Update modeling_actu.py
Browse files- modeling_actu.py +48 -271
modeling_actu.py
CHANGED
|
@@ -1,203 +1,89 @@
|
|
| 1 |
-
from dataclasses import dataclass
|
| 2 |
-
|
| 3 |
import numpy as np
|
| 4 |
import timm
|
| 5 |
import torch
|
| 6 |
import torch.nn as nn
|
| 7 |
import torch.nn.functional as F
|
| 8 |
-
from einops import rearrange
|
| 9 |
from segmentation_models_pytorch.base import SegmentationHead
|
| 10 |
from segmentation_models_pytorch.decoders.unet.decoder import UnetDecoder
|
| 11 |
from timm.layers.create_act import create_act_layer
|
| 12 |
-
from transformers import PretrainedConfig, PreTrainedModel
|
| 13 |
-
from transformers.modeling_outputs import SemanticSegmenterOutput
|
| 14 |
|
| 15 |
from .convlstm import ConvLSTM
|
| 16 |
|
| 17 |
|
| 18 |
-
class
|
| 19 |
-
model_type = "actu"
|
| 20 |
-
|
| 21 |
def __init__(
|
| 22 |
self,
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
backbone="resnet34",
|
| 29 |
bias=True,
|
| 30 |
batch_first=True,
|
| 31 |
bidirectional=False,
|
| 32 |
original_resolution=(256, 256),
|
| 33 |
-
act_layer="sigmoid",
|
| 34 |
-
n_classes=1,
|
| 35 |
-
# Variant control parameters
|
| 36 |
-
use_dem_input: bool = False,
|
| 37 |
-
use_climate_branch: bool = False,
|
| 38 |
-
# Climate branch parameters
|
| 39 |
-
climate_seq_len=5,
|
| 40 |
-
climate_input_dim=6,
|
| 41 |
-
lstm_hidden_dim=128,
|
| 42 |
-
num_lstm_layers=1,
|
| 43 |
**kwargs,
|
| 44 |
):
|
| 45 |
-
super().__init__(
|
| 46 |
-
self.in_channels = in_channels
|
| 47 |
-
self.kernel_size = kernel_size
|
| 48 |
-
self.padding = padding
|
| 49 |
-
self.stride = stride
|
| 50 |
-
self.backbone = backbone
|
| 51 |
-
self.bias = bias
|
| 52 |
-
self.batch_first = batch_first
|
| 53 |
-
self.bidirectional = bidirectional
|
| 54 |
-
self.original_resolution = original_resolution
|
| 55 |
-
self.act_layer = act_layer
|
| 56 |
self.n_classes = n_classes
|
| 57 |
-
|
| 58 |
-
# Parameters to control variants
|
| 59 |
-
self.use_dem_input = use_dem_input
|
| 60 |
-
self.use_climate_branch = use_climate_branch
|
| 61 |
-
self.climate_seq_len = climate_seq_len
|
| 62 |
-
self.climate_input_dim = climate_input_dim
|
| 63 |
-
self.lstm_hidden_dim = lstm_hidden_dim
|
| 64 |
-
self.num_lstm_layers = num_lstm_layers
|
| 65 |
-
|
| 66 |
-
# Adjust in_channels if DEM is used
|
| 67 |
-
if self.use_dem_input:
|
| 68 |
-
self.in_channels += 1
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
class ACTUForImageSegmentation(PreTrainedModel):
|
| 72 |
-
config_class = ACTUConfig
|
| 73 |
-
|
| 74 |
-
