Update clex_layer.py
Browse files- clex_layer.py +44 -28
clex_layer.py
CHANGED
|
@@ -1,23 +1,34 @@
|
|
| 1 |
import torch
|
| 2 |
-
|
| 3 |
from torchdiffeq import odeint
|
| 4 |
|
| 5 |
-
|
| 6 |
|
| 7 |
import math
|
| 8 |
|
|
|
|
|
|
|
|
|
|
| 9 |
class ODELinear(nn.Module):
|
| 10 |
def __init__(
|
| 11 |
self,
|
| 12 |
dim: int,
|
| 13 |
factor,
|
|
|
|
|
|
|
| 14 |
**kwargs
|
| 15 |
):
|
| 16 |
super().__init__()
|
| 17 |
-
self.ode_up_proj = nn.Parameter(torch.empty(dim//2, factor*dim)
|
| 18 |
-
self.ode_down_proj = nn.Parameter(torch.empty(factor*dim, dim//2)
|
| 19 |
self.dim = dim
|
| 20 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
self.reset_parameters()
|
| 22 |
|
| 23 |
def reset_parameters(self):
|
|
@@ -36,15 +47,20 @@ class ODELinear(nn.Module):
|
|
| 36 |
return delta_ntk_freq.to(device, dtype=dtype), ntk_inv_freq.to(device, dtype=dtype)
|
| 37 |
|
| 38 |
def forward(self, t, x: torch.Tensor):
|
| 39 |
-
|
|
|
|
|
|
|
| 40 |
x = x + torch.log(time)
|
| 41 |
time_embed = delta_time / time
|
| 42 |
-
delta_inv_freq = self.act(x @ self.ode_up_proj.float()) @ self.ode_down_proj.float()
|
|
|
|
| 43 |
return delta_inv_freq
|
| 44 |
|
| 45 |
|
| 46 |
|
| 47 |
-
|
|
|
|
|
|
|
| 48 |
|
| 49 |
def __init__(self, dim, max_position_embeddings=2048, rope_scaling=None, base=10000, device=None) -> None:
|
| 50 |
super().__init__()
|
|
@@ -56,22 +72,21 @@ class LlamaCLEXScalingRotaryEmbedding(nn.Module):
|
|
| 56 |
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
| 57 |
self.register_buffer("inv_freq", inv_freq)
|
| 58 |
|
| 59 |
-
self.proj_func = ODELinear(dim, rope_scaling["param_factor"])
|
| 60 |
self.rope_cached = None
|
| 61 |
self.max_t_cached = 0
|
| 62 |
self.freq_cached = None
|
| 63 |
-
self.time_dt =
|
| 64 |
self.ode_args = {
|
| 65 |
"method": "rk4",
|
| 66 |
"options": {"step_size": self.time_dt},
|
| 67 |
}
|
| 68 |
|
| 69 |
def sample_random_times(self, max_t, device):
|
| 70 |
-
return torch.randint(
|
| 71 |
|
| 72 |
def get_random_position_ids(self, n=2048, max=8192):
|
| 73 |
positions = torch.randperm(max)[:n].sort().values
|
| 74 |
-
# positions = positions.to(device=device)
|
| 75 |
return positions
|
| 76 |
|
| 77 |
|
|
@@ -80,24 +95,24 @@ class LlamaCLEXScalingRotaryEmbedding(nn.Module):
|
|
| 80 |
self.proj_func, torch.log(self.inv_freq.to(device, dtype=torch.float32)), time_grid, **self.ode_args
|
| 81 |
)
|
| 82 |
if time_grid.size(0) == 2:
|
| 83 |
-
training
|
| 84 |
scale_inv_freq = torch.exp(solution[1])
|
| 85 |
-
# print(time_grid[1].tolist(), torch.sum(scale_inv_freq).tolist(), torch.sum(self.proj_func.ode_down_proj).tolist())
|
| 86 |
freqs = torch.outer(ex_positions.float().squeeze(), scale_inv_freq)
|
| 87 |
else:
|
| 88 |
scale_inv_freq = torch.exp(solution)
|
| 89 |
-
|
| 90 |
embed = torch.cat((freqs,freqs), dim=-1)
|
| 91 |
return embed
|
| 92 |
|
| 93 |
|
| 94 |
|
| 95 |
-
def forward(self,
|
| 96 |
device = self.proj_func.ode_up_proj.device
|
|
|
|
| 97 |
scale_factor = seq_len // self.max_position_embeddings
