Upload README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,62 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
urlbert-tiny-base-v4 is a lightweight BERT-based model specifically optimized for URL analysis. This version includes several improvements over the previous version:
|
| 3 |
+
|
| 4 |
+
- Trained using a teacher-student architecture
|
| 5 |
+
- Utilized masked token prediction as the primary pre-training task
|
| 6 |
+
- Incorporated knowledge distillation from a larger model's logits
|
| 7 |
+
- Additional training on 3 specialized tasks to enhance URL structure understanding
|
| 8 |
+
|
| 9 |
+
The result is an efficient model that can be rapidly fine-tuned for URL classification tasks with minimal computational resources.
|
| 10 |
+
|
| 11 |
+
## Model Details
|
| 12 |
+
|
| 13 |
+
- **Parameters:** 3.72M
|
| 14 |
+
- **Tensor Type:** F32
|
| 15 |
+
- **Previous Version:** [urlbert-tiny-base-v3](https://huggingface.co/CrabInHoney/urlbert-tiny-base-v3)
|
| 16 |
+
|
| 17 |
+
## Usage Example
|
| 18 |
+
|
| 19 |
+
```python
|
| 20 |
+
from transformers import BertTokenizerFast, BertForMaskedLM, pipeline
|
| 21 |
+
import torch
|
| 22 |
+
|
| 23 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 24 |
+
print(f"Device: {device}")
|
| 25 |
+
|
| 26 |
+
model_name = "CrabInHoney/urlbert-tiny-base-v4"
|
| 27 |
+
|
| 28 |
+
tokenizer = BertTokenizerFast.from_pretrained(model_name)
|
| 29 |
+
model = BertForMaskedLM.from_pretrained(model_name)
|
| 30 |
+
model.to(device)
|
| 31 |
+
|
| 32 |
+
fill_mask = pipeline(
|
| 33 |
+
"fill-mask",
|
| 34 |
+
model=model,
|
| 35 |
+
tokenizer=tokenizer,
|
| 36 |
+
device=0 if torch.cuda.is_available() else -1
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
sentences = [
|
| 40 |
+
"http://example.[MASK]/"
|
| 41 |
+
]
|
| 42 |
+
|
| 43 |
+
for sentence in sentences:
|
| 44 |
+
print(f"\nInput: {sentence}")
|
| 45 |
+
results = fill_mask(sentence)
|
| 46 |
+
for result in results:
|
| 47 |
+
token_str = result['token_str']
|
| 48 |
+
score = result['score']
|
| 49 |
+
print(f"Predicted token: {token_str}, probability: {score:.4f}")
|
| 50 |
+
```
|
| 51 |
+
|
| 52 |
+
### Sample Output
|
| 53 |
+
|
| 54 |
+
```
|
| 55 |
+
Input: http://example.[MASK]/
|
| 56 |
+
|
| 57 |
+
Predicted token: com, probability: 0.7307
|
| 58 |
+
Predicted token: net, probability: 0.1319
|
| 59 |
+
Predicted token: org, probability: 0.0881
|
| 60 |
+
Predicted token: info, probability: 0.0094
|
| 61 |
+
Predicted token: cn, probability: 0.0084
|
| 62 |
+
```
|