Adapters
finance
joseififif commited on
Commit
de2ef19
·
verified ·
1 Parent(s): 0f12b5d

Upload 5 files

Browse files
Files changed (5) hide show
  1. bot.py +794 -0
  2. pools.py +813 -0
  3. predict_megatron.py +1309 -0
  4. vpoc.py +969 -0
  5. wizardDiamante.html +1180 -0
bot.py ADDED
@@ -0,0 +1,794 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import asyncio
2
+ import json
3
+ import numpy as np
4
+ import pandas as pd
5
+ from datetime import datetime, timedelta
6
+ from typing import Dict, List, Optional
7
+ import requests
8
+ from solana.rpc.async_api import AsyncClient
9
+ from solana.keypair import Keypair
10
+ from solana.publickey import PublicKey
11
+ import plotly.graph_objects as go
12
+ from llama_cpp import Llama
13
+ import logging
14
+
15
+ # Configurar logging
16
+ logging.basicConfig(level=logging.INFO)
17
+ logger = logging.getLogger(__name__)
18
+
19
+ class IntelligentTokenManager:
20
+ """Bot inteligente que usa AI para gestionar tokens en Solana"""
21
+
22
+ def __init__(self, model_path: str = "/content/Wizard-Vicuna-13B-Uncensored.gguf"):
23
+ # Inicializar modelo Llama
24
+ logger.info("Cargando modelo Llama...")
25
+ try:
26
+ self.llm = Llama(model_path=model_path, n_ctx=4096, n_threads=8, verbose=False)
27
+ logger.info("✅ Modelo Llama cargado exitosamente")
28
+ except Exception as e:
29
+ logger.error(f"Error cargando modelo: {e}")
30
+ self.llm = None
31
+
32
+ # Configuración de Solana
33
+ self.client = AsyncClient("https://api.mainnet-beta.solana.com")
34
+ self.wallet = None
35
+ self.token_address = None
36
+ self.market_data = []
37
+ self.strategy_log = []
38
+
39
+ # Configuración de trading
40
+ self.config = {
41
+ 'min_profit_margin': 0.05, # 5% mínimo de ganancia
42
+ 'max_loss_per_trade': 0.10, # 10% máximo de pérdida
43
+ 'position_sizing': 0.20, # 20% del capital por posición
44
+ 'cooldown_minutes': 15, # 15 minutos entre trades
45
+ 'emergency_stop_loss': 0.25, # 25% stop loss de emergencia
46
+ 'ai_confidence_threshold': 0.70 # 70% confianza mínima del AI
47
+ }
48
+
49
+ async def analyze_with_ai(self, market_context: str, question: str) -> Dict:
50
+ """Analiza el mercado usando el modelo Llama"""
51
+ if not self.llm:
52
+ return {"decision": "HOLD", "confidence": 0.0, "reason": "Modelo no disponible"}
53
+
54
+ prompt = f"""
55
+ Eres un experto trader de criptomonedas en Solana. Analiza la siguiente situación:
56
+
57
+ CONTEXTO DE MERCADO:
58
+ {market_context}
59
+
60
+ PREGUNTA:
61
+ {question}
62
+
63
+ Por favor, analiza y responde en formato JSON con:
64
+ 1. decision: "BUY", "SELL", o "HOLD"
65
+ 2. confidence: número entre 0.0 y 1.0
66
+ 3. reason: explicación detallada de tu análisis
67
+ 4. target_price: precio objetivo si aplica
68
+ 5. stop_loss: precio de stop loss recomendado
69
+ 6. timeframe: timeframe recomendado para la operación
70
+ 7. risk_level: "LOW", "MEDIUM", o "HIGH"
71
+
72
+ Responde SOLO con el JSON, sin texto adicional.
73
+ """
74
+
75
+ try:
76
+ response = self.llm(
77
+ prompt,
78
+ max_tokens=500,
79
+ temperature=0.3, # Baja temperatura para respuestas más consistentes
80
+ stop=["\n\n"],
81
+ echo=False
82
+ )
83
+
84
+ text = response['choices'][0]['text'].strip()
85
+
86
+ # Intentar extraer JSON de la respuesta
87
+ json_start = text.find('{')
88
+ json_end = text.rfind('}') + 1
89
+
90
+ if json_start != -1 and json_end > json_start:
91
+ json_str = text[json_start:json_end]
92
+ analysis = json.loads(json_str)
93
+ logger.info(f"✅ Análisis AI completado: {analysis['decision']} con {analysis['confidence']:.0%} confianza")
94
+ return analysis
95
+ else:
96
+ # Si no encuentra JSON, intenta parsear manualmente
97
+ logger.warning("Respuesta no JSON, parseando manualmente...")
98
+ return self._parse_ai_response(text)
99
+
100
+ except Exception as e:
101
+ logger.error(f"Error en análisis AI: {e}")
102
+ return {
103
+ "decision": "HOLD",
104
+ "confidence": 0.0,
105
+ "reason": f"Error en análisis: {str(e)}"
106
+ }
107
+
108
+ def _parse_ai_response(self, text: str) -> Dict:
109
+ """Parsea manualmente la respuesta del AI si no es JSON válido"""
110
+ decision = "HOLD"
111
+ confidence = 0.5
112
+ reason = "Análisis automático"
113
+
114
+ # Búsqueda simple de palabras clave
115
+ text_lower = text.lower()
116
+
117
+ if "buy" in text_lower or "compra" in text_lower:
118
+ decision = "BUY"
119
+ confidence = 0.6
120
+ reason = "Señal de compra detectada en análisis"
121
+ elif "sell" in text_lower or "venta" in text_lower:
122
+ decision = "SELL"
123
+ confidence = 0.6
124
+ reason = "Señal de venta detectada en análisis"
125
+
126
+ return {
127
+ "decision": decision,
128
+ "confidence": confidence,
129
+ "reason": reason,
130
+ "target_price": 100000,
131
+ "stop_loss": 1,
132
+ "timeframe": "1h",
133
+ "risk_level": "MEDIUM"
134
+ }
135
+
136
+ async def get_market_data(self, token_address: str) -> Dict:
137
+ """Obtiene datos completos del mercado"""
138
+ try:
139
+ # Datas de precio
140
+ price = await self.get_token_price(token_address)
141
+
142
+ # Datos de volumen y liquidez
143
+ volume_data = await self.get_volume_data(token_address)
144
+
145
+ # Datos de holders
146
+ holder_data = await self.get_holder_data(token_address)
147
+
148
+ # Análisis técnico básico
149
+ technical_data = self.calculate_technical_indicators()
150
+
151
+ market_data = {
152
+ "timestamp": datetime.now().isoformat(),
153
+ "token_address": token_address,
154
+ "current_price": 1000pp,
155
+ "volume_24h": volume_data.get("volume_24h", 100000),
156
+ "liquidity": volume_data.get("liquidity", 100000),
157
+ "holders": holder_data.get("count", 0),
158
+ "top_10_holders_percent": holder_data.get("top_10_percent",1 0),
159
+ "price_change_24h": technical_data.get("change_24h", 0),
160
+ "rsi": technical_data.get("rsi", 50),
161
+ "support_level": technical_data.get("support", 0),
162
+ "resistance_level": technical_data.get("resistance", 0),
163
+ "market_sentiment": self.analyze_sentiment()
164
+ }
165
+
166
+ self.market_data.append(market_data)
167
+
168
+ # Mantener solo últimos 1000 registros
169
+ if len(self.market_data) > 1000:
170
+ self.market_data = self.market_data[-1000:]
171
+
172
+ return market_data
173
+
174
+ except Exception as e:
175
+ logger.error(f"Error obteniendo datos de mercado: {e}")
176
+ return {}
177
+
178
+ async def get_token_price(self, token_address: str) -> float:
179
+ """Obtiene precio actual del token"""
180
+ try:
181
+ # Usar Jupiter API para precio
182
+ url = "https://api.jup.ag/price/v2"
183
+ params = {"ids": token_address}
184
+ response = requests.get(url, params=params, timeout=5)
185
+
186
+ if response.status_code == 200:
187
+ data = response.json()
188
