File size: 8,229 Bytes
88d8ab8 f251c4a 672ea4c f251c4a 88d8ab8 b1b6e3a 88d8ab8 45a1405 6307730 f0580d6 6307730 45a1405 88d8ab8 2504575 88d8ab8 50cd8d0 065ca2b 88d8ab8 6cf5e9c 88d8ab8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
---
language: en
tags:
- information-retrieval
- LLM
- Embedding
- text-retrieval
- disaster-management
task_categories:
- text-retrieval
license: apache-2.0
model_name: DMRetriever
---
# DMRetriever: A Family of Models for Improved Text Retrieval in Disaster Management
This repository provides an overview of **DMRetriever**, a family of embedding and retrieval models designed for **disaster-management retrieval tasks**.
For details, please refer to the [paper](https://www.arxiv.org/abs/2510.15087) and the [GitHub repository](https://github.com/KaiYin97/DMRETRIEVER).
DMRetriever includes model variants with **33M, 109M, 335M, 596M, 4B, and 7.6B parameters**.
These models are trained via a **three-stage learning framework** consisting of:
1. **Bidirectional Attention Adaptation**
2. **Unsupervised Contrastive Pre-training**
3. **Difficulty-aware Progressive Instruction Fine-tuning**
All stages leverage high-quality data generated through an advanced data-refinement pipeline.
DMRetriever achieves **state-of-the-art (SOTA)** performance across six retrieval intents at all model scales.
<p align="center">
<img src="https://huggingface.co/DMIR01/DMRetriever/resolve/main/DMRetriever_workflow_new.png"
alt="DMRetriever Workflow" width="750"/>
</p>
## 📚 Dataset
Training data are publicly available on [DMRetriever_MTT](https://huggingface.co/datasets/DMIR01/DMRetriever_MTT).
---
## 🧪 Evaluation
Performance across six retrieval intents on the **[DisastIR-Test](https://huggingface.co/datasets/DMIR01/DisastIR-DevLite)** benchmark.
The evaluation is conducted using this [code](https://github.com/KaiYin97/DMRETRIEVER/tree/main/DMRetriever/eva).
### 🧩 Small Size (≤109M)
| Model | Scale | QA | QAdoc | TW | FC | NLI | STS | Avg. |
|:--|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| thenlper-gte-small | 33M | 18.04 | 9.13 | 10.95 | 49.63 | 37.51 | 55.55 | 30.14 |
| arctic-embed-m | 109M | 33.15 | 14.04 | 8.48 | 35.07 | 38.67 | 56.20 | 30.94 |
| thenlper-gte-base | 109M | 9.18 | 5.42 | 37.91 | 60.45 | 42.52 | 46.07 | 33.59 |
| arctic-embed-m-v1.5 | 109M | 25.76 | 30.41 | 17.95 | 47.97 | 42.88 | 64.16 | 38.19 |
| arctic-embed-s | 33M | 38.58 | 28.81 | 21.33 | 47.21 | 39.85 | 66.96 | 40.46 |
| bge-small-en-v1.5 | 33M | 56.91 | 51.19 | 25.15 | 55.17 | 32.87 | 64.54 | 47.64 |
| bge-base-en-v1.5 | 109M | 51.50 | 52.78 | 46.72 | 59.93 | 41.16 | <u>68.63</u> | 53.45 |
| **DMRetriever-33M (ours)** | 33M | <u>62.47</u>† | <u>57.03</u>† | <u>57.22</u>† | <u>60.81</u>† | <u>46.56</u>† | 67.57 | <u>58.61</u>† |