def __init__(self, config: ACTUConfig):
|
| 75 |
-
super().__init__(config)
|
| 76 |
-
self.config = config
|
| 77 |
|
| 78 |
self.encoder: nn.Module = timm.create_model(
|
| 79 |
-
|
| 80 |
)
|
| 81 |
|
| 82 |
with torch.no_grad():
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
1, dummy_input_channels, *config.original_resolution
|
| 86 |
)
|
| 87 |
-
|
| 88 |
-
self.embs_shape = [e.shape for e in embs]
|
| 89 |
-
self.encoder_channels = [e[1] for e in self.embs_shape]
|
| 90 |
|
|
|
|
|
|
|
| 91 |
self.convlstm = nn.ModuleList(
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
bidirectional=config.bidirectional,
|
| 102 |
-
)
|
| 103 |
-
for shape in self.embs_shape
|
| 104 |
-
]
|
| 105 |
-
)
|
| 106 |
-
|
| 107 |
-
if self.config.use_climate_branch:
|
| 108 |
-
self.climate_branch = ClimateBranchLSTM(
|
| 109 |
-
output_shapes=[e[1:] for e in self.embs_shape],
|
| 110 |
-
lstm_hidden_dim=config.lstm_hidden_dim,
|
| 111 |
-
climate_seq_len=config.climate_seq_len,
|
| 112 |
-
climate_input_dim=config.climate_input_dim,
|
| 113 |
-
num_lstm_layers=config.num_lstm_layers,
|
| 114 |
-
)
|
| 115 |
-
self.fusers = nn.ModuleList(
|
| 116 |
-
GatedFusion(enc, enc) for enc in self.encoder_channels
|
| 117 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
self.decoder = UnetDecoder(
|
| 120 |
-
encoder_channels=[1
|
| 121 |
-
decoder_channels=
|
| 122 |
-
n_blocks=len(
|
| 123 |
)
|
| 124 |
-
|
| 125 |
self.seg_head = nn.Sequential(
|
| 126 |
SegmentationHead(
|
| 127 |
-
in_channels=
|
| 128 |
-
out_channels=
|
| 129 |
),
|
| 130 |
-
create_act_layer(
|
| 131 |
)
|
|
|
|
|
|
|
| 132 |
|
| 133 |
-
def forward(
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
) -> SemanticSegmenterOutput:
|
| 141 |
-
b, t = pixel_values.shape[:2]
|
| 142 |
-
original_size = pixel_values.shape[-2:]
|
| 143 |
-
|
| 144 |
-
# Handle DEM input
|
| 145 |
-
if self.config.use_dem_input:
|
| 146 |
-
if dem is None:
|
| 147 |
-
raise ValueError(
|
| 148 |
-
"DEM tensor must be provided when use_dem_input is True."
|
| 149 |
-
)
|
| 150 |
-
dem_repeated = repeat(dem, "b c h w -> b t c h w", t=t)
|
| 151 |
-
pixel_values = torch.cat([pixel_values, dem_repeated], dim=2)
|
| 152 |
-
|
| 153 |
-
# 1. Encode images per time step
|
| 154 |
-
encoded_sequence = self._encode_images(pixel_values)
|
| 155 |
-
|
| 156 |
-
# 2. Handle Climate Branch Fusion
|
| 157 |
-
if self.config.use_climate_branch:
|
| 158 |
-
if climate is None:
|
| 159 |
-
raise ValueError(
|
| 160 |
-
"Climate tensor must be provided when use_climate_branch is True."