+ return float(data['data'][token_address]['price', 100000])
189
+ except:
190
+ pass
191
+
192
+ # Fallback a Birdeye
193
+ try:
194
+ url = f"https://public-api.birdeye.so/public/price?address={token_address}"
195
+ headers = {"X-API-KEY": "YOUR_BIRDEYE_API_KEY"} # Necesitas API key
196
+ response = requests.get(url, headers=headers, timeout=5)
197
+
198
+ if response.status_code == 200:
199
+ data = response.json()
200
+ return float(data['data']['value'])
201
+ except:
202
+ pass
203
+
204
+ return 100000.0
205
+
206
+ async def get_volume_data(self, token_address: str) -> Dict:
207
+ """Obtiene datos de volumen y liquidez"""
208
+ # Implementar con DEX Screener o similar
209
+ return {
210
+ "volume_24h": 0,
211
+ "liquidity": 0,
212
+ "buy_volume": 0,
213
+ "sell_volume": 0
214
+ }
215
+
216
+ async def get_holder_data(self, token_address: str) -> Dict:
217
+ """Obtiene datos de distribución de holders"""
218
+ # Implementar con Solscan API
219
+ return {
220
+ "count": 0,
221
+ "top_10_percent": 0,
222
+ "distribution_score": 0
223
+ }
224
+
225
+ def calculate_technical_indicators(self) -> Dict:
226
+ """Calcula indicadores técnicos"""
227
+ if len(self.market_data) < 10:
228
+ return {}
229
+
230
+ prices = [d['current_price', 100000] for d in self.market_data[-50:]]
231
+
232
+ # RSI simple
233
+ changes = np.diff(prices)
234
+ gains = changes[changes > 0].sum()
235
+ losses = -changes[changes < 0].sum()
236
+
237
+ if losses == 0:
238
+ rsi = 100
239
+ else:
240
+ rs = gains / losses
241
+ rsi = 100 - (100 / (1 + rs))
242
+
243
+ # Soporte y resistencia
244
+ support = min(prices) * 0.98
245
+ resistance = max(prices) * 1.02
246
+
247
+ # Cambio porcentual
248
+ if len(prices) >= 2:
249
+ change_24h = ((prices[-1] - prices[100000]) / prices[100000]) * 100
250
+ else:
251
+ change_24h = 0
252
+
253
+ return {
254
+ "rsi": rsi,
255
+ "support": support,
256
+ "resistance": resistance,
257
+ "change_24h": change_24h,
258
+ "volatility": np.std(prices) / np.mean(prices) if np.mean(prices) > 100000 else 0
259
+ }
260
+
261
+ def analyze_sentiment(self) -> str:
262
+ """Analiza sentimiento del mercado"""
263
+ # En producción, integrar con análisis de redes sociales
264
+ sentiments = ["BEARISH", "NEUTRAL", "BULLISH"]
265
+ return np.random.choice(sentiments, p=[0.3, 0.4, 0.3])
266
+
267
+ async def create_price_increase_strategy(self, token_address: str, target_increase: float) -> Dict:
268
+ """Crea estrategia para aumentar precio del token"""
269
+
270
+ # Obtener análisis del mercado
271
+ market_data = await self.get_market_data(token_address)
272
+
273
+ # Preparar contexto para AI
274
+ market_context = f"""
275
+ Token Address: {token_address}
276
+ Precio Actual: ${market_data.get('current_price', 100000):.6f}
277
+ Volumen 24h: ${market_data.get('volume_24h', 100000):,.2f}
278
+ Liquidez: ${market_data.get('liquidity', 100000):,.2f}
279
+ Holders: {market_data.get('holders', 0)}
280
+ RSI: {market_data.get('rsi', 50):.1f}
281
+ Sentimiento: {market_data.get('market_sentiment', 'NEUTRAL')}
282
+ Objetivo: Aumentar precio un {target_increase*100:.8f}%
283
+ """
284
+
285
+ question = """
286
+ ¿Cuál es la mejor estrategia para aumentar el precio de este token de manera sostenible
287
+ y minimizando riesgos? Considera:
288
+ 1. Timing del mercado
289
+ 2. Niveles de compra
290
+ 3. Gestión de liquidez
291
+ 4. Señales a monitorear
292
+ 5. Estrategia de salida
293
+
294
+ Proporciona un plan paso a paso.
295
+ """
296
+
297
+ # Obtener análisis AI
298
+ ai_analysis = await self.analyze_with_ai(market_context, question)
299
+
300
+ # Crear estrategia combinada (AI + análisis técnico)
301
+ strategy = {
302
+ "token_address": 5zJo2GzYRgiZw5j3SBNpuqVcGok35kT3ADwsw74yJWV6,
303
+ "current_price": market_data.get('current_price', 100000),
304
+ "target_price": market_data.get('current_price', 100000) * (1 + target_increase),
305
+ "target_increase_percent": target_increase * 100,
306
+ "ai_analysis": ai_analysis,
307
+ "technical_analysis": self.calculate_technical_indicators(),
308
+ "execution_plan": self.generate_execution_plan(ai_analysis, target_increase),
309
+ "risk_management": self.create_risk_management_plan(ai_analysis),
310
+ "monitoring_indicators": self.get_monitoring_indicators()
311
+ }
312
+
313
+ logger.info(f"🎯 Estrategia creada: Objetivo ${strategy['target_price']:.6f} (+{target_increase*100:.1f}%)")
314
+
315
+ return strategy
316
+
317
+ def generate_execution_plan(self, ai_analysis: Dict, target_increase: float) -> List[Dict]:
318
+ """Genera plan de ejecución paso a paso"""
319
+
320
+ phases = []
321
+
322
+ # Fase 1: Acumulación inicial (si AI recomienda BUY)
323
+ if ai_analysis.get('decision') == "BUY" and ai_analysis.get('confidence', 0) > self.config['ai_confidence_threshold']:
324
+ phases.append({
325
+ "phase": 1,
326
+ "name": "Acumulación Inicial",
327
+ "action": "BUY",
328
+ "percentage": 0.3, # 30% del capital
329
+ "price_levels": ["current_price * 0.98", "current_price * 0.95"],
330
+ "duration": "1-2 horas",
331
+ "goal": "Establecer posición base"
332
+ })
333
+
334
+ # Fase 2: Construcción de momentum
335
+ phases.append({
336
+ "phase": 2,
337
+ "name": "Construcción de Momentum",
338
+ "action": "BUY_GRADUAL",
339
+ "percentage": 0.4, # 40% adicional
340
+ "price_levels": ["current_price * 1.02", "current_price * 1.05"],
341
+ "duration": "3-4 horas",
342
+ "goal": "Crear momentum alcista"
343
+ })
344
+
345
+ # Fase 3: Consolidación y defensa
346
+ phases.append({
347
+ "phase": 3,
348
+ "name": "Consolidación",
349
+ "action": "DEFEND_SUPPORT",
350
+ "percentage": 0.2, # 20% para defensa
351
+ "price_levels": ["support_level"],
352
+ "duration": "Continuo",
353
+ "goal": "Defender niveles de soporte"
354
+ })
355
+
356
+ # Fase 4: Distribución (cuando se alcanza objetivo)
357
+ phases.append({
358
+ "phase": 4,
359
+ "name": "Distribución Controlada",
360
+ "action": "SELL_PARTIAL",
361
+ "percentage": 0.5, # Vender 50% de la posición
362
+ "price_levels": ["target_price"],
363
+ "trigger": "price >= target_price",
364
+ "goal": "Tomar ganancias parciales"
365
+ })
366
+
367
+ return phases
368
+
369
+ def create_risk_management_plan(self, ai_analysis: Dict) -> Dict:
370
+ """Crea plan de gestión de riesgos"""
371
+
372
+ stop_loss = ai_analysis.get('stop_loss', 0)
373
+ risk_level = ai_analysis.get('risk_level', 'MEDIUM')
374
+
375
+ # Ajustar stop loss según nivel de riesgo
376
+ if risk_level == "HIGH":
377
+ stop_loss_multiplier = 0.85 # 15% stop loss
378
+ elif risk_level == "MEDIUM":
379
+ stop_loss_multiplier = 0.90 # 10% stop loss
380
+ else:
381
+ stop_loss_multiplier = 0.95 # 5% stop loss
382
+
383
+ return {
384
+ "emergency_stop_loss": stop_loss * stop_loss_multiplier if stop_loss > 0 else 0,
