File size: 8,229 Bytes
88d8ab8
 
 
f251c4a
 
672ea4c
f251c4a
 
 
 
 
 
88d8ab8
 
 
 
 
 
b1b6e3a
88d8ab8
 
 
 
 
 
 
 
 
 
 
 
45a1405
6307730
f0580d6
6307730
 
45a1405
88d8ab8
 
2504575
88d8ab8
 
 
 
 
50cd8d0
065ca2b
88d8ab8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cf5e9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88d8ab8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
---
language: en
tags:
- information-retrieval
- LLM
- Embedding
- text-retrieval
- disaster-management

task_categories:
- text-retrieval

license: apache-2.0
model_name: DMRetriever
---

# DMRetriever: A Family of Models for Improved Text Retrieval in Disaster Management

This repository provides an overview of **DMRetriever**, a family of embedding and retrieval models designed for **disaster-management retrieval tasks**.  
For details, please refer to the [paper](https://www.arxiv.org/abs/2510.15087) and the [GitHub repository](https://github.com/KaiYin97/DMRETRIEVER).

DMRetriever includes model variants with **33M, 109M, 335M, 596M, 4B, and 7.6B parameters**.  
These models are trained via a **three-stage learning framework** consisting of:

1. **Bidirectional Attention Adaptation**  
2. **Unsupervised Contrastive Pre-training**  
3. **Difficulty-aware Progressive Instruction Fine-tuning**

All stages leverage high-quality data generated through an advanced data-refinement pipeline.  
DMRetriever achieves **state-of-the-art (SOTA)** performance across six retrieval intents at all model scales.


<p align="center">
  <img src="https://huggingface.co/DMIR01/DMRetriever/resolve/main/DMRetriever_workflow_new.png" 
       alt="DMRetriever Workflow" width="750"/>
</p>


## 📚 Dataset  
Training data are publicly available on [DMRetriever_MTT](https://huggingface.co/datasets/DMIR01/DMRetriever_MTT).

---

## 🧪 Evaluation

Performance across six retrieval intents on the **[DisastIR-Test](https://huggingface.co/datasets/DMIR01/DisastIR-DevLite)** benchmark.
The evaluation is conducted using this [code](https://github.com/KaiYin97/DMRETRIEVER/tree/main/DMRetriever/eva).

### 🧩 Small Size (≤109M)

| Model | Scale | QA | QAdoc | TW | FC | NLI | STS | Avg. |
|:--|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| thenlper-gte-small | 33M | 18.04 | 9.13 | 10.95 | 49.63 | 37.51 | 55.55 | 30.14 |
| arctic-embed-m | 109M | 33.15 | 14.04 | 8.48 | 35.07 | 38.67 | 56.20 | 30.94 |
| thenlper-gte-base | 109M | 9.18 | 5.42 | 37.91 | 60.45 | 42.52 | 46.07 | 33.59 |
| arctic-embed-m-v1.5 | 109M | 25.76 | 30.41 | 17.95 | 47.97 | 42.88 | 64.16 | 38.19 |
| arctic-embed-s | 33M | 38.58 | 28.81 | 21.33 | 47.21 | 39.85 | 66.96 | 40.46 |
| bge-small-en-v1.5 | 33M | 56.91 | 51.19 | 25.15 | 55.17 | 32.87 | 64.54 | 47.64 |
| bge-base-en-v1.5 | 109M | 51.50 | 52.78 | 46.72 | 59.93 | 41.16 | <u>68.63</u> | 53.45 |
| **DMRetriever-33M (ours)** | 33M | <u>62.47</u>† | <u>57.03</u>† | <u>57.22</u>† | <u>60.81</u>† | <u>46.56</u>† | 67.57 | <u>58.61</u>† |
| **DMRetriever-109M (ours)** | 109M | **63.19**† | **59.55**† | **58.88**† | **62.48**† | **46.93**† | **68.79**† | **59.97**† |