| **DMRetriever-109M (ours)** | 109M | **63.19**† | **59.55**† | **58.88**† | **62.48**† | **46.93**† | **68.79**† | **59.97**† |
---
### ⚙️ Medium Size (137M–335M)
| Model | Scale | QA | QAdoc | TW | FC | NLI | STS | Avg. |
|:--|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| arctic-embed-m-long | 137M | 21.51 | 10.86 | 19.24 | 36.13 | 41.67 | 54.94 | 30.73 |
| arctic-embed-l | 335M | 40.56 | 30.19 | 14.98 | 32.64 | 34.20 | 56.10 | 34.78 |
| bge-large-en-v1.5 | 335M | 56.76 | 54.45 | 32.20 | 54.90 | 35.11 | 64.47 | 49.65 |
| gte-base-en-v1.5 | 137M | 60.51 | 55.62 | 46.26 | 52.24 | 39.59 | <u>70.40</u> | 54.10 |
| mxbai-embed-large-v1 | 335M | <u>64.24</u> | <u>62.63</u> | 39.94 | <u>58.12</u> | 40.18 | 68.01 | 55.52 |
| arctic-embed-m-v2.0 | 305M | 61.22 | 62.20 | <u>47.01</u> | 57.79 | <u>42.29</u> | 64.51 | <u>55.84</u> |
| **DMRetriever-335M (ours)** | 335M | **67.44**† | **62.69**† | **62.16**† | **64.42**† | **49.69**† | **70.71**† | **62.85**† |
---
### 🚀 Large Size (434M–1.5B)
| Model | Scale | QA | QAdoc | TW | FC | NLI | STS | Avg. |
|:--|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| arctic-embed-l-v2.0 | 568M | 55.23 | 59.11 | 38.11 | 60.10 | 41.07 | 62.61 | 52.70 |
| gte-large-en-v1.5 | 434M | 67.37 | 58.18 | 39.43 | 52.66 | 34.45 | 66.47 | 53.09 |
| Qwen3-Embedding-0.6B | 596M | 66.10 | 52.31 | 62.38 | 64.89 | 50.30 | 67.39 | 60.56 |
| mulling-e5-large-instruct | 560M | 67.97 | <u>64.64</u> | 62.25 | <u>66.78</u> | 48.51 | 63.42 | 62.26 |
| mulling-e5-large | 560M | 66.99 | 64.01 | 62.81 | 59.87 | 50.93 | <u>74.12</u> | 63.12 |
| gte-Qwen2-1.5B-instruct | 1.5B | <u>69.85</u> | 59.17 | <u>65.09</u> | 62.73 | <u>55.51</u> | 73.58 | 64.32 |
| inf-retriever-v1-1.5b | 1.5B | 69.41 | 64.29 | 62.99 | 65.39 | 54.03 | 73.92 | <u>65.01</u> |
| **DMRetriever-596M (ours)** | 596M | **72.44**† | **67.50**† | **65.79**† | **69.15**† | **55.71**† | **74.73**† | **67.55**† |
---
### 🧠 XL Size (≥4B)
| Model | Scale | QA | QAdoc | TW | FC | NLI | STS | Avg. |
|:--|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| Qwen3-Embedding-8B | 7.6B | 44.21 | 34.38 | 41.56 | 42.04 | 32.53 | 42.95 | 39.61 |
| gte-Qwen2-7B-instruct | 7.6B | 70.24 | 47.41 | 63.08 | 31.62 | 53.71 | 74.88 | 56.82 |
| NV-Embed-v1 | 7.9B | 68.06 | 62.70 | 56.02 | 59.64 | 48.05 | 67.06 | 60.26 |
| Qwen3-Embedding-4B | 4B | 67.20 | 59.14 | 65.28 | 67.16 | 53.61 | 58.51 | 61.82 |
| e5-mistral-7b-instruct | 7.1B | 65.57 | 64.97 | 63.31 | 67.86 | 47.55 | 66.48 | 62.58 |
| NV-Embed-v2 | 7.9B | 74.47 | 69.37 | 42.40 | 68.32 | <u>58.20</u> | 76.07 | 64.80 |
| inf-retriever-v1 | 7.1B | 72.84 | 66.74 | 66.23 | 65.53 | 51.86 | 75.98 | 66.53 |
| SFR-Embedding-Mistral | 7.1B | 71.41 | 67.14 | 69.45 | 70.31 | 50.93 | 72.67 | 66.99 |
