#This is an example that uses the websockets api to know when a prompt execution is done #Once the prompt execution is done it downloads the images using the /history endpoint import websocket #NOTE: websocket-client (https://github.com/websocket-client/websocket-client) import uuid import json import urllib.request import urllib.parse server_address = "127.0.0.1:8188" client_id = str(uuid.uuid4()) def queue_prompt(prompt, prompt_id): p = {"prompt": prompt, "client_id": client_id, "prompt_id": prompt_id} data = json.dumps(p).encode('utf-8') req = urllib.request.Request("http://{}/prompt".format(server_address), data=data) urllib.request.urlopen(req).read() def get_image(filename, subfolder, folder_type): data = {"filename": filename, "subfolder": subfolder, "type": folder_type} url_values = urllib.parse.urlencode(data) with urllib.request.urlopen("http://{}/view?{}".format(server_address, url_values)) as response: return response.read() def get_history(prompt_id): with urllib.request.urlopen("http://{}/history/{}".format(server_address, prompt_id)) as response: return json.loads(response.read()) def get_images(ws, prompt): prompt_id = str(uuid.uuid4()) queue_prompt(prompt, prompt_id) output_images = {} while True: out = ws.recv() if isinstance(out, str): message = json.loads(out) if message['type'] == 'executing': data = message['data'] if data['node'] is None and data['prompt_id'] == prompt_id: break #Execution is done else: # If you want to be able to decode the binary stream for latent previews, here is how you can do it: # bytesIO = BytesIO(out[8:]) # preview_image = Image.open(bytesIO) # This is your preview in PIL image format, store it in a global continue #previews are binary data history = get_history(prompt_id)[prompt_id] for node_id in history['outputs']: node_output = history['outputs'][node_id] images_output = [] if 'images' in node_output: for image in node_output['images']: image_data = get_image(image['filename'], image['subfolder'], image['type']) images_output.append(image_data) output_images[node_id] = images_output return output_images prompt_text = """ { "3": { "inputs": { "seed": 473371463840349, "steps": 8, "cfg": 1, "sampler_name": "lcm", "scheduler": "beta", "denoise": 1, "model": [ "12", 0 ], "positive": [ "10", 0 ], "negative": [ "7", 0 ], "latent_image": [ "16", 0 ] }, "class_type": "KSampler", "_meta": { "title": "KSampler" } }, "4": { "inputs": { "ckpt_name": "novaFurryXL_illustriousV110.safetensors" }, "class_type": "CheckpointLoaderSimple", "_meta": { "title": "Cargar Punto de Control" } }, "7": { "inputs": { "text": "Xx_NEGPROMPT_xX", "clip": [ "11", 1 ] }, "class_type": "CLIPTextEncode", "_meta": { "title": "Codificar Texto CLIP (Prompt)" } }, "8": { "inputs": { "samples": [ "3", 0 ], "vae": [ "4", 2 ] }, "class_type": "VAEDecode", "_meta": { "title": "Decodificación VAE" } }, "9": { "inputs": { "filename_prefix": "Fast", "images": [ "8", 0 ] }, "class_type": "SaveImage", "_meta": { "title": "Guardar Imagen" } }, "10": { "inputs": { "text": "Xx_PROMPT_xX", "clip": [ "11", 1 ] }, "class_type": "CLIPTextEncodeWithBreak", "_meta": { "title": "CLIPTextEncode with BREAK syntax" } }, "11": { "inputs": { "lora_name": "dmd2_sdxl_4step_lora_fp16.safetensors", "strength_model": 1, "strength_clip": 1, "model": [ "4", 0 ], "clip": [ "4", 1 ] }, "class_type": "LoraLoader", "_meta": { "title": "Cargar LoRA" } }, "12": { "inputs": { "block_number": 3, "downscale_factor": 2, "start_percent": 0, "end_percent": 0.5, "downscale_after_skip": true, "downscale_method": "bicubic", "upscale_method": "bicubic", "model": [ "11", 0 ] }, "class_type": "PatchModelAddDownscale", "_meta": { "title": "PatchModelAddDownscale (Kohya Deep Shrink)" } }, "16": { "inputs": { "width": 1024, "height": 1024, "batch_size": 1 }, "class_type": "EmptyLatentImage", "_meta": { "title": "Imagen Latente Vacía" } } } """ prompt = json.loads(prompt_text) #set the text prompt for our positive CLIPTextEncode prompt["10"]["inputs"]["text"] = "masterpiece best quality man" #set the text prompt for our negative CLIPTextEncode prompt["7"]["inputs"]["text"] = "worst quailty" #set seed prompt["3"]["inputs"]["seed"] = 5345435 ws = websocket.WebSocket() ws.connect("ws://{}/ws?clientId={}".format(server_address, client_id)) images = get_images(ws, prompt) ws.close() # for in case this example is used in an environment where it will be repeatedly called, like in a Gradio app. otherwise, you'll randomly receive connection timeouts #Commented out code to display the output images: for node_id in images: for image_data in images[node_id]: from PIL import Image import io image = Image.open(io.BytesIO(image_data)) image.show()