|
| 98 |
if do_train:
|
| 99 |
t_val = self.sample_random_times(self.max_t+1, device)[0]
|
| 100 |
-
|
|
|
|
| 101 |
sampled_position_ids = self.get_random_position_ids(n=seq_len-2, max=seq_len*t_val-2).float()
|
| 102 |
ex_positions = torch.cat([
|
| 103 |
torch.tensor([0]),
|
|
@@ -115,24 +130,25 @@ class LlamaCLEXScalingRotaryEmbedding(nn.Module):
|
|
| 115 |
scale_inv_freq = self.inv_freq.to(device)
|
| 116 |
freqs = torch.outer(ex_positions.float().squeeze(), scale_inv_freq)
|
| 117 |
embed = torch.cat((freqs,freqs), dim=-1)
|
| 118 |
-
cos, sin = embed.cos()
|
| 119 |
elif do_train:
|
| 120 |
time_grid = torch.tensor([1.0, t_val]).float().to(device)
|
| 121 |
embed = self.get_continuous_freq(time_grid, ex_positions, device)
|
| 122 |
-
cos, sin = embed.cos()
|
| 123 |
else:
|
| 124 |
-
if
|
| 125 |
-
time_grid = torch.arange(1.0, self.max_t
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
|
|
|
|
|
|
| 130 |
self.max_t_cached = t_val
|
| 131 |
cos, sin = self.rope_cached
|
| 132 |
-
|
| 133 |
return torch.cat(
|
| 134 |
-
(cos[None,
|
| 135 |
-
sin[None,
|
| 136 |
dim=0
|
| 137 |
)
|
| 138 |
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
from torchdiffeq import odeint
|
| 4 |
|
| 5 |
+
import wandb
|
| 6 |
|
| 7 |
import math
|
| 8 |
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
class ODELinear(nn.Module):
|
| 13 |
def __init__(
|
| 14 |
self,
|
| 15 |
dim: int,
|
| 16 |
factor,
|
| 17 |
+
act,
|
| 18 |
+
base=10000,
|
| 19 |
**kwargs
|
| 20 |
):
|
| 21 |
super().__init__()
|
| 22 |
+
self.ode_up_proj = nn.Parameter(torch.empty(dim//2, factor*dim))
|
| 23 |
+
self.ode_down_proj = nn.Parameter(torch.empty(factor*dim, dim//2))
|
| 24 |
self.dim = dim
|
| 25 |
+
self.base = base
|
| 26 |
+
if act == "tanh":
|
| 27 |
+
self.act = torch.nn.Tanh()
|
| 28 |
+
elif act == "silu":
|
| 29 |
+
self.act = torch.nn.SiLU()
|
| 30 |
+
else:
|
| 31 |
+
raise ValueError(f"act must be one of ['tanh', 'silu'], got {act}")
|
| 32 |
self.reset_parameters()
|
| 33 |
|
| 34 |
def reset_parameters(self):
|
|
|
|
| 47 |
return delta_ntk_freq.to(device, dtype=dtype), ntk_inv_freq.to(device, dtype=dtype)
|
| 48 |
|
| 49 |
def forward(self, t, x: torch.Tensor):
|
| 50 |
+
|
| 51 |
+
device = x.device
|
| 52 |
+
delta_time, time = self.get_time_embedding(t.to(device), device=device, dtype=x.dtype)
|
| 53 |
x = x + torch.log(time)
|
| 54 |
time_embed = delta_time / time
|
| 55 |
+
delta_inv_freq = self.act(x @ self.ode_up_proj.float()) @ self.ode_down_proj.float()
|
| 56 |
+
delta_inv_freq = delta_inv_freq + time_embed
|
| 57 |
return delta_inv_freq
|
| 58 |
|
| 59 |
|
| 60 |
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
class CLEXScalingRotaryEmbedding(nn.Module):
|
| 64 |
|
| 65 |
def __init__(self, dim, max_position_embeddings=2048, rope_scaling=None, base=10000, device=None) -> None:
|
| 66 |
super().__init__()
|
|
|
|
| 72 |
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
| 73 |
self.register_buffer("inv_freq", inv_freq)
|
| 74 |