| Linq-Embed-Mistral | 7.1B | 74.40 | 70.31 | 64.11 | 70.64 | 52.46 | 71.25 | 67.19 |
| **DMRetriever-4B (ours)** | 4B | <u>75.32</u>† | <u>70.23</u>† | <u>70.55</u>† | <u>71.44</u>† | 57.63 | <u>77.38</u>† | <u>70.42</u>† |
| **DMRetriever-7.6B (ours)** | 7.6B | **76.19**† | **71.27**† | **71.11**† | **72.47**† | **58.81**† | **78.36**† | **71.37**† |
---
## 📦 DMRetriever Series Model List
| **Model** | **Description** | **Backbone** | **Backbone Type** | **Hidden Size** | **#Layers** |
|:--|:--|:--|:--|:--:|:--:|
| [DMRetriever-33M](https://huggingface.co/DMIR01/DMRetriever-33M) | Base 33M variant | MiniLM | Encoder-only | 384 | 12 |
| [DMRetriever-33M-PT](https://huggingface.co/DMIR01/DMRetriever-33M-PT) | Pre-trained version of 33M | MiniLM | Encoder-only | 384 | 12 |
| [DMRetriever-109M](https://huggingface.co/DMIR01/DMRetriever-109M) | Base 109M variant | BERT-base-uncased | Encoder-only | 768 | 12 |
| [DMRetriever-109M-PT](https://huggingface.co/DMIR01/DMRetriever-109M-PT) | Pre-trained version of 109M | BERT-base-uncased | Encoder-only | 768 | 12 |
| [DMRetriever-335M](https://huggingface.co/DMIR01/DMRetriever-335M) | Base 335M variant | BERT-large-uncased-WWM | Encoder-only | 1024 | 24 |
| [DMRetriever-335M-PT](https://huggingface.co/DMIR01/DMRetriever-335M-PT) | Pre-trained version of 335M | BERT-large-uncased-WWM | Encoder-only | 1024 | 24 |
| [DMRetriever-596M](https://huggingface.co/DMIR01/DMRetriever-596M) | Base 596M variant | Qwen3-0.6B | Decoder-only | 1024 | 28 |
| [DMRetriever-596M-PT](https://huggingface.co/DMIR01/DMRetriever-596M-PT) | Pre-trained version of 596M | Qwen3-0.6B | Decoder-only | 1024 | 28 |
| [DMRetriever-4B](https://huggingface.co/DMIR01/DMRetriever-4B) | Base 4B variant | Qwen3-4B | Decoder-only | 2560 | 36 |
| [DMRetriever-4B-PT](https://huggingface.co/DMIR01/DMRetriever-4B-PT) | Pre-trained version of 4B | Qwen3-4B | Decoder-only | 2560 | 36 |
| [DMRetriever-7.6B](https://huggingface.co/DMIR01/DMRetriever-7.6B) | Base 7.6B variant | Qwen3-8B | Decoder-only | 4096 | 36 |
| [DMRetriever-7.6B-PT](https://huggingface.co/DMIR01/DMRetriever-7.6B-PT) | Pre-trained version of 7.6B | Qwen3-8B | Decoder-only | 4096 | 36 |
---
## 🚀 Usage
Please refer to each model’s [Hugging Face page](https://huggingface.co/DMIR01) for specific usage instructions, including input format, embedding extraction, and evaluation examples.
---
## 🧾 Citation
If you find this repository helpful, please consider citing the corresponding paper:
```bibtex
@article{yin2025dmretriever,
title={DMRetriever: A Family of Models for Improved Text Retrieval in Disaster Management},
author={Yin, Kai and Dong, Xiangjue and Liu, Chengkai and Lin, Allen and Shi, Lingfeng and Mostafavi, Ali and Caverlee, James},
journal={arXiv preprint arXiv:2510.15087},
year={2025}
}
|