File size: 10,575 Bytes
8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e da112b9 235cad6 da112b9 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e 93e01de 8f31e1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
---
language: en
license: mit
tags:
- yolo
- yolov11
- object-detection
- tennis
- racket
- sports
- computer-vision
- pytorch
- ultralytics
- courtside
datasets:
- dataset1-yx5qr
metrics:
- precision
- recall
- mAP
library_name: ultralytics
pipeline_tag: object-detection
model-index:
- name: CourtSide Computer Vision v0.2
results:
- task:
type: object-detection
metrics:
- type: mAP@50
value: 66.67
- type: precision
value: 71
- type: recall
value: 44
---
# CourtSide Computer Vision v0.2 - Racket Detection 🎾
Fine-tuned YOLOv11n model for detecting tennis rackets in images and videos. Part of the CourtSide Computer Vision suite for comprehensive tennis match analysis.

## Model Details
- **Model Name**: CourtSide Computer Vision v0.2
- **Model ID**: `Davidsv/CourtSide-Computer-Vision-v0.2`
- **Model Type**: Object Detection
- **Architecture**: YOLOv11 Nano (n)
- **Framework**: Ultralytics YOLOv11
- **Parameters**: 2.6M
- **Input Size**: 640x640
- **Classes**: 1 (`racket`)
## Performance Metrics
Evaluated on validation set (66 images):
| Metric | Value |
|--------|-------|
| **mAP@50** | **66.67%** |
| **mAP@50-95** | 33.33% |
| **Precision** | ~71% |
| **Recall** | ~44% |
| **Inference Speed** (M4 Pro) | ~10ms |
## Training Details
### Dataset
This model was trained on the **dataset1** by Tesi, available on Roboflow Universe.
- **Training images**: 582
- **Validation images**: 66
- **Test images**: 55
- **Total**: 703 annotated images
- **Annotation format**: YOLO format (bounding boxes)
- **Source**: [Roboflow Universe - Dataset1](https://universe.roboflow.com/tesi-mpvmr/dataset1-yx5qr)
### Training Configuration
```yaml
Model: YOLOv11n (nano)
Epochs: 100
Batch size: 16
Image size: 640x640
Device: Apple M4 Pro (MPS)
Optimizer: AdamW
Learning rate: 0.001 → 0.01
Training time: ~26 minutes
```
### Augmentation
- HSV color jitter (h=0.015, s=0.7, v=0.4)
- Random horizontal flip (p=0.5)
- Translation (±10%)
- Scaling (±50%)
- Mosaic augmentation
### Loss Weights
- Box loss: 7.5
- Class loss: 0.5
- DFL loss: 1.5
## Usage
### Installation
```bash
pip install ultralytics
```
### Python API
```python
from ultralytics import YOLO
# Load CourtSide Computer Vision v0.2 model
model = YOLO('Davidsv/CourtSide-Computer-Vision-v0.2')
# Predict on image
results = model.predict('tennis_match.jpg', conf=0.4)
# Display results
results[0].show()
# Get bounding boxes
for box in results[0].boxes:
x1, y1, x2, y2 = box.xyxy[0]
confidence = box.conf[0]
print(f"Racket detected at [{x1:.0f}, {y1:.0f}, {x2:.0f}, {y2:.0f}] with {confidence:.2%} confidence")
```
### Video Processing
```python
from ultralytics import YOLO
model = YOLO('Davidsv/CourtSide-Computer-Vision-v0.2')
# Process video
results = model.predict(
source='tennis_match.mp4',
conf=0.4,
save=True,
save_txt=True
)
# Track rackets across frames
results = model.track(
source='tennis_match.mp4',
conf=0.4,
tracker='bytetrack.yaml'
)
```
### Command Line
```bash
# Predict on image
yolo detect predict model=Davidsv/CourtSide-Computer-Vision-v0.2 source=image.jpg conf=0.4
# Predict on video
yolo detect predict model=Davidsv/CourtSide-Computer-Vision-v0.2 source=video.mp4 conf=0.4 save=True
# Track rackets in video
yolo detect track model=Davidsv/CourtSide-Computer-Vision-v0.2 source=video.mp4 conf=0.4
