File size: 13,621 Bytes
833cfe9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
#!/usr/bin/env python3
"""
Maaza Nano-Orchestrator 9.6M - Custom BPE Tokenizer
Train a tool-focused tokenizer with 8k vocab.
Key goal: Tool names become single tokens (maaza_extract_json = 1 token, not 5)
"""
import json
import re
from pathlib import Path
from typing import List, Dict, Optional, Tuple
from collections import Counter
import argparse
# ============================================================================
# SPECIAL TOKENS
# ============================================================================
SPECIAL_TOKENS = [
"<|pad|>",
"<|unk|>",
"<|bos|>",
"<|eos|>",
"<|tool_start|>",
"<|tool_end|>",
"<|param_start|>",
"<|param_end|>",
"<|user|>",
"<|assistant|>",
"<|system|>",
]
# Tool names as special tokens (single tokens)
TOOL_TOKENS = [
# Core CycleCore
"maaza_extract_json",
"mcpbodega_deploy",
"mcpbodega_list",
"doom_mcp",
"bitchat_send",
"crypto_lookup",
"scratchpad_mcp",
"voice_mcp",
# Web & Browser
"web_search",
"web_fetch",
"puppeteer_navigate",
"puppeteer_click",
"puppeteer_screenshot",
"puppeteer_extract",
# Data & Files
"file_read",
"file_write",
"database_query",
"csv_parse",
"json_validate",
"image_caption",
# Code & Compute
"code_execute_python",
"code_execute_js",
"calculator",
"regex_match",
"shell_command",
# External APIs
"weather_lookup",
"stock_lookup",
"news_fetch",
"email_send",
"calendar_add",
# New Tools (31-36)
"mcpbodega_chat",
"health_check",
"slmbench_query",
"slack_send",
"github_issue",
"cyclecore_terminal",
]
# Common JSON/programming tokens
JSON_TOKENS = [
'{"tool"',
'"params"',
'"action"',
'"retry"',
'"fallback"',
"true",
"false",
"null",
]
# Failure recovery action tokens
RECOVERY_TOKENS = [
"retry",
"fallback",
"timeout",
"rate_limit",
"unavailable",
"max_retries",
"backoff",
"exponential",
"alternative",
]
# ============================================================================
# BPE TOKENIZER IMPLEMENTATION
# ============================================================================
class BPETokenizer:
"""Custom BPE tokenizer optimized for tool routing."""
def __init__(self, vocab_size: int = 8000):
self.vocab_size = vocab_size
self.vocab: Dict[str, int] = {}
self.inverse_vocab: Dict[int, str] = {}
self.merges: List[Tuple[str, str]] = []
# Initialize with special tokens
self._init_special_tokens()
def _init_special_tokens(self):
"""Initialize vocabulary with special tokens."""
idx = 0
# Add special tokens
for token in SPECIAL_TOKENS:
self.vocab[token] = idx
self.inverse_vocab[idx] = token
idx += 1
# Add tool tokens (critical for single-token tool names)
for token in TOOL_TOKENS:
self.vocab[token] = idx
self.inverse_vocab[idx] = token
idx += 1
# Add JSON tokens
for token in JSON_TOKENS:
self.vocab[token] = idx
self.inverse_vocab[idx] = token
idx += 1
# Add recovery tokens
for token in RECOVERY_TOKENS:
self.vocab[token] = idx
self.inverse_vocab[idx] = token
idx += 1
# Add basic ASCII characters
for i in range(256):
char = chr(i) if i >= 32 and i < 127 else f"<0x{i:02X}>"
if char not in self.vocab:
self.vocab[char] = idx
self.inverse_vocab[idx] = char
idx += 1
self.base_vocab_size = idx
def _get_pairs(self, word: List[str]) -> Counter:
"""Get all adjacent pairs in word."""
pairs = Counter()
for i in range(len(word) - 1):
pairs[(word[i], word[i + 1])] += 1
return pairs
def _merge_pair(self, pair: Tuple[str, str], word: List[str]) -> List[str]:
"""Merge a specific pair in the word."""
new_word = []
i = 0
while i < len(word):
if i < len(word) - 1 and word[i] == pair[0] and word[i + 1] == pair[1]:
new_word.append(pair[0] + pair[1])
i += 2
else:
new_word.append(word[i])
i += 1
return new_word
def _tokenize_word(self, word: str) -> List[str]:
"""Tokenize a single word to characters."""