---

### ⚙️ Medium Size (137M–335M)

| Model | Scale | QA | QAdoc | TW | FC | NLI | STS | Avg. |
|:--|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| arctic-embed-m-long | 137M | 21.51 | 10.86 | 19.24 | 36.13 | 41.67 | 54.94 | 30.73 |
| arctic-embed-l | 335M | 40.56 | 30.19 | 14.98 | 32.64 | 34.20 | 56.10 | 34.78 |
| bge-large-en-v1.5 | 335M | 56.76 | 54.45 | 32.20 | 54.90 | 35.11 | 64.47 | 49.65 |
| gte-base-en-v1.5 | 137M | 60.51 | 55.62 | 46.26 | 52.24 | 39.59 | <u>70.40</u> | 54.10 |
| mxbai-embed-large-v1 | 335M | <u>64.24</u> | <u>62.63</u> | 39.94 | <u>58.12</u> | 40.18 | 68.01 | 55.52 |
| arctic-embed-m-v2.0 | 305M | 61.22 | 62.20 | <u>47.01</u> | 57.79 | <u>42.29</u> | 64.51 | <u>55.84</u> |
| **DMRetriever-335M (ours)** | 335M | **67.44**† | **62.69**† | **62.16**† | **64.42**† | **49.69**† | **70.71**† | **62.85**† |

---

### 🚀 Large Size (434M–1.5B)

| Model | Scale | QA | QAdoc | TW | FC | NLI | STS | Avg. |
|:--|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| arctic-embed-l-v2.0 | 568M | 55.23 | 59.11 | 38.11 | 60.10 | 41.07 | 62.61 | 52.70 |
| gte-large-en-v1.5 | 434M | 67.37 | 58.18 | 39.43 | 52.66 | 34.45 | 66.47 | 53.09 |
| Qwen3-Embedding-0.6B | 596M | 66.10 | 52.31 | 62.38 | 64.89 | 50.30 | 67.39 | 60.56 |
| mulling-e5-large-instruct | 560M | 67.97 | <u>64.64</u> | 62.25 | <u>66.78</u> | 48.51 | 63.42 | 62.26 |
| mulling-e5-large | 560M | 66.99 | 64.01 | 62.81 | 59.87 | 50.93 | <u>74.12</u> | 63.12 |
| gte-Qwen2-1.5B-instruct | 1.5B | <u>69.85</u> | 59.17 | <u>65.09</u> | 62.73 | <u>55.51</u> | 73.58 | 64.32 |
| inf-retriever-v1-1.5b | 1.5B | 69.41 | 64.29 | 62.99 | 65.39 | 54.03 | 73.92 | <u>65.01</u> |
| **DMRetriever-596M (ours)** | 596M | **72.44**† | **67.50**† | **65.79**† | **69.15**† | **55.71**† | **74.73**† | **67.55**† |

---

### 🧠 XL Size (≥4B)

| Model | Scale | QA | QAdoc | TW | FC | NLI | STS | Avg. |
|:--|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| Qwen3-Embedding-8B | 7.6B | 44.21 | 34.38 | 41.56 | 42.04 | 32.53 | 42.95 | 39.61 |
| gte-Qwen2-7B-instruct | 7.6B | 70.24 | 47.41 | 63.08 | 31.62 | 53.71 | 74.88 | 56.82 |
| NV-Embed-v1 | 7.9B | 68.06 | 62.70 | 56.02 | 59.64 | 48.05 | 67.06 | 60.26 |
| Qwen3-Embedding-4B | 4B | 67.20 | 59.14 | 65.28 | 67.16 | 53.61 | 58.51 | 61.82 |
| e5-mistral-7b-instruct | 7.1B | 65.57 | 64.97 | 63.31 | 67.86 | 47.55 | 66.48 | 62.58 |
| NV-Embed-v2 | 7.9B | 74.47 | 69.37 | 42.40 | 68.32 | <u>58.20</u> | 76.07 | 64.80 |
| inf-retriever-v1 | 7.1B | 72.84 | 66.74 | 66.23 | 65.53 | 51.86 | 75.98 | 66.53 |
| SFR-Embedding-Mistral | 7.1B | 71.41 | 67.14 | 69.45 | 70.31 | 50.93 | 72.67 | 66.99 |
| Linq-Embed-Mistral | 7.1B | 74.40 | 70.31 | 64.11 | 70.64 | 52.46 | 71.25 | 67.19 |
| **DMRetriever-4B (ours)** | 4B | <u>75.32</u>† | <u>70.23</u>† | <u>70.55</u>† | <u>71.44</u>† | 57.63 | <u>77.38</u>† | <u>70.42</u>† |
| **DMRetriever-7.6B (ours)** | 7.6B | **76.19**† | **71.27**† | **71.11**† | **72.47**† | **58.81**† | **78.36**† | **71.37**† |