# Validate model
yolo detect val model=Davidsv/CourtSide-Computer-Vision-v0.2 data=dataset.yaml
```
## Recommended Hyperparameters
### Inference Settings
```python
# Balanced (recommended)
conf_threshold = 0.40 # Confidence threshold
iou_threshold = 0.45 # NMS IoU threshold
max_det = 10 # Maximum detections per image (usually 2-4 rackets)
# High precision (fewer false positives)
conf_threshold = 0.55
iou_threshold = 0.45
max_det = 8
# High recall (detect more rackets, more false positives)
conf_threshold = 0.30
iou_threshold = 0.40
max_det = 15
```
## Limitations
- **Motion blur**: Rackets in very fast motion may be harder to detect
- **Occlusion**: Partially hidden rackets (behind player, net, etc.) may not be detected
- **Angles**: Extreme viewing angles may reduce detection accuracy
- **Racket types**: Trained on standard tennis rackets, may not generalize to unusual designs
- **Similar objects**: May occasionally detect similar elongated objects
## Model Biases
- Trained on professional and amateur match footage
- Better performance on standard racket designs and colors
- Dataset may have court-type or player-level biases
- Optimized for typical tennis camera angles
## Use Cases
✅ **Recommended:**
- Tennis match analysis and statistics
- Player technique analysis
- Swing detection and tracking
- Automated coaching feedback
- Sports analytics dashboards
- Training video analysis
- Action recognition pipelines (combined with ball detection)
⚠️ **Not Recommended:**
- Real-time officiating decisions
- Safety-critical applications
- Detection of non-tennis rackets without fine-tuning
## Example Results
### Sample Detections
**mAP@50: 66.67%** - Good detection performance on typical tennis scenes
**Precision: ~71%** - When detected, about 7 out of 10 detections are correct
**Recall: ~44%** - Detects approximately 4-5 out of 10 rackets
### Confidence Interpretation
| Confidence Range | Interpretation |
|------------------|----------------|
| > 0.7 | High confidence - very likely a tennis racket |
| 0.5 - 0.7 | Medium confidence - probably a tennis racket |
| 0.4 - 0.5 | Low confidence - possible tennis racket |
| < 0.4 | Very low confidence - likely false positive |
## CourtSide Computer Vision Suite
This model is part of the **CourtSide Computer Vision** project for comprehensive tennis analysis:
### Available Models
- **v0.1** - Tennis Ball Detection ([Davidsv/CourtSide-Computer-Vision-v0.1](https://huggingface.co/Davidsv/CourtSide-Computer-Vision-v0.1))
- **v0.2** - Tennis Racket Detection (this model)
### Combined Usage Example
```python
from ultralytics import YOLO
# Load both CourtSide CV models
model_ball = YOLO('Davidsv/CourtSide-Computer-Vision-v0.1') # Ball detection
model_racket = YOLO('Davidsv/CourtSide-Computer-Vision-v0.2') # Racket detection
# Detect both in same image
ball_results = model_ball.predict('match.jpg', conf=0.3)
racket_results = model_racket.predict('match.jpg', conf=0.4)
# Combine detections for comprehensive analysis
print(f"Balls detected: {len(ball_results[0].boxes)}")
print(f"Rackets detected: {len(racket_results[0].boxes)}")
```
## Advanced Usage
### Detect and Track Swing Actions
```python
from ultralytics import YOLO
import cv2
model = YOLO('Davidsv/CourtSide-Computer-Vision-v0.2')
video = cv2.VideoCapture('match.mp4')
frame_count = 0
racket_positions = []
while True:
ret, frame = video.read()
if not ret:
break
