumes string if not valid JSON)." |
|
|
) |
|
|
parser.add_argument( |
|
|
"--ckpt_name1", |
|
|
default="SDXLCheckpoint.safetensors", |
|
|
help='Argument 0, input `ckpt_name` for node "Load Checkpoint" id 14 (autogenerated)', |
|
|
) |
|
|
|
|
|
parser.add_argument( |
|
|
"--lora_name2", |
|
|
default="dmd2_sdxl_4step_lora_fp16.safetensors", |
|
|
help='Argument 2, input `lora_name` for node "Load LoRA" id 17 (autogenerated)', |
|
|
) |
|
|
|
|
|
parser.add_argument( |
|
|
"--strength_model3", |
|
|
default=1, |
|
|
help='Argument 3, input `strength_model` for node "Load LoRA" id 17 (autogenerated)', |
|
|
) |
|
|
|
|
|
parser.add_argument( |
|
|
"--strength_clip4", |
|
|
default=1, |
|
|
help='Argument 4, input `strength_clip` for node "Load LoRA" id 17 (autogenerated)', |
|
|
) |
|
|
|
|
|
parser.add_argument( |
|
|
"--text5", |
|
|
default="Xx_negative_xX", |
|
|
help='Argument 0, input `text` for node "CLIP Text Encode (Prompt)" id 7 (autogenerated)', |
|
|
) |
|
|
|
|
|
parser.add_argument( |
|
|
"--text6", |
|
|
default="Xx_positive_xX", |
|
|
help='Argument 0, input `text` for node "CLIPTextEncode with BREAK syntax" id 15 (autogenerated)', |
|
|
) |
|
|
|
|
|
parser.add_argument( |
|
|
"--image7", |
|
|
default="example.png", |
|
|
help='Argument 0, input `image` for node "Load Image" id 19 (autogenerated)', |
|
|
) |
|
|
|
|
|
parser.add_argument( |
|
|
"--block_number8", |
|
|
default=3, |
|
|
help='Argument 1, input `block_number` for node "PatchModelAddDownscale (Kohya Deep Shrink)" id 16 (autogenerated)', |
|
|
) |
|
|
|
|
|
parser.add_argument( |
|
|
"--downscale_factor9", |
|
|
default=2, |
|
|
help='Argument 2, input `downscale_factor` for node "PatchModelAddDownscale (Kohya Deep Shrink)" id 16 (autogenerated)', |
|
|
) |
|
|
|
|
|
parser.add_argument( |
|
|
"--start_percent10", |
|
|
default=0, |
|
|
help='Argument 3, input `start_percent` for node "PatchModelAddDownscale (Kohya Deep Shrink)" id 16 (autogenerated)', |
|
|
) |
|
|
|
|
|
parser.add_argument( |
|
|
"--end_percent11", |
|
|
default=0.5000000000000001, |
|
|
help='Argument 4, input `end_percent` for node "PatchModelAddDownscale (Kohya Deep Shrink)" id 16 (autogenerated)', |
|
|
) |
|
|
|
|
|
parser.add_argument( |
|
|
"--downscale_after_skip12", |
|
|
default=True, |
|
|
help='Argument 5, input `downscale_after_skip` for node "PatchModelAddDownscale (Kohya Deep Shrink)" id 16 (autogenerated)', |
|
|
) |
|
|
|
|
|
parser.add_argument( |
|
|
"--downscale_method13", |
|
|
default="bicubic", |
|
|
help='Argument 6, input `downscale_method` for node "PatchModelAddDownscale (Kohya Deep Shrink)" id 16 (autogenerated)', |
|
|
) |
|
|
|
|
|
parser.add_argument( |
|
|
"--upscale_method14", |
|
|
default="bicubic", |
|
|
help='Argument 7, input `upscale_method` for node "PatchModelAddDownscale (Kohya Deep Shrink)" id 16 (autogenerated)', |
|
|
) |
|
|
|
|
|
parser.add_argument( |
|
|
"--seed15", |
|
|
default=64836095259134, |
|
|
help='Argument 1, input `seed` for node "KSampler" id 3 (autogenerated)', |
|
|
) |
|
|
|
|
|
parser.add_argument( |
|
|
"--steps16", |
|
|
default=8, |
|
|
help='Argument 2, input `steps` for node "KSampler" id 3 (autogenerated)', |
|
|
) |
|
|
|
|
|
parser.add_argument( |
|
|
"--cfg17", |
|
|
default=1, |
|
|
help='Argument 3, input `cfg` for node "KSampler" id 3 (autogenerated)', |