|
| 161 |
-
)
|
| 162 |
-
|
| 163 |
-
climate_features = self.climate_branch(climate)
|
| 164 |
-
|
| 165 |
-
# Reshape for fusion
|
| 166 |
-
encoded_sequence_reshaped = [
|
| 167 |
-
rearrange(f, "b t c h w -> (b t) c h w") for f in encoded_sequence
|
| 168 |
-
]
|
| 169 |
-
climate_features_reshaped = [
|
| 170 |
-
rearrange(f, "b t c h w -> (b t) c h w") for f in climate_features
|
| 171 |
-
]
|
| 172 |
-
|
| 173 |
-
# Fuse features
|
| 174 |
-
fused_features = [
|
| 175 |
-
fuser(img, clim)
|
| 176 |
-
for fuser, img, clim in zip(
|
| 177 |
-
self.fusers, encoded_sequence_reshaped, climate_features_reshaped
|
| 178 |
-
)
|
| 179 |
-
]
|
| 180 |
-
|
| 181 |
-
# Reshape back to sequence
|
| 182 |
-
encoded_sequence = [
|
| 183 |
-
rearrange(f, "(b t) c h w -> b t c h w", b=b) for f in fused_features
|
| 184 |
-
]
|
| 185 |
-
|
| 186 |
-
# 3. Process sequence with ConvLSTM
|
| 187 |
-
temporal_features = self._encode_timeseries(encoded_sequence)
|
| 188 |
-
|
| 189 |
-
# 4. Decode to get the segmentation map
|
| 190 |
-
logits = self._decode(temporal_features, size=original_size)
|
| 191 |
-
|
| 192 |
-
loss = None
|
| 193 |
-
if labels is not None:
|
| 194 |
-
loss_fct = nn.CrossEntropyLoss()
|
| 195 |
-
loss = loss_fct(logits, labels.float().unsqueeze(1))
|
| 196 |
-
|
| 197 |
-
return SemanticSegmenterOutput(
|
| 198 |
-
loss=loss,
|
| 199 |
-
logits=logits,
|
| 200 |
-
)
|
| 201 |
|
| 202 |
def _encode_images(self, x: torch.Tensor) -> list[torch.Tensor]:
|
| 203 |
B = x.size(0)
|
|
@@ -221,112 +107,3 @@ class ACTUForImageSegmentation(PreTrainedModel):
|
|
| 221 |
trend_map, size=size, mode="bilinear", align_corners=False
|
| 222 |
)
|
| 223 |
return trend_map
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
class ClimateBranchLSTM(nn.Module):
|
| 227 |
-
"""
|
| 228 |
-
Processes climate time series data using an LSTM.
|
| 229 |
-
Input shape: (B, T, T_1, C_clim) -> e.g., (B, 5, 6, 5)
|
| 230 |
-
Output shape: (B, T, output_dim) -> e.g., (B, 5, 128)
|
| 231 |
-
"""
|
| 232 |
-
|
| 233 |
-
def __init__(
|
| 234 |
-
self,
|
| 235 |
-
output_shapes: list[tuple[int, int, int]],
|
| 236 |
-
climate_input_dim=5,
|
| 237 |
-
climate_seq_len=6,
|
| 238 |
-
lstm_hidden_dim=64,
|
| 239 |
-
num_lstm_layers=1,
|
| 240 |
-
):
|
| 241 |
-
super().__init__()
|
| 242 |
-
self.climate_seq_len = climate_seq_len
|
| 243 |
-
self.climate_input_dim = climate_input_dim
|
| 244 |
-
self.lstm_hidden_dim = lstm_hidden_dim
|
| 245 |
-
self.num_lstm_layers = num_lstm_layers
|
| 246 |
-
self.proj_dim = 128
|
| 247 |
-
self.output_shapes = output_shapes
|
| 248 |
-
|
| 249 |
-
self.lstm = nn.LSTM(
|
| 250 |
-
input_size=climate_input_dim,
|
| 251 |
-
hidden_size=lstm_hidden_dim,
|
| 252 |
-
num_layers=num_lstm_layers,
|
| 253 |
-
batch_first=True, # Crucial: expects input shape (batch, seq_len, features)
|
| 254 |
-
dropout=0.3 if num_lstm_layers > 1 else 0,
|
| 255 |
-
bidirectional=False,
|
| 256 |
-
)
|
| 257 |
-
|
| 258 |
-
# Linear layer to project LSTM output to the desired final dimension
|
| 259 |
-
self.fc = nn.Linear(lstm_hidden_dim, self.proj_dim)
|
| 260 |
-
|
| 261 |
-
self.upsamples = nn.ModuleList(
|
| 262 |
-
_build_upsampler(self.proj_dim, *shape[:2]) for shape in output_shapes
|
| 263 |
-
)