---

## 📦 DMRetriever Series Model List

| **Model** | **Description** | **Backbone** | **Backbone Type** | **Hidden Size** | **#Layers** |
|:--|:--|:--|:--|:--:|:--:|
| [DMRetriever-33M](https://huggingface.co/DMIR01/DMRetriever-33M) | Base 33M variant | MiniLM | Encoder-only | 384 | 12 |
| [DMRetriever-33M-PT](https://huggingface.co/DMIR01/DMRetriever-33M-PT) | Pre-trained version of 33M | MiniLM | Encoder-only | 384 | 12 |
| [DMRetriever-109M](https://huggingface.co/DMIR01/DMRetriever-109M) | Base 109M variant | BERT-base-uncased | Encoder-only | 768 | 12 |
| [DMRetriever-109M-PT](https://huggingface.co/DMIR01/DMRetriever-109M-PT) | Pre-trained version of 109M | BERT-base-uncased | Encoder-only | 768 | 12 |
| [DMRetriever-335M](https://huggingface.co/DMIR01/DMRetriever-335M) | Base 335M variant | BERT-large-uncased-WWM | Encoder-only | 1024 | 24 |
| [DMRetriever-335M-PT](https://huggingface.co/DMIR01/DMRetriever-335M-PT) | Pre-trained version of 335M | BERT-large-uncased-WWM | Encoder-only | 1024 | 24 |
| [DMRetriever-596M](https://huggingface.co/DMIR01/DMRetriever-596M) | Base 596M variant | Qwen3-0.6B | Decoder-only | 1024 | 28 |
| [DMRetriever-596M-PT](https://huggingface.co/DMIR01/DMRetriever-596M-PT) | Pre-trained version of 596M | Qwen3-0.6B | Decoder-only | 1024 | 28 |
| [DMRetriever-4B](https://huggingface.co/DMIR01/DMRetriever-4B) | Base 4B variant | Qwen3-4B | Decoder-only | 2560 | 36 |
| [DMRetriever-4B-PT](https://huggingface.co/DMIR01/DMRetriever-4B-PT) | Pre-trained version of 4B | Qwen3-4B | Decoder-only | 2560 | 36 |
| [DMRetriever-7.6B](https://huggingface.co/DMIR01/DMRetriever-7.6B) | Base 7.6B variant | Qwen3-8B | Decoder-only | 4096 | 36 |
| [DMRetriever-7.6B-PT](https://huggingface.co/DMIR01/DMRetriever-7.6B-PT) | Pre-trained version of 7.6B | Qwen3-8B | Decoder-only | 4096 | 36 |


---

## 🚀 Usage  
Please refer to each model’s [Hugging Face page](https://huggingface.co/DMIR01) for specific usage instructions, including input format, embedding extraction, and evaluation examples.

---

## 🧾 Citation  
If you find this repository helpful, please consider citing the corresponding paper:

```bibtex
@article{yin2025dmretriever,
  title={DMRetriever: A Family of Models for Improved Text Retrieval in Disaster Management},
  author={Yin, Kai and Dong, Xiangjue and Liu, Chengkai and Lin, Allen and Shi, Lingfeng and Mostafavi, Ali and Caverlee, James},
  journal={arXiv preprint arXiv:2510.15087},
  year={2025}
}