|
|
) |
|
|
|
|
|
parser.add_argument( |
|
|
"--sampler_name18", |
|
|
default="lcm", |
|
|
help='Argument 4, input `sampler_name` for node "KSampler" id 3 (autogenerated)', |
|
|
) |
|
|
|
|
|
parser.add_argument( |
|
|
"--scheduler19", |
|
|
default="karras", |
|
|
help='Argument 5, input `scheduler` for node "KSampler" id 3 (autogenerated)', |
|
|
) |
|
|
|
|
|
parser.add_argument( |
|
|
"--denoise20", |
|
|
default=0.87, |
|
|
help='Argument 9, input `denoise` for node "KSampler" id 3 (autogenerated)', |
|
|
) |
|
|
|
|
|
parser.add_argument( |
|
|
"--filename_prefix21", |
|
|
default="Fast", |
|
|
help='Argument 1, input `filename_prefix` for node "Save Image" id 9 (autogenerated)', |
|
|
) |
|
|
|
|
|
parser.add_argument( |
|
|
"--queue-size", |
|
|
"-q", |
|
|
type=int, |
|
|
default=1, |
|
|
help="How many times the workflow will be executed (default: 1)", |
|
|
) |
|
|
|
|
|
parser.add_argument( |
|
|
"--comfyui-directory", |
|
|
"-c", |
|
|
default=None, |
|
|
help="Where to look for ComfyUI (default: current directory)", |
|
|
) |
|
|
|
|
|
parser.add_argument( |
|
|
"--output", |
|
|
"-o", |
|
|
default=None, |
|
|
help="The location to save the output image. Either a file path, a directory, or - for stdout (default: the ComfyUI output directory)", |
|
|
) |
|
|
|
|
|
parser.add_argument( |
|
|
"--disable-metadata", |
|
|
action="store_true", |
|
|
help="Disables writing workflow metadata to the outputs", |
|
|
) |
|
|
|
|
|
|
|
|
comfy_args = [sys.argv[0]] |
|
|
if __name__ == "__main__" and "--" in sys.argv: |
|
|
idx = sys.argv.index("--") |
|
|
comfy_args += sys.argv[idx + 1 :] |
|
|
sys.argv = sys.argv[:idx] |
|
|
|
|
|
args = None |
|
|
if __name__ == "__main__": |
|
|
args = parser.parse_args() |
|
|
sys.argv = comfy_args |
|
|
if args is not None and args.output is not None and args.output == "-": |
|
|
ctx = contextlib.redirect_stdout(sys.stderr) |
|
|
else: |
|
|
ctx = contextlib.nullcontext() |
|
|
|
|
|
PROMPT_DATA = json.loads( |
|
|
'{"3": {"inputs": {"seed": 64836095259134, "steps": 8, "cfg": 1, "sampler_name": "lcm", "scheduler": "karras", "denoise": 0.87, "model": ["16", 0], "positive": ["15", 0], "negative": ["7", 0], "latent_image": ["18", 0]}, "class_type": "KSampler", "_meta": {"title": "KSampler"}}, "7": {"inputs": {"text": "Xx_negative_xX", "clip": ["17", 1]}, "class_type": "CLIPTextEncode", "_meta": {"title": "CLIP Text Encode (Prompt)"}}, "8": {"inputs": {"samples": ["3", 0], "vae": ["14", 2]}, "class_type": "VAEDecode", "_meta": {"title": "VAE Decode"}}, "9": {"inputs": {"filename_prefix": "Fast", "images": ["8", 0]}, "class_type": "SaveImage", "_meta": {"title": "Save Image"}}, "14": {"inputs": {"ckpt_name": "SDXLCheckpoint.safetensors"}, "class_type": "CheckpointLoaderSimple", "_meta": {"title": "Load Checkpoint"}}, "15": {"inputs": {"text": "Xx_positive_xX", "clip": ["17", 1]}, "class_type": "CLIPTextEncodeWithBreak", "_meta": {"title": "CLIPTextEncode with BREAK syntax"}}, "16": {"inputs": {"block_number": 3, "downscale_factor": 2, "start_percent": 0, "end_percent": 0.5000000000000001, "downscale_after_skip": true, "downscale_method": "bicubic", "upscale_method": "bicubic", "model": ["17", 0]}, "class_type": "PatchModelAddDownscale", "_meta": {"title": "PatchModelAddDownscale (Kohya Deep Shrink)"}}, "17": {"inputs": {"lora_name": "dmd2_sdxl_4step_lora_fp16.safetensors", "strength_model": 1, "strength_clip": 1, "model": ["14", 0], "clip": ["14", 1]}, "class_type": "LoraLoader", "_meta": {"title": "Load LoRA"}}, "18": {"inputs": {"pixels": ["19", 0], "vae": ["14", 2]}, "class_type": "VAEEncode", "_meta": {"title": "VAE Encode"}}, "19": {"inputs": {"image": "example.png"}, "class_type": "LoadImage", "_meta": {"title": "Load Image"}}}' |