|
| 264 |
-
|
| 265 |
-
def forward(self, climate_data: torch.Tensor) -> list[torch.Tensor]:
|
| 266 |
-
# climate_data shape: (B, T, T_1, C_clim), e.g., (B, 5, 6, 5)
|
| 267 |
-
B_img, B_cli, T, C = climate_data.shape
|
| 268 |
-
|
| 269 |
-
# Reshape for LSTM: Treat each sequence independently
|
| 270 |
-
lstm_input = rearrange(climate_data, "Bi Bc T C -> (Bi Bc) T C")
|
| 271 |
-
|
| 272 |
-
# Pass through LSTM
|
| 273 |
-
_, (hidden, _) = self.lstm.forward(lstm_input)
|
| 274 |
-
# Get the last layer's hidden state
|
| 275 |
-
last_hidden = (
|
| 276 |
-
hidden[[hidden.size(0) // 2, -1]] if self.lstm.bidirectional else hidden[-1]
|
| 277 |
-
)
|
| 278 |
-
if last_hidden.ndim == 3:
|
| 279 |
-
last_hidden = hidden.mean(dim=0)
|
| 280 |
-
|
| 281 |
-
# Pass the final hidden state through the fully connected layer(s) and upsample
|
| 282 |
-
climate_features = self.fc(last_hidden)
|
| 283 |
-
climate_features = rearrange(climate_features, "b c -> b c 1 1")
|
| 284 |
-
climate_features = [
|
| 285 |
-
rearrange(
|
| 286 |
-
u(climate_features), "(Bi Bc) C H W -> Bi Bc C H W", Bi=B_img, Bc=B_cli
|
| 287 |
-
)
|
| 288 |
-
for u in self.upsamples
|
| 289 |
-
]
|
| 290 |
-
|
| 291 |
-
return climate_features
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
class GatedFusion(nn.Module):
|
| 295 |
-
def __init__(self, img_channels, clim_channels):
|
| 296 |
-
super().__init__()
|
| 297 |
-
self.gate = nn.Sequential(
|
| 298 |
-
nn.Sequential(
|
| 299 |
-
nn.Conv2d(
|
| 300 |
-
img_channels + clim_channels, img_channels, kernel_size=3, padding=1
|
| 301 |
-
),
|
| 302 |
-
nn.ReLU(inplace=True),
|
| 303 |
-
nn.Conv2d(img_channels, img_channels, kernel_size=1),
|
| 304 |
-
nn.Sigmoid(), # Gate values between 0 and 1
|
| 305 |
-
)
|
| 306 |
-
)
|
| 307 |
-
|
| 308 |
-
def forward(self, img_feat, clim_feat):
|
| 309 |
-
gate = self.gate(torch.cat([img_feat, clim_feat], dim=1))
|
| 310 |
-
return gate * img_feat + (1 - gate) * clim_feat
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
def _build_upsampler(
|
| 314 |
-
in_channels: int, target_channels: int, target_h: int
|
| 315 |
-
) -> nn.Sequential:
|
| 316 |
-
layers = []
|
| 317 |
-
current_h = 1
|
| 318 |
-
|
| 319 |
-
# Expand to target channels early (e.g., 1x1 → 1x1 with target_channels)
|
| 320 |
-
layers += [nn.Conv2d(in_channels, target_channels, kernel_size=1), nn.GELU()]
|
| 321 |
-
|
| 322 |
-
# Upsample spatially to target_h
|
| 323 |
-
while current_h < target_h:
|
| 324 |
-
next_h = min(current_h * 2, target_h)
|
| 325 |
-
layers += [
|
| 326 |
-
nn.Upsample(scale_factor=2, mode="nearest"),
|
| 327 |
-
nn.Conv2d(target_channels, target_channels, kernel_size=3, padding=1),
|
| 328 |
-
nn.GELU(),
|
| 329 |
-
]
|
| 330 |
-
current_h = next_h
|
| 331 |
-
|
| 332 |
-
return nn.Sequential(*layers)
|
|
|
|
|
|
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
import timm
|
| 3 |
import torch
|
| 4 |
import torch.nn as nn
|
| 5 |
import torch.nn.functional as F
|
| 6 |
+
from einops import rearrange
|
| 7 |
from segmentation_models_pytorch.base import SegmentationHead
|
| 8 |
from segmentation_models_pytorch.decoders.unet.decoder import UnetDecoder
|
| 9 |
from timm.layers.create_act import create_act_layer
|
|
|
|
|
|
|
| 10 |