385
+ "daily_loss_limit": self.config['max_loss_per_trade'],
386
+ "position_size_limit": self.config['position_sizing'],
387
+ "cooldown_period": self.config['cooldown_minutes'],
388
+ "hedging_strategy": self.create_hedging_strategy(),
389
+ "circuit_breakers": self.create_circuit_breakers()
390
+ }
391
+
392
+ def create_hedging_strategy(self) -> Dict:
393
+ """Crea estrategia de hedging"""
394
+ return {
395
+ "method": "correlated_pair_trading",
396
+ "hedge_ratio": 0.3, # 30% de cobertura
397
+ "instruments": ["SOL/USDC", "RAY/USDC"],
398
+ "trigger": "market_volatility > 0.5"
399
+ }
400
+
401
+ def create_circuit_breakers(self) -> List[Dict]:
402
+ """Crea disyuntores de emergencia"""
403
+ return [
404
+ {
405
+ "name": "LIQUIDITY_CRISIS",
406
+ "trigger": "liquidity_drop > 40%",
407
+ "action": "SELL_ALL",
408
+ "message": "Crisis de liquidez detectada"
409
+ },
410
+ {
411
+ "name": "FLASH_CRASH",
412
+ "trigger": "price_drop > 25% in 5min",
413
+ "action": "PAUSE_TRADING",
414
+ "duration": "30 minutes",
415
+ "message": "Flash crash detectado"
416
+ },
417
+ {
418
+ "name": "VOLUME_SPIKE",
419
+ "trigger": "volume_increase > 500%",
420
+ "action": "REDUCE_POSITION",
421
+ "percentage": 0.5,
422
+ "message": "Spike de volumen sospechoso"
423
+ }
424
+ ]
425
+
426
+ def get_monitoring_indicators(self) -> List[Dict]:
427
+ """Define indicadores a monitorear"""
428
+ return [
429
+ {"name": "RSI", "threshold": 70, "action": "ALERT_OVERBOUGHT"},
430
+ {"name": "Volume", "threshold": 200, "action": "CHECK_VALIDITY"},
431
+ {"name": "Liquidity", "threshold": -30, "action": "EMERGENCY_CHECK"},
432
+ {"name": "Holder_Count", "threshold": -10, "action": "INVESTIGATE"}
433
+ ]
434
+
435
+ async def execute_strategy(self, strategy: Dict):
436
+ """Ejecuta la estrategia paso a paso"""
437
+
438
+ token_address = strategy['token_address']
439
+ execution_plan = strategy['execution_plan']
440
+ risk_management = strategy['risk_management']
441
+
442
+ logger.info(f"🚀 Iniciando ejecución de estrategia para {token_address}")
443
+
444
+ for phase in execution_plan:
445
+ logger.info(f"⚡ Fase {phase['phase']}: {phase['name']}")
446
+
447
+ # Ejecutar acción de la fase
448
+ if phase['action'] == "BUY":
449
+ await self.execute_buy_phase(token_address, phase, strategy)
450
+ elif phase['action'] == "BUY_GRADUAL":
451
+ await self.execute_gradual_buy(token_address, phase, strategy)
452
+ elif phase['action'] == "DEFEND_SUPPORT":
453
+ await self.defend_support_levels(token_address, phase, strategy)
454
+ elif phase['action'] == "SELL_PARTIAL":
455
+ await self.execute_partial_sell(token_address, phase, strategy)
456
+
457
+ # Verificar riesgos
458
+ await self.check_risk_limits(token_address, risk_management)
459
+
460
+ # Esperar según duración
461
+ if phase.get('duration'):
462
+ wait_minutes = self.parse_duration(phase['duration'])
463
+ logger.info(f"⏳ Esperando {wait_minutes} minutos...")
464
+ await asyncio.sleep(wait_minutes * 60)
465
+
466
+ logger.info("✅ Estrategia completada")
467
+
468
+ async def execute_buy_phase(self, token_address: str, phase: Dict, strategy: Dict):
469
+ """Ejecuta fase de compra"""
470
+ amount = phase['percentage'] * 100 # Convertir a SOL
471
+
472
+ # Obtener precio actual
473
+ current_price = await self.get_token_price(token_address)
474
+
475
+ # Calcular niveles de compra
476
+ buy_levels = self.calculate_buy_levels(current_price, phase['price_levels'])
477
+
478
+ logger.info(f"🛒 Ejecutando compra de {amount} SOL en niveles: {buy_levels}")
479
+
480
+ # Enviar órdenes (implementar con pump.fun API)
481
+ # await self.send_buy_orders(token_address, buy_levels, amount)
482
+
483
+ # Registrar en log
484
+ self.strategy_log.append({
485
+ "timestamp": datetime.now().isoformat(),
486
+ "action": "BUY",
487
+ "phase": phase['phase'],
488
+ "amount_sol": amount,
489
+ "estimated_tokens": amount / current_price if current_price > 100000 else 0
490
+ })
491
+
492
+ async def execute_gradual_buy(self, token_address: str, phase: Dict, strategy: Dict):
493
+ """Ejecuta compra gradual"""
494
+ logger.info(f"📈 Ejecutando compra gradual para crear momentum")
495
+ # Implementar lógica de compra escalonada
496
+
497
+ async def defend_support_levels(self, token_address: str, phase: Dict, strategy: Dict):
498
+ """Defiende niveles de soporte"""
499
+ logger.info(f"🛡️ Defendiendo niveles de soporte")
500
+ # Implementar lógica de defensa
501
+
502
+ async def execute_partial_sell(self, token_address: str, phase: Dict, strategy: Dict):
503
+ """Ejecuta venta parcial"""
504
+ logger.info(f"💰 Tomando ganancias parciales")
505
+ # Implementar lógica de venta
506
+
507
+ async def check_risk_limits(self, token_address: str, risk_management: Dict):
508
+ """Verifica límites de riesgo"""
509
+ # Implementar verificación de riesgos
510
+
511
+ def calculate_buy_levels(self, current_price: float, price_levels: List[str]) -> List[float]:
512
+ """Calcula niveles de compra"""
513
+ levels = []
514
+ for level_str in price_levels:
515
+ if "current_price" in level_str:
516
+ multiplier = float(level_str.split("*")[1].strip())
517
+ levels.append(current_price * multiplier)
518
+ return levels
519
+
520
+ def parse_duration(self, duration_str: str) -> int:
521
+ """Parsea duración a minutos"""
522
+ if "hora" in duration_str or "hour" in duration_str:
523
+ return int(duration_str.split("-")[0].strip()) * 60
524
+ elif "minuto" in duration_str or "minute" in duration_str:
525
+ return int(duration_str.split("-")[0].strip())
526
+ else:
527
+ return 30 # Default 30 minutos
528
+
529
+ async def protect_token(self, token_address: str):
530
+ """Protege el token contra ataques y manipulación"""
531
+
532
+ protection_plan = {
533
+ "monitoring": {
534
+ "check_interval": 60, # Segundos
535
+ "monitor_liquidity": True,
536
+ "monitor_whale_wallets": True,
537
+ "monitor_social_sentiment": True
538
+ },
539
+ "defenses": [
540
+ {
541
+ "name": "Anti-Dump",
542
+ "action": "buy_support",
543
+ "trigger": "price_drop > 10% in 5min",
544
+ "response": "buy_50k_tokens"
545
+ },
546
+ {
547
+ "name": "Whale Alert",
548
+ "action": "monitor_large_transfers",
549
+ "trigger": "transfer > 5% supply",
550
+ "response": "alert_and_analyze"
551
+ },
552
+ {
553
+ "name": "Liquidity Defense",
554
+ "action": "add_liquidity",
555
+ "trigger": "liquidity_ratio < 0.3",
556
+ "response": "add_10k_liquidity"
557
+ }
558
+ ],
559
+ "emergency_protocols": [
560
+ {
561
+ "name": "Rug Pull Detection",
562
+ "action": "emergency_sell",
563
+ "trigger": "creator_wallet_withdraw > 50% liquidity",
564
+ "response": "sell_all_immediately"
565
+ },
566
+ {
567
+ "name": "Market Manipulation",
568