|
|
) |
|
|
|
|
|
|
|
|
def import_custom_nodes() -> None: |
|
|
"""Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS |
|
|
|
|
|
This function sets up a new asyncio event loop, initializes the PromptServer, |
|
|
creates a PromptQueue, and initializes the custom nodes. |
|
|
""" |
|
|
if has_manager: |
|
|
try: |
|
|
import manager_core as manager |
|
|
except ImportError: |
|
|
print("Could not import manager_core, proceeding without it.") |
|
|
return |
|
|
else: |
|
|
if hasattr(manager, "get_config"): |
|
|
print("Patching manager_core.get_config to enforce offline mode.") |
|
|
try: |
|
|
get_config = manager.get_config |
|
|
|
|
|
def _get_config(*args, **kwargs): |
|
|
config = get_config(*args, **kwargs) |
|
|
config["network_mode"] = "offline" |
|
|
return config |
|
|
|
|
|
manager.get_config = _get_config |
|
|
except Exception as e: |
|
|
print("Failed to patch manager_core.get_config:", e) |
|
|
|
|
|
import asyncio |
|
|
import execution |
|
|
from nodes import init_extra_nodes |
|
|
import server |
|
|
|
|
|
|
|
|
loop = asyncio.new_event_loop() |
|
|
asyncio.set_event_loop(loop) |
|
|
|
|
|
async def inner(): |
|
|
|
|
|
server_instance = server.PromptServer(loop) |
|
|
execution.PromptQueue(server_instance) |
|
|
|
|
|
|
|
|
await init_extra_nodes(init_custom_nodes=True) |
|
|
|
|
|
loop.run_until_complete(inner()) |
|
|
|
|
|
|
|
|
_custom_nodes_imported = False |
|
|
_custom_path_added = False |
|
|
|
|
|
|
|
|
def main(*func_args, **func_kwargs): |
|
|
global args, _custom_nodes_imported, _custom_path_added |
|
|
if __name__ == "__main__": |
|
|
if args is None: |
|
|
args = parser.parse_args() |
|
|
else: |
|
|
defaults = dict( |
|
|
(arg, parser.get_default(arg)) |
|
|
for arg in ["queue_size", "comfyui_directory", "output", "disable_metadata"] |
|
|
+ [ |
|
|
"ckpt_name1", |
|
|
"lora_name2", |
|
|
"strength_model3", |
|
|
"strength_clip4", |
|
|
"text5", |
|
|
"text6", |
|
|
"image7", |
|
|
"block_number8", |
|
|
"downscale_factor9", |
|
|
"start_percent10", |
|
|
"end_percent11", |
|
|
"downscale_after_skip12", |
|
|
"downscale_method13", |
|
|
"upscale_method14", |
|
|
"seed15", |
|
|
"steps16", |
|
|
"cfg17", |
|
|
"sampler_name18", |
|
|
"scheduler19", |
|
|
"denoise20", |
|
|
"filename_prefix21", |
|
|
] |
|
|
) |
|
|
|
|
|
all_args = dict() |
|
|
all_args.update(defaults) |
|
|
all_args.update(func_kwargs) |
|
|
|
|
|
args = argparse.Namespace(**all_args) |
|
|
|
|
|
with ctx: |
|
|
if not _custom_path_added: |
|
|
add_comfyui_directory_to_sys_path() |
|
|
add_extra_model_paths() |
|
|
|
|
|
_custom_path_added = True |
|
|
|
|
|
if not _custom_nodes_imported: |
|
|
import_custom_nodes() |
|
|
|
|
|
_custom_nodes_imported = True |
|
|
|
|
|
from nodes import NODE_CLASS_MAPPINGS |
|
|
|
|
|
with torch.inference_mode(), ctx: |
|
|
checkpointloadersimple = NODE_CLASS_MAPPINGS["CheckpointLoaderSimple"]() |