|
| 75 |
+
self.proj_func = ODELinear(dim, rope_scaling["param_factor"], rope_scaling["act"], base)
|
| 76 |
self.rope_cached = None
|
| 77 |
self.max_t_cached = 0
|
| 78 |
self.freq_cached = None
|
| 79 |
+
self.time_dt = rope_scaling["time_dt"]
|
| 80 |
self.ode_args = {
|
| 81 |
"method": "rk4",
|
| 82 |
"options": {"step_size": self.time_dt},
|
| 83 |
}
|
| 84 |
|
| 85 |
def sample_random_times(self, max_t, device):
|
| 86 |
+
return torch.randint(1, max_t, (1,), dtype = torch.long, device=device)
|
| 87 |
|
| 88 |
def get_random_position_ids(self, n=2048, max=8192):
|
| 89 |
positions = torch.randperm(max)[:n].sort().values
|
|
|
|
| 90 |
return positions
|
| 91 |
|
| 92 |
|
|
|
|
| 95 |
self.proj_func, torch.log(self.inv_freq.to(device, dtype=torch.float32)), time_grid, **self.ode_args
|
| 96 |
)
|
| 97 |
if time_grid.size(0) == 2:
|
|
|
|
| 98 |
scale_inv_freq = torch.exp(solution[1])
|
|
|
|
| 99 |
freqs = torch.outer(ex_positions.float().squeeze(), scale_inv_freq)
|
| 100 |
else:
|
| 101 |
scale_inv_freq = torch.exp(solution)
|
| 102 |
+
return scale_inv_freq
|
| 103 |
embed = torch.cat((freqs,freqs), dim=-1)
|
| 104 |
return embed
|
| 105 |
|
| 106 |
|
| 107 |
|
| 108 |
+
def forward(self, input_embeds, seq_len, do_train=False):
|
| 109 |
device = self.proj_func.ode_up_proj.device
|
| 110 |
+
dtype = input_embeds.dtype
|
| 111 |
scale_factor = seq_len // self.max_position_embeddings
|
| 112 |
if do_train:
|
| 113 |
t_val = self.sample_random_times(self.max_t+1, device)[0]
|
| 114 |
+
if scale_factor < 1.0:
|
| 115 |
+
scale_factor = 1
|
| 116 |
sampled_position_ids = self.get_random_position_ids(n=seq_len-2, max=seq_len*t_val-2).float()
|
| 117 |
ex_positions = torch.cat([
|
| 118 |
torch.tensor([0]),
|
|
|
|
| 130 |
scale_inv_freq = self.inv_freq.to(device)
|
| 131 |
freqs = torch.outer(ex_positions.float().squeeze(), scale_inv_freq)
|
| 132 |
embed = torch.cat((freqs,freqs), dim=-1)
|
| 133 |
+
cos, sin = embed.cos(), embed.sin()
|
| 134 |
elif do_train:
|
| 135 |
time_grid = torch.tensor([1.0, t_val]).float().to(device)
|
| 136 |
embed = self.get_continuous_freq(time_grid, ex_positions, device)
|
| 137 |
+
cos, sin = embed.cos(), embed.sin()
|
| 138 |
else:
|
| 139 |
+
if self.freq_cached is None:
|
| 140 |
+
time_grid = torch.arange(1.0, self.max_t+1.0, dtype=torch.float32).to(device)
|
| 141 |
+
self.freq_cached = self.get_continuous_freq(time_grid, ex_positions, device)
|
| 142 |
+
if t_val != self.max_t_cached:
|
| 143 |
+
scale_inv_freq = self.freq_cached[int(t_val-1.0)]
|
| 144 |
+
freqs = torch.outer(ex_positions.float().squeeze(), scale_inv_freq)
|
| 145 |
+
embed = torch.cat((freqs,freqs), dim=-1)
|
| 146 |
+
self.rope_cached = torch.cat((embed.cos()[None, :, :], embed.sin()[None, :, :]), dim=0)
|
| 147 |
self.max_t_cached = t_val
|
| 148 |
cos, sin = self.rope_cached
|
|
|
|
| 149 |
return torch.cat(
|
| 150 |
+
(cos[None, :seq_len].to(dtype=dtype),
|
| 151 |
+
sin[None, :seq_len].to(dtype=dtype)),
|
| 152 |
dim=0
|
| 153 |
)
|
| 154 |
|