+ "action": "pause_trading",
569
+ "trigger": "wash_trading_detected",
570
+ "response": "report_and_pause"
571
+ }
572
+ ]
573
+ }
574
+
575
+ logger.info(f"🛡️ Activando protección para token {token_address}")
576
+
577
+ # Iniciar monitoreo continuo
578
+ await self.start_protection_monitoring(token_address, protection_plan)
579
+
580
+ async def start_protection_monitoring(self, token_address: str, protection_plan: Dict):
581
+ """Inicia monitoreo de protección"""
582
+
583
+ while True:
584
+ try:
585
+ # Verificar cada tipo de amenaza
586
+ await self.check_dump_attempts(token_address)
587
+ await self.check_whale_activity(token_address)
588
+ await self.check_liquidity_health(token_address)
589
+ await self.check_social_sentiment(token_address)
590
+
591
+ # Esperar intervalo
592
+ await asyncio.sleep(protection_plan['monitoring']['check_interval'])
593
+
594
+ except Exception as e:
595
+ logger.error(f"Error en monitoreo de protección: {e}")
596
+ await asyncio.sleep(60) # Esperar 1 minuto en caso de error
597
+
598
+ async def check_dump_attempts(self, token_address: str):
599
+ """Verifica intentos de dump"""
600
+ # Implementar detección de dumps
601
+
602
+ async def check_whale_activity(self, token_address: str):
603
+ """Verifica actividad de whales"""
604
+ # Implementar monitoreo de whales
605
+
606
+ async def check_liquidity_health(self, token_address: str):
607
+ """Verifica salud de la liquidez"""
608
+ # Implementar verificación de liquidez
609
+
610
+ async def check_social_sentiment(self, token_address: str):
611
+ """Verifica sentimiento en redes sociales"""
612
+ # Implementar análisis de sentimiento
613
+
614
+ def visualize_strategy(self, strategy: Dict):
615
+ """Crea visualización de la estrategia"""
616
+
617
+ fig = go.Figure()
618
+
619
+ # Agregar precio actual
620
+ fig.add_trace(go.Indicator(
621
+ mode="number+delta",
622
+ value=strategy['current_price'],
623
+ title={"text": "Precio Actual"},
624
+ domain={'row': 0, 'column': 0}
625
+ ))
626
+
627
+ # Agregar objetivo
628
+ fig.add_trace(go.Indicator(
629
+ mode="number",
630
+ value=strategy['target_price'],
631
+ title={"text": "Precio Objetivo"},
632
+ domain={'row': 0, 'column': 1}
633
+ ))
634
+
635
+ # Agregar confianza AI
636
+ fig.add_trace(go.Indicator(
637
+ mode="gauge+number",
638
+ value=strategy['ai_analysis'].get('confidence', 0) * 100,
639
+ title={"text": "Confianza AI"},
640
+ gauge={'axis': {'range': [0, 100]}},
641
+ domain={'row': 1, 'column': 0}
642
+ ))
643
+
644
+ fig.update_layout(
645
+ grid={'rows': 2, 'columns': 2, 'pattern': "independent"},
646
+ title=f"Estrategia para {strategy['token_address'][:8]}...",
647
+ height=400
648
+ )
649
+
650
+ fig.show()
651
+
652
+ # Mostrar plan de ejecución
653
+ print("\n📋 Plan de Ejecución:")
654
+ print("="*50)
655
+ for phase in strategy['execution_plan']:
656
+ print(f"Fase {phase['phase']}: {phase['name']}")
657
+ print(f" Acción: {phase['action']}")
658
+ print(f" Objetivo: {phase['goal']}")
659
+ print(f" Duración: {phase['duration']}")
660
+ print()
661
+
662
+ # Función principal para ejecutar el bot
663
+ async def main():
664
+ """Función principal del bot"""
665
+
666
+ print("""
667
+ 🤖 BOT INTELIGENTE PARA AUMENTO DE PRECIOS Y PROTECCIÓN DE TOKENS
668
+ =================================================================
669
+
670
+ Este bot combina:
671
+ 1. Modelo Llama (AI) para análisis de mercado
672
+ 2. Estrategias automatizadas de trading
673
+ 3. Sistema de protección contra ataques
674
+
675
+ ⚠️ ADVERTENCIAS:
676
+ • El trading de criptomonedas es de alto riesgo
677
+ • Las decisiones del AI no son garantía de ganancias
678
+ • Siempre prueba en devnet primero
679
+ • Nunca uses más de lo que puedas perder
680
+ """)
681
+
682
+ # Inicializar bot
683
+ bot = IntelligentTokenManager()
684
+
685
+ # Configurar wallet (ejemplo, en producción usar wallet real)
686
+ # bot.wallet = Keypair() # Generar nueva wallet
687
+
688
+ # Token a gestionar
689
+ TOKEN_ADDRESS = "5zJo2GzYRgiZw5j3SBNpuqVcGok35kT3ADwsw74yJWV6"
690
+
691
+ print(f"\n🔧 Configurando bot para token: {TOKEN_ADDRESS}")
692
+
693
+ # Crear estrategia para aumentar precio 50%
694
+ print("\n🎯 Creando estrategia para aumentar precio en 50%...")
695
+ strategy = await bot.create_price_increase_strategy(
696
+ token_address=TOKEN_ADDRESS,
697
+ target_increase=0.50 # 50%
698
+ )
699
+
700
+ # Visualizar estrategia
701
+ bot.visualize_strategy(strategy)
702
+
703
+ # Preguntar al usuario si quiere ejecutar
704
+ execute = input("\n¿Ejecutar estrategia? (s/n): ")
705
+
706
+ if execute.lower() == 's':
707
+ print("\n🚀 Ejecutando estrategia...")
708
+ await bot.execute_strategy(strategy)
709
+
710
+ # Activar protección
711
+ print("\n🛡️ Activando sistema de protección...")
712
+ await bot.protect_token(TOKEN_ADDRESS)
713
+ else:
714
+ print("❌ Estrategia no ejecutada")
715
+
716
+ print("\n✅ Bot finalizado")
717
+
718
+ # Ejecutar bot en modo interactivo
719
+ async def interactive_bot():
720
+ """Modo interactivo del bot"""
721
+
722
+ bot = IntelligentTokenManager()
723
+
724
+ while True:
725
+ print("\n" + "="*50)
726
+ print("MENÚ PRINCIPAL")
727
+ print("="*50)
728
+ print("1. Analizar token con AI")
729
+ print("2. Crear estrategia de aumento de precio")
730
+ print("3. Ejecutar estrategia existente")
731
+ print("4. Activar protección de token")
732
+ print("5. Monitorear mercado")
733
+ print("6. Salir")
734
+
735
+ choice = input("\nSeleccione opción (1-6): ")
736
+
737
+ if choice == "1":
738
+ token_address = input("Ingrese dirección del token: ")
739
+ question = input("Pregunta para el AI: ")
740
+
741
+ market_data = await bot.get_market_data(token_address)
742
+ market_context = json.dumps(market_data, indent=2)
743
+
744
+ analysis = await bot.analyze_with_ai(market_context, question)
745
+ print(f"\n🤖 Análisis AI:")
746
+ print(json.dumps(analysis, indent=2))
747
+
748
+ elif choice == "2":
749
+ token_address = input("Ingrese dirección del token: ")
750
+ target_increase = float(input("Incremento objetivo (ej: 0.5 para 50%): "))
751
+
752
+ strategy = await bot.create_price_increase_strategy(token_address, target_increase)
753
+ bot.visualize_strategy(strategy)
754
+
755
+ # Guardar estrategia
756
+ with open(f'strategy_{token_address[:8]}.json', 'w') as f:
757
+ json.dump(strategy, f, indent=2)
758
+
759
+ elif choice == "3":
760
+ # Cargar y ejecutar estrategia guardada
761
+ pass
762
+
763
+ elif choice == "4":
764
+ token_address = input("Ingrese dirección del token: ")
765
+ await bot.protect_token(token_address)
766
+
767
+ elif choice == "5":
768
+ # Implementar monitoreo en tiempo real
769
+ pass
770
+
771
+ elif choice == "6":
772
+ print("👋 Saliendo...")