|
|
checkpointloadersimple_14 = checkpointloadersimple.load_checkpoint( |
|
|
ckpt_name=parse_arg(args.ckpt_name1) |
|
|
) |
|
|
|
|
|
loraloader = NODE_CLASS_MAPPINGS["LoraLoader"]() |
|
|
loraloader_17 = loraloader.load_lora( |
|
|
lora_name=parse_arg(args.lora_name2), |
|
|
strength_model=parse_arg(args.strength_model3), |
|
|
strength_clip=parse_arg(args.strength_clip4), |
|
|
model=get_value_at_index(checkpointloadersimple_14, 0), |
|
|
clip=get_value_at_index(checkpointloadersimple_14, 1), |
|
|
) |
|
|
|
|
|
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]() |
|
|
cliptextencode_7 = cliptextencode.encode( |
|
|
text=parse_arg(args.text5), clip=get_value_at_index(loraloader_17, 1) |
|
|
) |
|
|
|
|
|
cliptextencodewithbreak = NODE_CLASS_MAPPINGS["CLIPTextEncodeWithBreak"]() |
|
|
cliptextencodewithbreak_15 = cliptextencodewithbreak.encode( |
|
|
text=parse_arg(args.text6), clip=get_value_at_index(loraloader_17, 1) |
|
|
) |
|
|
|
|
|
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]() |
|
|
loadimage_19 = loadimage.load_image(image=parse_arg(args.image7)) |
|
|
|
|
|
vaeencode = NODE_CLASS_MAPPINGS["VAEEncode"]() |
|
|
vaeencode_18 = vaeencode.encode( |
|
|
pixels=get_value_at_index(loadimage_19, 0), |
|
|
vae=get_value_at_index(checkpointloadersimple_14, 2), |
|
|
) |
|
|
|
|
|
patchmodeladddownscale = NODE_CLASS_MAPPINGS["PatchModelAddDownscale"]() |
|
|
ksampler = NODE_CLASS_MAPPINGS["KSampler"]() |
|
|
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]() |
|
|
saveimage = save_image_wrapper(ctx, NODE_CLASS_MAPPINGS["SaveImage"])() |
|
|
for q in range(args.queue_size): |
|
|
patchmodeladddownscale_16 = patchmodeladddownscale.patch( |
|
|
block_number=parse_arg(args.block_number8), |
|
|
downscale_factor=parse_arg(args.downscale_factor9), |
|
|
start_percent=parse_arg(args.start_percent10), |
|
|
end_percent=parse_arg(args.end_percent11), |
|
|
downscale_after_skip=parse_arg(args.downscale_after_skip12), |
|
|
downscale_method=parse_arg(args.downscale_method13), |
|
|
upscale_method=parse_arg(args.upscale_method14), |
|
|
model=get_value_at_index(loraloader_17, 0), |
|
|
) |
|
|
|
|
|
ksampler_3 = ksampler.sample( |
|
|
seed=randrange(1000000000), |
|
|
steps=parse_arg(args.steps16), |
|
|
cfg=parse_arg(args.cfg17), |
|
|
sampler_name=parse_arg(args.sampler_name18), |
|
|
scheduler=parse_arg(args.scheduler19), |
|
|
denoise=(90.0+randrange(9))/100.0, |
|
|
model=get_value_at_index(patchmodeladddownscale_16, 0), |
|
|
positive=get_value_at_index(cliptextencodewithbreak_15, 0), |
|
|
negative=get_value_at_index(cliptextencode_7, 0), |
|
|
latent_image=get_value_at_index(vaeencode_18, 0), |
|
|
) |
|
|
|
|
|
vaedecode_8 = vaedecode.decode( |
|
|
samples=get_value_at_index(ksampler_3, 0), |
|
|
vae=get_value_at_index(checkpointloadersimple_14, 2), |
|
|
) |
|
|
|
|
|
if __name__ != "__main__": |
|
|
return dict( |
|
|
filename_prefix=parse_arg(args.filename_prefix21), |
|
|
images=get_value_at_index(vaedecode_8, 0), |
|
|
prompt=PROMPT_DATA, |
|
|
) |
|
|
else: |
|
|
saveimage_9 = saveimage.save_images( |
|
|
filename_prefix=parse_arg(args.filename_prefix21), |
|
|
images=get_value_at_index(vaedecode_8, 0), |
|
|
prompt=PROMPT_DATA, |
|
|
) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |
|
|
|