Dc-4nderson commited on
Commit
bf613c6
·
verified ·
1 Parent(s): 105465e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -180
README.md CHANGED
@@ -1,208 +1,77 @@
1
- ---
2
- base_model: mistralai/Mistral-7B-Instruct-v0.2
3
- library_name: peft
4
- pipeline_tag: text-generation
5
- tags:
6
- - base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2
7
- - lora
8
- - sft
9
- - trl
10
- ---
11
 
12
- # Model Card for Model ID
13
 
14
- <!-- Provide a quick summary of what the model is/does. -->
15
 
 
16
 
 
17
 
18
- ## Model Details
19
 
20
- ### Model Description
21
 
22
- <!-- Provide a longer summary of what this model is. -->
 
 
23
 
 
 
24
 
 
25
 
26
- - **Developed by:** [More Information Needed]
27
- - **Funded by [optional]:** [More Information Needed]
28
- - **Shared by [optional]:** [More Information Needed]
29
- - **Model type:** [More Information Needed]
30
- - **Language(s) (NLP):** [More Information Needed]
31
- - **License:** [More Information Needed]
32
- - **Finetuned from model [optional]:** [More Information Needed]
33
 
34
- ### Model Sources [optional]
35
 
36
- <!-- Provide the basic links for the model. -->
37
 
38
- - **Repository:** [More Information Needed]
39
- - **Paper [optional]:** [More Information Needed]
40
- - **Demo [optional]:** [More Information Needed]
41
 
42
- ## Uses
43
 
44
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
45
 
46
- ### Direct Use
47
 
48
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
49
 
50
- [More Information Needed]
51
 
52
- ### Downstream Use [optional]
 
 
 
 
 
 
53
 
54
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
55
 
56
- [More Information Needed]
 
 
57
 
58
- ### Out-of-Scope Use
 
59
 
60
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
61
 
62
- [More Information Needed]
 
 
 
63
 
64
- ## Bias, Risks, and Limitations
65
 
66
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
67
 
68
- [More Information Needed]
69
 
70
- ### Recommendations
71
-
72
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
73
-
74
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
75
-
76
- ## How to Get Started with the Model
77
-
78
- Use the code below to get started with the model.
79
-
80
- [More Information Needed]
81
-
82
- ## Training Details
83
-
84
- ### Training Data
85
-
86
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
87
-
88
- [More Information Needed]
89
-
90
- ### Training Procedure
91
-
92
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
93
-
94
- #### Preprocessing [optional]
95
-
96
- [More Information Needed]
97
-
98
-
99
- #### Training Hyperparameters
100
-
101
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
102
-
103
- #### Speeds, Sizes, Times [optional]
104
-
105
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
106
-
107
- [More Information Needed]
108
-
109
- ## Evaluation
110
-
111
- <!-- This section describes the evaluation protocols and provides the results. -->
112
-
113
- ### Testing Data, Factors & Metrics
114
-
115
- #### Testing Data
116
-
117
- <!-- This should link to a Dataset Card if possible. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Factors
122
-
123
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
124
-
125
- [More Information Needed]
126
-
127
- #### Metrics
128
-
129
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
130
-
131
- [More Information Needed]
132
-
133
- ### Results
134
-
135
- [More Information Needed]
136
-
137
- #### Summary
138
-
139
-
140
-
141
- ## Model Examination [optional]
142
-
143
- <!-- Relevant interpretability work for the model goes here -->
144
-
145
- [More Information Needed]
146
-
147
- ## Environmental Impact
148
-
149
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
150
-
151
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
152
-
153
- - **Hardware Type:** [More Information Needed]
154
- - **Hours used:** [More Information Needed]
155
- - **Cloud Provider:** [More Information Needed]
156
- - **Compute Region:** [More Information Needed]
157
- - **Carbon Emitted:** [More Information Needed]
158
-
159
- ## Technical Specifications [optional]
160
-
161
- ### Model Architecture and Objective
162
-
163
- [More Information Needed]
164
-
165
- ### Compute Infrastructure
166
-
167
- [More Information Needed]
168
-
169
- #### Hardware
170
-
171
- [More Information Needed]
172
-
173
- #### Software
174
-
175
- [More Information Needed]
176
-
177
- ## Citation [optional]
178
-
179
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
180
-
181
- **BibTeX:**
182
-
183
- [More Information Needed]
184
-
185
- **APA:**
186
-
187
- [More Information Needed]
188
-
189
- ## Glossary [optional]
190
-
191
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
192
-
193
- [More Information Needed]
194
-
195
- ## More Information [optional]
196
-
197
- [More Information Needed]
198
-
199
- ## Model Card Authors [optional]
200
-
201
- [More Information Needed]
202
-
203
- ## Model Card Contact
204
-
205
- [More Information Needed]
206
- ### Framework versions
207
-
208
- - PEFT 0.17.1
 