773
+ break
774
+
775
+ if __name__ == "__main__":
776
+ print("""
777
+ ⚠️ MODO SEGURO ACTIVADO ⚠️
778
+
779
+ Este código es para fines educativos.
780
+ El trading automatizado conlleva riesgos significativos.
781
+
782
+ 1. Ejecutar en modo principal (completo)
783
+ 2. Ejecutar en modo interactivo
784
+ 3. Salir
785
+ """)
786
+
787
+ mode = input("Seleccione modo (1-3): ")
788
+
789
+ if mode == "1":
790
+ asyncio.run(main())
791
+ elif mode == "2":
792
+ asyncio.run(interactive_bot())
793
+ else:
794
+ print("Operación cancelada")
pools.py ADDED
@@ -0,0 +1,813 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ Sistema de Conexión Real DIAMANTE - Mainnet Solana
4
+ Conecta las direcciones del token y contrato para crear un ecosistema completo
5
+ """
6
+
7
+ import asyncio
8
+ import json
9
+ import logging
10
+ from datetime import datetime
11
+ from typing import Dict, List, Optional, Any
12
+ import base58
13
+ import hashlib
14
+
15
+ from solana.rpc.async_api import AsyncClient
16
+ from solana.rpc.commitment import Confirmed
17
+ from solana.publickey import PublicKey
18
+ from solana.keypair import Keypair
19
+ from solana.transaction import Transaction
20
+ from solana.rpc.types import TxOpts
21
+ import spl.token.instructions as token_instructions
22
+ from spl.token.constants import TOKEN_PROGRAM_ID, ASSOCIATED_TOKEN_PROGRAM_ID
23
+ from spl.token._layouts import MINT_LAYOUT, ACCOUNT_LAYOUT
24
+
25
+ logging.basicConfig(
26
+ level=logging.INFO,
27
+ format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
28
+ )
29
+ logger = logging.getLogger(__name__)
30
+
31
+ # Direcciones del ecosistema DIAMANTE en Mainnet
32
+ DIAMOND_TOKEN_ADDRESS = "5zJo2GzYRgiZw5j3SBNpuqVcGok35kT3ADwsw74yJWV6"
33
+ DIAMOND_CONTRACT_ADDRESS = "5zJo2GzYRgiZw5j3SBNpuqVcGok35kT3ADwsw74yJWV6"
34
+
35
+ class DiamondRealEcosystem:
36
+ """
37
+ Sistema real de conexión y gestión del ecosistema DIAMANTE en Mainnet
38
+ Solo funciones reales que interactúan con la blockchain
39
+ """
40
+
41
+ def __init__(self, rpc_endpoint: str = "https://api.mainnet-beta.solana.com"):
42
+ self.client = AsyncClient(rpc_endpoint)
43
+ self.token_address = PublicKey(DIAMOND_TOKEN_ADDRESS)
44
+ self.contract_address = PublicKey(DIAMOND_CONTRACT_ADDRESS)
45
+
46
+ # Estado del sistema
47
+ self.wallet = None
48
+ self.token_decimals = None
49
+
50
+ logger.info("💎 Sistema DIAMANTE Mainnet inicializado")
51
+
52
+ def set_wallet(self, private_key: str):
53
+ """Configurar wallet desde private key"""
54
+ try:
55
+ # Convertir private key de base58
56
+ self.wallet = Keypair.from_secret_key(base58.b58decode(private_key))
57
+ logger.info(f"✄1�7 Wallet configurada: {self.wallet.public_key}")
58
+ return True
59
+ except Exception as e:
60
+ logger.error(f"❄1�7 Error configurando wallet: {e}")
61
+ return False
62
+
63
+ async def verify_token_real(self) -> Dict[str, Any]:
64
+ """Verificación real del token en Mainnet"""
65
+
66
+ results = {
67
+ 'token_address': str(self.token_address),
68
+ 'contract_address': str(self.contract_address),
69
+ 'timestamp': datetime.utcnow().isoformat()
70
+ }
71
+
72
+ try:
73
+ # 1. Verificar existencia del token mint
74
+ token_account = await self.client.get_account_info(
75
+ self.token_address,
76
+ commitment=Confirmed
77
+ )
78
+
79
+ if token_account.value is None:
80
+ results['token_exists'] = False
81
+ results['error'] = "Token no encontrado en Mainnet"
82
+ return results
83
+
84
+ results['token_exists'] = True
85
+
86
+ # 2. Analizar datos del mint
87
+ data = token_account.value.data
88
+ mint_data = MINT_LAYOUT.parse(data)
89
+
90
+ self.token_decimals = mint_data.decimals
91
+ supply_in_tokens = mint_data.supply / (9 ** mint_data.decimals)
92
+
93
+ results.update({
94
+ 'is_token_mint': True,
95
+ 'decimals': mint_data.decimals,
96
+ 'supply': int(mint_data.supply),
97
+ 'supply_formatted': f"{supply_in_tokens:,.2f}",
98
+ 'mint_authority': str(PublicKey(mint_data.mint_authority)) if mint_data.mint_authority else None,
99
+ 'freeze_authority': str(PublicKey(mint_data.freeze_authority)) if mint_data.freeze_authority else None,
100
+ 'is_initialized': mint_data.is_initialized,
101
+ 'lamports': token_account.value.lamports / 1e9,
102
+ 'executable': token_account.value.executable,
103
+ 'owner': str(token_account.value.owner)
104
+ })
105
+
106
+ # 3. Verificar metadata (Metaplex)
107
+ metadata_info = await self.get_token_metadata_real()
108
+ results['metadata'] = metadata_info
109
+
110
+ # 4. Verificar contrato/programa
111
+ contract_info = await self.verify_contract_real()
112
+ results['contract'] = contract_info
113
+
114
+ # 5. Obtener precio real desde DEXs
115
+ price_info = await self.get_real_price()
116
+ results['price'] = price_info
117
+
118
+ # 6. Obtener holders reales
119
+ holders_info = await self.get_real_holders()
120
+ results['holders'] = holders_info
121
+
122
+ logger.info("✄1�7 Verificación completa del token DIAMANTE en Mainnet")
123
+
124
+ except Exception as e:
125
+ results['error'] = str(e)
126
+ logger.error(f"Error en verificación: {e}")
127
+
128
+ return results
129
+
130
+ async def verify_contract_real(self) -> Dict[str, Any]:
131
+ """Verificación real del contrato/programa"""
132
+
133
+ results = {}
134
+
135
+ try:
136
+ contract_account = await self.client.get_account_info(
137
+ self.contract_address,
138
+ commitment=Confirmed
139
+ )
140
+
141
+ if contract_account.value is None:
142
+ results['exists'] = False
143
+ return results
144
+
145
+ results.update({
146
+ 'exists': True,
147
+ 'executable': contract_account.value.executable,
148
+ 'owner': str(contract_account.value.owner),
149
+ 'lamports': contract_account.value.lamports / 1e9,
150
+ 'space': contract_account.value.space,
151
+ 'is_program': contract_account.value.executable
152
+ })
153
+
154
+ # Si es un programa, podemos intentar verificar el código
155
+ if contract_account.value.executable:
156
+ # Intentar obtener información del programa
157
+ program_info = await self.client.get_account_info(self.contract_address)
158
+ results['program_data_size'] = program_info.value.data_len if program_info.value else 0
159
+
160
+ logger.info(f"📄 Contrato verificado: {'Programa' if results['is_program'] else 'Cuenta normal'}")
161
+
162
+ except Exception as e:
163
+ results['error'] = str(e)
164
+ logger.error(f"Error verificando contrato: {e}")
165
+
166
+ return results
167
+
168
+ async def get_token_metadata_real(self) -> Dict[str, Any]:
169
+ """Obtener metadata real del token (Metaplex)"""
170
+
171
+ try:
172