# Check if it's a special/tool token first
if word in self.vocab:
return [word]
# Check for tool tokens within the word
for tool in TOOL_TOKENS:
if tool in word:
parts = word.split(tool)
result = []
for i, part in enumerate(parts):
if part:
result.extend(list(part))
if i < len(parts) - 1:
result.append(tool)
return result
return list(word)
def train(self, texts: List[str], verbose: bool = True):
"""Train BPE on a corpus of texts."""
if verbose:
print(f"Training BPE tokenizer (target vocab: {self.vocab_size})")
print(f" Base vocab size: {self.base_vocab_size}")
# Build initial word frequencies
word_freqs = Counter()
for text in texts:
# Pre-tokenize: split on whitespace and punctuation
words = re.findall(r'\w+|[^\w\s]', text.lower())
word_freqs.update(words)
# Convert words to character lists
splits = {}
for word, freq in word_freqs.items():
splits[word] = (self._tokenize_word(word), freq)
# BPE merging
num_merges = self.vocab_size - len(self.vocab)
if verbose:
print(f" Performing {num_merges} merges...")
for merge_idx in range(num_merges):
# Count all pairs
pair_freqs = Counter()
for word, (split, freq) in splits.items():
pairs = self._get_pairs(split)
for pair, count in pairs.items():
pair_freqs[pair] += count * freq
if not pair_freqs:
break
# Find most frequent pair
best_pair = pair_freqs.most_common(1)[0][0]
self.merges.append(best_pair)
# Add merged token to vocab
merged = best_pair[0] + best_pair[1]
if merged not in self.vocab:
idx = len(self.vocab)
self.vocab[merged] = idx
self.inverse_vocab[idx] = merged
# Apply merge to all words
for word in splits:
split, freq = splits[word]
splits[word] = (self._merge_pair(best_pair, split), freq)
if verbose and (merge_idx + 1) % 500 == 0:
print(f" Merge {merge_idx + 1}: '{best_pair[0]}' + '{best_pair[1]}' -> '{merged}'")
if verbose:
print(f" Final vocab size: {len(self.vocab)}")
def encode(self, text: str) -> List[int]:
"""Encode text to token IDs."""
tokens = []
# First, extract special tokens as whole units
# Build regex pattern for special tokens (escape special chars)
special_pattern = '|'.join(re.escape(t) for t in SPECIAL_TOKENS)
tool_pattern = '|'.join(re.escape(t) for t in TOOL_TOKENS)
combined_pattern = f'({special_pattern}|{tool_pattern})'
# Split text while preserving special/tool tokens
parts = re.split(combined_pattern, text)
for part in parts:
if not part:
continue
# Check if this part is a special or tool token
if part in self.vocab:
tokens.append(self.vocab[part])
continue
# Pre-tokenize the non-special part
words = re.findall(r'\w+|[^\w\s]|\s+', part)
for word in words:
# Check for exact matches first
if word in self.vocab:
tokens.append(self.vocab[word])
continue
# Lowercase for matching
word_lower = word.lower()
if word_lower in self.vocab:
tokens.append(self.vocab[word_lower])
continue
# Check for tool tokens in word
found_tool = False
for tool in TOOL_TOKENS:
if tool in word_lower:
parts_inner = word_lower.split(tool)
for i, p in enumerate(parts_inner):
if p:
tokens.extend(self._encode_subword(p))
if i < len(parts_inner) - 1:
tokens.append(self.vocab[tool])
found_tool = True
break
if found_tool:
continue
# Apply BPE to word
tokens.extend(self._encode_subword(word_lower))
return tokens
def _encode_subword(self, word: str) -> List[int]:
"""Apply BPE merges to encode a subword."""