1
+ This LoRA adapter was trained on a custom dataset of 1,000 English transcript examples to teach a Mistral-7B model how to segment long transcripts into topic-based chunks using -- as delimiters.
2
+ It enables automated topic boundary detection in conversation, meeting, and podcast transcripts — ideal for preprocessing before summarization, classification, or retrieval.
 
 
 
 
 
 
 
 
3
 
4
+ 🧩 Training Objective
5
 
6
+ The model learns to:
7
 
8
+ Detect topic changes in unstructured transcripts
9
 
10
+ Insert -- where those shifts occur
11
 
12
+ Preserve the original flow of speech
13
 
14
+ Example:
15
 
16
+ Input:
17
+ Chunk this transcript wherever a new topic begins. Use -- as a delimiter.
18
+ Transcript: Welcome everyone to the meeting. Today we'll discuss project updates and next quarter goals.
19
 
20
+ Output:
21
+ Welcome everyone to the meeting -- Today we'll discuss project updates -- and next quarter goals.
22
 
23
+ ⚙️ Training Configuration
24
 
25
+ Base Model: mistralai/Mistral-7B-v0.2
 
 
 
 
 
 
26
 
27
+ Adapter Type: LoRA
28
 
29
+ PEFT Library: peft==0.10.0
30
 
31
+ Training Framework: Hugging Face Transformers
 
 
32
 
33
+ Epochs: 2
34
 
35
+ Optimizer: AdamW
36
 
37
+ Learning Rate: 2e-4
38
 
39
+ Batch Size: 8
40
 
41
+ Sequence Length: 512
42
 
43
+ 📊 Training Metrics
44
+ Step Training Loss Validation Loss Entropy Num Tokens Mean Token Accuracy
45
+ 100 0.2961 0.1603 0.1644 204,800 0.9594
46
+ 200 0.1362 0.1502 0.1609 409,600 0.9603
47
+ 300 0.1360 0.1451 0.1391 612,864 0.9572
48
+ 400 0.0951 0.1351 0.1279 817,664 0.9635
49
+ 500 0.0947 0.1297 0.0892 1,022,464 0.9657
50
 
51
+ Summary:
52
+ Loss steadily decreased over training, and accuracy remained consistently above 95%, indicating the model effectively learned transcript reconstruction and delimiter placement patterns.
53
 
54
+ 🧰 Usage Example
55
+ from transformers import AutoTokenizer, AutoModelForCausalLM
56
+ from peft import PeftModel
57
 
58
+ base = "mistralai/Mistral-7B-v0.2"
59
+ adapter = "Dc-4nderson/transcript_summarizer_model"
60
 
61
+ tokenizer = AutoTokenizer.from_pretrained(base)
62
+ model = AutoModelForCausalLM.from_pretrained(base)
63
+ model = PeftModel.from_pretrained(model, adapter)
64
 
65
+ text = "Break this transcript wherever a new topic begins. Use -- as a delimiter.\nTranscript: Let's start with last week's performance metrics. Next, we’ll review upcoming campaign deadlines."
66
+ inputs = tokenizer(text, return_tensors="pt")
67
+ outputs = model.generate(**inputs, max_new_tokens=30000)
68
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
69
 
70
+ 🧾 License
71
 
72
+ Released under the MIT License free for research and commercial use with attribution.
73
 
74
+ 🙌 Credits
75
 
76
+ Developed by Dequan Anderson for automated transcript segmentation and chunked text preprocessing tasks.
77
+ Built using Hugging Face Transformers, PEFT, and Mistral 7B for efficient LoRA fine-tuning.