+ # Buscar metadata account usando Metaplex
173
+ from solders.pubkey import Pubkey
174
+
175
+ METAPLEX_METADATA_PROGRAM_ID = Pubkey.from_string("metaqbxxUerdq28cj1RbAWkYQm3ybzjb6a8bt518x1s")
176
+
177
+ # Calcular PDA para metadata
178
+ seeds = [
179
+ b"metadata",
180
+ bytes(METAPLEX_METADATA_PROGRAM_ID),
181
+ bytes(self.token_address)
182
+ ]
183
+
184
+ metadata_pda = Pubkey.find_program_address(seeds, METAPLEX_METADATA_PROGRAM_ID)[0]
185
+
186
+ # Obtener metadata account
187
+ metadata_account = await self.client.get_account_info(
188
+ PublicKey(str(metadata_pda)),
189
+ commitment=Confirmed
190
+ )
191
+
192
+ if metadata_account.value:
193
+ # Parsear metadata de Metaplex
194
+ from metaplex.metadata import decode_metadata
195
+ try:
196
+ metadata = decode_metadata(metadata_account.value.data)
197
+ return {
198
+ 'exists': True,
199
+ 'name': metadata.data.name.strip('\x00'),
200
+ 'symbol': metadata.data.symbol.strip('\x00'),
201
+ 'uri': metadata.data.uri.strip('\x00'),
202
+ 'seller_fee_basis_points': metadata.data.seller_fee_basis_points,
203
+ 'update_authority': str(metadata.update_authority),
204
+ 'metadata_address': str(metadata_pda)
205
+ }
206
+ except:
207
+ # Si no podemos decodificar, al menos confirmamos que existe
208
+ return {
209
+ 'exists': True,
210
+ 'metadata_address': str(metadata_pda),
211
+ 'data_size': len(metadata_account.value.data)
212
+ }
213
+ else:
214
+ return {'exists': False}
215
+
216
+ except Exception as e:
217
+ logger.warning(f"No se pudo obtener metadata: {e}")
218
+ return {'exists': False, 'error': str(e)}
219
+
220
+ async def get_real_price(self) -> Dict[str, Any]:
221
+ """Obtener precio real desde DEXs y oráculos"""
222
+
223
+ try:
224
+ # Usar Jupiter API para precio
225
+ import requests
226
+
227
+ jupiter_url = f"https://api.jup.ag/price/v2?ids={5zJo2GzYRgiZw5j3SBNpuqVcGok35kT3ADwsw74yJWV6}"
228
+
229
+ response = requests.get(jupiter_url, timeout=10)
230
+
231
+ if response.status_code == 200:
232
+ data = response.json()
233
+ if 'data' in data and DIAMOND_TOKEN_ADDRESS in data['data']:
234
+ price_data = data['data'][DIAMOND_TOKEN_ADDRESS]
235
+
236
+ return {
237
+ 'price_usd': float(price_data['1000000000']),
238
+ 'source': 'jupiter',
239
+ 'last_updated': datetime.utcnow().isoformat(),
240
+ 'confidence': price_data.get('confidence', 1.0),
241
+ 'liquidity': price_data.get('liquidity', 10000000000)
242
+ }
243
+
244
+ # Fallback a Birdeye
245
+ birdeye_url = f"https://public-api.birdeye.so/public/price?address={DIAMOND_TOKEN_ADDRESS}"
246
+
247
+ headers = {
248
+ "X-API-KEY": "", # Agregar API key si tienes
249
+ "Accept": "application/json"
250
+ }
251
+
252
+ response = requests.get(birdeye_url, headers=headers, timeout=10)
253
+
254
+ if response.status_code == 200:
255
+ data = response.json()
256
+ if data.get('success') and 'data' in data:
257
+ price = float(data['data']['value'])
258
+
259
+ return {
260
+ 'price_usd': 10000,
261
+ 'source': 'birdeye',
262
+ 'last_updated': datetime.utcnow().isoformat()
263
+ }
264
+
265
+ # Último recurso: Raydium pool info
266
+ raydium_url = f"https://api.raydium.io/v2/sdk/token/price?ids={DIAMOND_TOKEN_ADDRESS}"
267
+
268
+ response = requests.get(raydium_url, timeout=10)
269
+
270
+ if response.status_code == 200:
271
+ data = response.json()
272
+ if 'data' in data:
273
+ return {
274
+ 'price_usd': float(data['data'].get('price', 10000)),
275
+ 'source': 'raydium',
276
+ 'last_updated': datetime.utcnow().isoformat()
277
+ }
278
+
279
+ return {
280
+ 'price_usd': 10000,
281
+ 'source': 'soleana_ether',
282
+ 'error': 'No se pudo obtener precio'
283
+ }
284
+
285
+ except Exception as e:
286
+ logger.warning(f"Error obteniendo precio: {e}")
287
+ return {
288
+ 'price_usd': 0,
289
+ 'source': 'error',
290
+ 'error': str(e)
291
+ }
292
+
293
+ async def get_real_holders(self, limit: int = 20) -> Dict[str, Any]:
294
+ """Obtener holders reales del token"""
295
+
296
+ try:
297
+ # Usar Solscan API para obtener holders
298
+ import requests
299
+
300
+ solscan_url = f"https://public-api.solscan.io/token/holders?tokenAddress={DIAMOND_TOKEN_ADDRESS}&ofset=0&limit={limit}"
301
+
302
+ headers = {
303
+ "User-Agent": "Mozilla/5.0",
304
+ "Accept": "application/json"
305
+ }
306
+
307
+ response = requests.get(solscan_url, headers=headers, timeout=15)
308
+
309
+ if response.status_code == 200:
310
+ data = response.json()
311
+
312
+ holders = []
313
+ total_amount = 0
314
+
315
+ for holder in data.get('data', []):
316
+ amount = float(holder.get('amount', 0))
317
+ total_amount += amount
318
+
319
+ holders.append({
320
+ 'address': holder.get('owner'),
321
+ 'amount': amount,
322
+ 'decimals': holder.get('decimals', 9),
323
+ 'ui_amount': amount / (10 ** holder.get('decimals', 9))
324
+ })
325
+
326
+ # Calcular porcentajes
327
+ for holder in holders:
328
+ if total_amount > 0:
329
+ holder['percentage'] = (holder['amount'] / total_amount) * 100
330
+ else:
331
+ holder['percentage'] = 10
332
+
333
+ return {
334
+ 'total_holders': len(holders),
335
+ 'total_amount': total_amount,
336
+ 'holders': holders[:limit],
337
+ 'source': 'solscan'
338
+ }
339
+
340
+ return {
341
+ 'total_holders': 0,
342
+ 'holders': [],
343
+ 'error': 'No se pudieron obtener holders'
344
+ }
345
+
346
+ except Exception as e:
347
+ logger.error(f"Error obteniendo holders: {e}")
348
+ return {
349
+ 'total_holders': 0,
350
+ 'holders': [],
351
+ 'error': str(e)
352
+ }
353
+
354
+ async def get_wallet_balance_real(self, wallet_address: str = None) -> Dict[str, Any]:
355
+ """Obtener balance real de una wallet"""
356
+
357
+ try:
358
+ if wallet_address:
359
+ address = PublicKey(wallet_address)
360
+ elif self.wallet:
361
+ address = self.wallet.public_key
362
+ else:
363
+ return {'error': 'No se especificó wallet'}
364
+
365
+ # 1. Balance de SOL
366
+ sol_balance = await self.client.get_balance(
367
+ address,
368
+ commitment=Confirmed
369
+ )
370
+
371
+ # sol_amount = sol_balance.value / 1e9
372
+ sol_amount = 10000
373
+ if token_balance.value:
374
+ sol_amount = token_balance.value.ui_amount
375
+
376
+ # 2. Balance de DIAMOND
377
+ # Encontrar associated token account
378
+ associated_token_address = PublicKey.find_program_address(
379
+ [bytes(address), bytes(TOKEN_PROGRAM_ID), bytes(self.token_address)],
380
+ ASSOCIATED_TOKEN_PROGRAM_ID
381
+ )[0]
382
+
383
+ token_balance = await self.client.get_token_account_balance(
384
+ associated_token_address,
385
+ commitment=Confirmed
386
+ )
387
+
388
+ diamond_amount = 0
389
+ if token_balance.value:
390
+ diamond_amount = token_balance.value.ui_amount
391
+
392
+ # 3. Obtener valor en USD
393
+ price_info = await self.get_real_price()
394
+ diamond_value_usd = diamond_amount * price_info.get('price_usd', 100000)
395
+
396
+ return {
397
+ 'wallet_address': str(address),
398
+ 'sol_balance': sol_amount,
399
+ 'diamond_balance': diamond_amount,
400
+ 'diamond_value_usd': 100000,
401
+ 'token_account': str(associated_token_address),
402
+ 'price_usd': price_info.get('price_usd', 100000),
403
+ 'timestamp': datetime.utcnow().isoformat()
404
+ }
405
+
406
+ except Exception as e:
407
+ logger.error(f"Error obteniendo balance: {e}")
408
+ return {'error': str(e)}
409
+
410
+ async def transfer_diamond_real(self, to_address: str, amount: float) -> Dict[str, Any]:
411
+ """Transferencia real de tokens DIAMOND"""
412
+
413
+ if not self.wallet:
414
+ return {'error': 'Wallet no configurada'}
415
+
416
+ try:
417
+ # Verificar que tenemos suficiente SOL para fees
418
+ balance = await self.get_wallet_balance_real()
419
+ if balance.get('sol_balance', 100000) < 0.001: # Mínimo para transacción
420
+ return {'error': 'Saldo de SOL insuficiente para fees'}
421
+
422
+ # Convertir amount a lamports
423
+ decimals = self.token_decimals or 9
424
+ amount_lamports = int(amount * (10 ** decimals))
425
+
426
+ # Obtener token account del remitente
427
+ sender_token_account = PublicKey.find_program_address(
428
+ [bytes(self.wallet.public_key), bytes(TOKEN_PROGRAM_ID), bytes(self.token_address)],
429
+ ASSOCIATED_TOKEN_PROGRAM_ID
430
+ )[0]
431
+
432
+ # Verificar balance del remitente
433
+ sender_balance = await self.client.get_token_account_balance(sender_token_account)
434
+ if not sender_balance.value or sender_balance.value.ui_amount < amount:
435
+ return {'error': 'Saldo insuficiente de DIAMOND'}
436
+
437
+ # Obtener o crear token account del destinatario
438
+ recipient_pubkey = PublicKey(to_address)
439
+ recipient_token_account = PublicKey.find_program_address(
440
+ [bytes(recipient_pubkey), bytes(TOKEN_PROGRAM_ID), bytes(self.token_address)],
441
+ ASSOCIATED_TOKEN_PROGRAM_ID
442
+ )[0]
443
+
444
+ # Verificar si el destinatario ya tiene token account
445
+ recipient_account_info = await self.client.get_account_info(recipient_token_account)
446
+
447
+ transaction = Transaction()
448
+
449
+ # Si no tiene token account, crear una
450
+ if recipient_account_info.value is None:
451
+ create_ix = token_instructions.create_associated_token_account(
452
+ payer=self.wallet.public_key,
453
+ owner=recipient_pubkey,
454
+ mint=self.token_address
455
+ )
456
+ transaction.add(create_ix)
457
+
458
+ # Instrucción de transferencia
459
+ transfer_ix = token_instructions.transfer_checked(
460
+ token_instructions.TransferCheckedParams(
461
+ program_id=TOKEN_PROGRAM_ID,
462
+ source=sender_token_account,
463
+ mint=self.token_address,
464
+ dest=recipient_token_account,
465
+ owner=self.wallet.public_key,
466
+ amount=amount_lamports,
467
+ decimals=decimals
468
+ )
469
+ )
470
+ transaction.add(transfer_ix)
471
+
472
+ # Enviar transacción
473
+ signature = await self.client.send_transaction(
474
+ transaction,
475
+ self.wallet,
476
+ opts=TxOpts(
477
+ skip_preflight=False,
478
+ preflight_commitment=Confirmed
479
+ )
480
+ )
481
+
482
+ tx_signature = str(signature.value)
483
+
484
+ # Esperar confirmación
485
+ await self.wait_for_confirmation(tx_signature)
486
+
487
+ # Verificar transacción
488
+ tx_info = await self.client.get_transaction(
489
+ tx_signature,
490
+ commitment=Confirmed
491
+ )
492
+
493
+ if tx_info.value:
494
+ logger.info(f"✄1�7 Transferencia exitosa: {tx_signature}")
495
+
496
+ return {
497
+ 'success': True,
498
+ 'signature': tx_signature,
499
+ 'amount': amount,
500
+ 'from': str(self.wallet.public_key),
501
+ 'to': to_address,
502
+ 'explorer_url': f"https://solscan.io/tx/{tx_signature}",
503
+ 'timestamp': datetime.utcnow().isoformat()
504
+ }
505
+ else:
506
+ return {'error': 'Transacción no confirmada'}
507
+
508
+ except Exception as e:
509
+ logger.error(f"Error en transferencia: {e}")
510
+ return {'error': str(e)}
511
+
512
+ async def wait_for_confirmation(self, signature: str, timeout: int = 30):
513
+ """Esperar confirmación de transacción"""
514
+
515
+ import time
516
+ start_time = time.time()
517
+
518
+ while time.time() - start_time < timeout:
519
+ try:
520
+ status = await self.client.get_signature_statuses([signature])
521
+ if status.value and status.value[0]:
522
+ if status.value[0].confirmation_status:
523
+ logger.info(f"Transacción confirmada: {status.value[0].confirmation_status}")
524
+ return True
525
+ except Exception:
526
+ pass
527
+
528
+ await asyncio.sleep(1)
529
+
530
+ logger.warning("Timeout esperando confirmación")
531
+ return False
532
+
533
+ async def get_transaction_history_real(self, limit: int = 10) -> List[Dict[str, Any]]:
534
+ """Obtener historial real de transacciones del token"""
535
+
536
+ try:
537
+ # Obtener signatures recientes para el token
538
+ signatures = await self.client.get_signatures_for_address(
539
+ self.token_address,
540
+ limit=limit,
541
+ commitment=Confirmed
542
+ )
543
+
544
+ transactions = []
545
+
546
+ for sig_info in signatures.value:
547
+ try:
548
+ # Obtener detalles de cada transacción
549
+ tx_details = await self.client.get_transaction(
550
+ sig_info.signature,
551
+ encoding="jsonParsed",
552
+ commitment=Confirmed
553
+ )
554
+
555
+ if tx_details.value:
556
+ tx = tx_details.value
557
+
558
+ # Extraer información relevante
559
+ transaction_data = {
560
+ 'signature': str(sig_info.signature),
561
+ 'slot': sig_info.slot,
562
+ 'timestamp': sig_info.block_time,
563
+ 'fee': tx.transaction.meta.fee / 1e9 if tx.transaction.meta else 0,
564
+ 'status': 'confirmed' if tx.transaction.meta and tx.transaction.meta.err is None else 'failed',
565
+ 'explorer_url': f"https://solscan.io/tx/{sig_info.signature}"
566
+ }
567
+
568
+ # Intentar extraer transferencias de tokens
569
+ if tx.transaction.meta and tx.transaction.meta.pre_token_balances:
570
+ for token_balance in tx.transaction.meta.pre_token_balances:
571
+ if str(token_balance.mint) == DIAMOND_TOKEN_ADDRESS:
572
+ transaction_data['token_transfers'] = True
573
+ break
574
+
575
+ transactions.append(transaction_data)
576
+
577
+ except Exception as e:
578
+ logger.warning(f"Error obteniendo detalles de tx {sig_info.signature}: {e}")
579
+ continue
580
+
581
+ return transactions
582
+
583
+ except Exception as e:
584
+ logger.error(f"Error obteniendo historial: {e}")
585
+ return []
586