if not word:
return []
if word in self.vocab:
return [self.vocab[word]]
# Start with characters
word_tokens = list(word)
# Apply merges
for pair in self.merges:
i = 0
while i < len(word_tokens) - 1:
if word_tokens[i] == pair[0] and word_tokens[i + 1] == pair[1]:
word_tokens = word_tokens[:i] + [pair[0] + pair[1]] + word_tokens[i + 2:]
else:
i += 1
# Convert to IDs
ids = []
for token in word_tokens:
if token in self.vocab:
ids.append(self.vocab[token])
else:
# Unknown token - use <unk>
ids.append(self.vocab["<|unk|>"])
return ids
def decode(self, ids: List[int]) -> str:
"""Decode token IDs back to text."""
tokens = [self.inverse_vocab.get(i, "<|unk|>") for i in ids]
text = "".join(tokens)
# Clean up special tokens from output
for special in SPECIAL_TOKENS:
text = text.replace(special, "")
return text
def save(self, path: str):
"""Save tokenizer to file."""
data = {
"vocab_size": self.vocab_size,
"vocab": self.vocab,
"merges": self.merges,
"special_tokens": SPECIAL_TOKENS,
"tool_tokens": TOOL_TOKENS,
}
with open(path, "w") as f:
json.dump(data, f, indent=2)
print(f"Tokenizer saved to {path}")
@classmethod
def load(cls, path: str) -> "BPETokenizer":
"""Load tokenizer from file."""
with open(path) as f:
data = json.load(f)
tokenizer = cls(vocab_size=data["vocab_size"])
tokenizer.vocab = data["vocab"]
tokenizer.inverse_vocab = {int(v): k for k, v in data["vocab"].items()}
tokenizer.merges = [tuple(m) for m in data["merges"]]
return tokenizer
def __len__(self):
return len(self.vocab)
def train_from_dataset(dataset_path: str, output_path: str = "tokenizer.json", vocab_size: int = 8000):
"""Train tokenizer from dataset file."""
print(f"Loading dataset from {dataset_path}")
texts = []
with open(dataset_path) as f:
for line in f:
data = json.loads(line)
texts.append(data["prompt"])
texts.append(json.dumps(data["tool_calls"]))
print(f"Loaded {len(texts)} text samples")
tokenizer = BPETokenizer(vocab_size=vocab_size)
tokenizer.train(texts, verbose=True)
tokenizer.save(output_path)
# Test tokenization
print("\n=== Tokenization Tests ===")
test_cases = [
"extract the invoice details",
'{"tool": "maaza_extract_json", "params": {"text": "test"}}',
"puppeteer_navigate to google.com",
"The crypto_lookup tool failed with timeout",
"retry with exponential backoff",
]
for text in test_cases:
ids = tokenizer.encode(text)
decoded = tokenizer.decode(ids)
print(f"\nInput: '{text}'")
print(f"Tokens: {ids}")
print(f"Decoded: '{decoded}'")
print(f"Length: {len(ids)} tokens")
# Verify tool names are single tokens
print("\n=== Tool Token Verification ===")
for tool in TOOL_TOKENS[:5]: # Check first 5
ids = tokenizer.encode(tool)
if len(ids) == 1:
print(f"✓ {tool} = single token (ID: {ids[0]})")
else:
print(f"✗ {tool} = {len(ids)} tokens: {ids}")
return tokenizer
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Train custom BPE tokenizer")
parser.add_argument("--input", required=True, help="Input dataset (JSONL)")
parser.add_argument("--output", default="tokenizer.json", help="Output path")
parser.add_argument("--vocab-size", type=int, default=8000, help="Vocabulary size")
args = parser.parse_args()
train_from_dataset(
dataset_path=args.input,
output_path=args.output,
vocab_size=args.vocab_size
)
print(f"\n✓ Tokenizer trained and saved to {args.output}")
print(f"Next step: python model.py")
|