# Detect rackets
results = model.predict(frame, conf=0.4, verbose=False)
# Track racket movement for swing analysis
for box in results[0].boxes:
x1, y1, x2, y2 = box.xyxy[0]
center_x = (x1 + x2) / 2
center_y = (y1 + y2) / 2
racket_positions.append((frame_count, center_x, center_y))
frame_count += 1
# Analyze swing patterns
print(f"Total racket detections: {len(racket_positions)}")
```
### Full Tennis Analysis Pipeline
```python
from ultralytics import YOLO
# Load all CourtSide models
ball_model = YOLO('Davidsv/CourtSide-Computer-Vision-v0.1')
racket_model = YOLO('Davidsv/CourtSide-Computer-Vision-v0.2')
# Process video with both models
ball_results = ball_model.track('match.mp4', conf=0.3)
racket_results = racket_model.track('match.mp4', conf=0.4)
# Combine for action recognition and analytics
```
## Model Card Authors
- **Developed by**: Davidsv (Vuong)
- **Model date**: November 2024
- **Model version**: v0.2
- **Model type**: Object Detection (YOLOv11)
- **Part of**: CourtSide Computer Vision Suite
## Citations
### This Model
If you use this model, please cite:
```bibtex
@misc{courtsidecv_v0.2_2024,
title={CourtSide Computer Vision v0.2: Tennis Racket Detection with YOLOv11},
author={Vuong},
year={2024},
publisher={Hugging Face},
howpublished={\url{https://huggingface.co/Davidsv/CourtSide-Computer-Vision-v0.2}}
}
```
### Dataset
This model was trained using the dataset1 dataset. Please cite:
```bibtex
@misc{dataset1-yx5qr_dataset,
title = {dataset1 Dataset},
type = {Open Source Dataset},
author = {Tesi},
howpublished = {\url{https://universe.roboflow.com/tesi-mpvmr/dataset1-yx5qr}},
url = {https://universe.roboflow.com/tesi-mpvmr/dataset1-yx5qr},
journal = {Roboflow Universe},
publisher = {Roboflow},
year = {2023},
month = {mar},
note = {visited on 2024-11-20}
}
```
## License
MIT License - Free for commercial and academic use.
## Acknowledgments
- Built with [Ultralytics YOLOv11](https://github.com/ultralytics/ultralytics)
- Dataset by Tesi via [Roboflow Universe](https://universe.roboflow.com/tesi-mpvmr/dataset1-yx5qr)
- Part of the CourtSide Computer Vision project for tennis analysis
## Contact & Support
For questions, issues, or collaboration:
- Hugging Face: [@Davidsv](https://huggingface.co/Davidsv)
- Model Updates: Check for newer versions in the CourtSide CV series
## Common Issues & Solutions
### Issue: Low Recall (Missing Rackets)
**Solution**: Lower confidence threshold to 0.30-0.35
### Issue: Too Many False Positives
**Solution**: Increase confidence threshold to 0.50-0.55
### Issue: Missed Rackets in Fast Motion
**Solution**: Use `model.track()` instead of `model.predict()` for better temporal consistency
### Issue: Multiple Detections per Racket
**Solution**: Increase NMS IoU threshold to 0.50-0.55
### Issue: Poor Performance on Unusual Angles
**Solution**: Consider fine-tuning on your specific camera setup or use data augmentation
## Model Changelog
### v0.2 (2024-11-20)
- Initial release of racket detection model
- YOLOv11n architecture
- mAP@50: 66.67%
- 703 training images from Roboflow dataset
- Optimized for standard tennis racket detection
- Part of CourtSide Computer Vision suite
---
**Model Size**: 5.4 MB
**Inference Speed**: 10-65ms (device dependent)
**Supported Formats**: PyTorch (.pt), ONNX, TensorRT, CoreML
**Model Hub**: [Davidsv/CourtSide-Computer-Vision-v0.2](https://huggingface.co/Davidsv/CourtSide-Computer-Vision-v0.2)
🎾 Ready for production use in tennis analysis applications! |