|
| 11 |
from .convlstm import ConvLSTM
|
| 12 |
|
| 13 |
|
| 14 |
+
class ACTU(nn.Module):
|
|
|
|
|
|
|
| 15 |
def __init__(
|
| 16 |
self,
|
| 17 |
+
in_channels,
|
| 18 |
+
kernel_size,
|
| 19 |
+
padding,
|
| 20 |
+
stride,
|
| 21 |
+
backbone: str,
|
|
|
|
| 22 |
bias=True,
|
| 23 |
batch_first=True,
|
| 24 |
bidirectional=False,
|
| 25 |
original_resolution=(256, 256),
|
| 26 |
+
act_layer: str = "sigmoid",
|
| 27 |
+
n_classes: int = 1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
**kwargs,
|
| 29 |
):
|
| 30 |
+
super(ACTU, self).__init__()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
self.n_classes = n_classes
|
| 32 |
+
self.backbone = backbone
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
self.encoder: nn.Module = timm.create_model(
|
| 35 |
+
backbone, features_only=True, in_chans=in_channels
|
| 36 |
)
|
| 37 |
|
| 38 |
with torch.no_grad():
|
| 39 |
+
embs = self.encoder.forward(
|
| 40 |
+
torch.randn(1, in_channels, *original_resolution)
|
|
|
|
| 41 |
)
|
| 42 |
+
embs_shape = [e.shape for e in embs]
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
# The ConvLSTM expects inputs of shape (B, T, feature_dim, H_enc, W_enc)
|
| 45 |
+
# We assume the provided ConvLSTM code is available.
|
| 46 |
self.convlstm = nn.ModuleList(
|
| 47 |
+
ConvLSTM(
|
| 48 |
+
in_channels=shape[1],
|
| 49 |
+
hidden_channels=shape[1],
|
| 50 |
+
kernel_size=kernel_size,
|
| 51 |
+
padding=padding,
|
| 52 |
+
stride=stride,
|
| 53 |
+
bias=bias,
|
| 54 |
+
batch_first=batch_first,
|
| 55 |
+
bidirectional=bidirectional,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
)
|
| 57 |
+
for shape in embs_shape
|
| 58 |
+
)
|
| 59 |
+
# If bidirectional, the hidden representation is concatenated from both directions.
|
| 60 |
+
n_upsamples = int(np.log2(original_resolution[0] / embs_shape[-1][-2]))
|
| 61 |
+
skip_channels_list = [shape[1] for shape in embs_shape[-(n_upsamples + 1) : -1]]
|
| 62 |
+
skip_channels_list = skip_channels_list[::-1] # Reverse the list.
|
| 63 |
+
encoder_channels = [e[1] for e in embs_shape]
|
| 64 |
|
| 65 |
self.decoder = UnetDecoder(
|
| 66 |
+
encoder_channels=[1, *encoder_channels],
|
| 67 |
+
decoder_channels=encoder_channels[::-1],
|
| 68 |
+
n_blocks=len(encoder_channels),
|
| 69 |
)
|
|
|
|
| 70 |
self.seg_head = nn.Sequential(
|
| 71 |
SegmentationHead(
|
| 72 |
+
in_channels=encoder_channels[0],
|
| 73 |
+
out_channels=n_classes,
|
| 74 |
),
|
| 75 |
+
create_act_layer(act_layer, inplace=True),
|
| 76 |
)
|
| 77 |
+
self.encoder_channels = encoder_channels
|
| 78 |
+
self.embs_shape = embs_shape
|
| 79 |
|
| 80 |
+
def forward(self, x: torch.Tensor, **kwargs):
|
| 81 |
+
size = x.size()[-2:]
|
| 82 |
+
# Process each time step through the encoder.
|
| 83 |
+
x = self._encode_images(x)
|
| 84 |
+
# Pass the encoded sequence through the ConvLSTM.
|
| 85 |
+
x = self._encode_timeseries(x)
|
| 86 |
+
return self._decode(x, size=size)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
def _encode_images(self, x: torch.Tensor) -> list[torch.Tensor]:
|
| 89 |
B = x.size(0)
|
|
|
|
| 107 |
trend_map, size=size, mode="bilinear", align_corners=False
|
| 108 |
)
|
| 109 |
return trend_map
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|