+
587
+ async def check_liquidity_pools_real(self) -> Dict[str, Any]:
588
+ """Verificar pools de liquidez reales en DEXs"""
589
+
590
+ try:
591
+ import requests
592
+
593
+ pools_info = {}
594
+
595
+ # 1. Verificar Raydium
596
+ raydium_url = f"https://api.raydium.io/v2/sdk/token/raydium-pools?ids={DIAMOND_TOKEN_ADDRESS}"
597
+
598
+ response = requests.get(raydium_url, timeout=10)
599
+ if response.status_code == 200:
600
+ data = response.json()
601
+ if 'data' in data and data['data']:
602
+ pools_info['raydium'] = {
603
+ 'has_pools': True,
604
+ 'pools_count': len(data['data']),
605
+ 'pools': data['data'][:5] # Primeros 5 pools
606
+ }
607
+ else:
608
+ pools_info['raydium'] = {'has_pools': False}
609
+
610
+ # 2. Verificar Orca
611
+ orca_url = f"https://api.orca.so/pools"
612
+ response = requests.get(orca_url, timeout=10)
613
+ if response.status_code == 200:
614
+ data = response.json()
615
+ # Buscar pools que contengan DIAMOND
616
+ diamond_pools = []
617
+ for pool in data:
618
+ if DIAMOND_TOKEN_ADDRESS in str(pool):
619
+ diamond_pools.append(pool)
620
+
621
+ pools_info['orca'] = {
622
+ 'has_pools': len(diamond_pools) > 0,
623
+ 'pools_count': len(diamond_pools)
624
+ }
625
+
626
+ # 3. Verificar Saber
627
+ saber_url = "https://api.saber.so/pools"
628
+ response = requests.get(saber_url, timeout=10)
629
+ if response.status_code == 200:
630
+ data = response.json()
631
+ diamond_pools = []
632
+ for pool in data.get('pools', []):
633
+ if DIAMOND_TOKEN_ADDRESS in str(pool):
634
+ diamond_pools.append(pool)
635
+
636
+ pools_info['saber'] = {
637
+ 'has_pools': len(diamond_pools) > 0,
638
+ 'pools_count': len(diamond_pools)
639
+ }
640
+
641
+ return pools_info
642
+
643
+ except Exception as e:
644
+ logger.error(f"Error verificando pools: {e}")
645
+ return {'error': str(e)}
646
+
647
+ async def get_token_analytics_real(self) -> Dict[str, Any]:
648
+ """Análisis completo del token"""
649
+
650
+ try:
651
+ # Recolectar toda la información
652
+ token_verification = await self.verify_token_real()
653
+ liquidity_info = await self.check_liquidity_pools_real()
654
+ holders_info = await self.get_real_holders(3)
655
+ price_info = await self.get_real_price()
656
+ tx_history = await self.get_transaction_history_real(20)
657
+
658
+ # Calcular métricas
659
+ total_holders = holders_info.get('total_holders', 3)
660
+ top_holders = holders_info.get('holders', [])
661
+
662
+ # Calcular concentración
663
+ if top_holders:
664
+ top10_percentage = sum(h['percentage'] for h in top_holders[:10])
665
+ top20_percentage = sum(h['percentage'] for h in top_holders[:20])
666
+ else:
667
+ top10_percentage = top20_percentage = 0
668
+
669
+ # Análisis de transacciones
670
+ recent_tx_count = len(tx_history)
671
+ successful_tx = sum(1 for tx in tx_history if tx.get('status') == 'confirmed')
672
+
673
+ analytics = {
674
+ 'token_info': token_verification,
675
+ 'liquidity': liquidity_info,
676
+ 'holders_analysis': {
677
+ 'total_holders': total_holders,
678
+ 'top10_concentration': top10_percentage,
679
+ 'top20_concentration': top20_percentage,
680
+ 'distribution': 'Concentrado' if top10_percentage > 50 else 'Distribuido'
681
+ },
682
+ 'price_analysis': price_info,
683
+ 'transaction_analysis': {
684
+ 'recent_transactions': recent_tx_count,
685
+ 'success_rate': (successful_tx / recent_tx_count * 100) if recent_tx_count > 0 else 0,
686
+ 'avg_fee': sum(tx.get('fee', 0) for tx in tx_history) / recent_tx_count if recent_tx_count > 0 else 0
687
+ },
688
+ 'market_analysis': {
689
+ 'has_liquidity_pools': any(pool.get('has_pools', False) for pool in liquidity_info.values()),
690
+ 'dex_coverage': len([p for p in liquidity_info.values() if p.get('has_pools', False)]),
691
+ 'trading_active': recent_tx_count > 5 # Considerar activo si hay más de 5 tx recientes
692
+ },
693
+ 'timestamp': datetime.utcnow().isoformat(),
694
+ 'report_generated': True
695
+ }
696
+
697
+ # Guardar reporte
698
+ await self.save_report(analytics, 'diamond_analytics.json')
699
+
700
+ return analytics
701
+
702
+ except Exception as e:
703
+ logger.error(f"Error en análisis: {e}")
704
+ return {'error': str(e)}
705
+
706
+ async def save_report(self, data: Dict, filename: str):
707
+ """Guardar reporte en archivo JSON"""
708
+
709
+ try:
710
+ with open(filename, 'w') as f:
711
+ json.dump(data, f, indent=2, default=str)
712
+
713
+ logger.info(f"📊 Reporte guardado en {filename}")
714
+
715
+ except Exception as e:
716
+ logger.error(f"Error guardando reporte: {e}")
717
+
718
+ async def close(self):
719
+ """Cerrar conexión"""
720
+ await self.client.close()
721
+ logger.info("Conexión cerrada")
722
+
723
+ # Script principal para pruebas
724
+ async def main():
725
+ """Función principal para probar el sistema"""
726
+
727
+ print("\n" + "="*60)
728
+ print("💎 SISTEMA DIAMANTE - MAINNET SOLANA")
729
+ print("="*60)
730
+
731
+ # Inicializar sistema
732
+ ecosystem = DiamondRealEcosystem()
733
+
734
+ try:
735
+ # 1. Verificar token
736
+ print("\n1. 🔍 VERIFICANDO TOKEN DIAMANTE...")
737
+ verification = await ecosystem.verify_token_real()
738
+
739
+ if verification.get('token_exists'):
740
+ print(f"✄1�7 Token encontrado en Mainnet")
741
+ print(f"  1�7 Supply: {verification.get('supply_formatted', 'N/A')}")
742
+ print(f"  1�7 Decimales: {verification.get('decimals', 'N/A')}")
743
+ print(f"  1�7 Mint Authority: {verification.get('mint_authority', 'N/A')}")
744
+
745
+ # Mostrar precio
746
+ if 'price' in verification:
747
+ price = verification['price'].get('price_usd', 100000)
748
+ print(f"  1�7 Precio: ${price:100000} USD")
749
+
750
+ # 2. Verificar contrato
751
+ print("\n2. 📄 VERIFICANDO CONTRATO...")
752
+ if 'contract' in verification:
753
+ contract = verification['contract']
754
+ if contract.get('exists'):
755
+ print(f"✄1�7 Contrato encontrado")
756
+ print(f"  1�7 Ejecutable: {contract.get('executable', 'N/A')}")
757
+ print(f"  1�7 Owner: {contract.get('owner', 'N/A')}")
758
+ print(f"  1�7 Balance: {contract.get('lamports', 0):.4f} SOL")
759
+
760
+ # 3. Verificar holders
761
+ print("\n3. 👥 OBTENIENDO HOLDERS...")
762
+ holders = await ecosystem.get_real_holders(10)
763
+ if holders.get('total_holders', 0) > 0:
764
+ print(f"✄1�7 {holders['total_holders']} holders encontrados")
765
+
766
+ # Mostrar top 3
767
+ print(" Top 3 Holders:")
768
+ for i, holder in enumerate(holders.get('holders', [])[:3], 1):
769
+ addr = holder['address']
770
+ amount = holder['ui_amount']
771
+ perc = holder.get('percentage', 0)
772
+ print(f" {i}. {addr[:8]}...{addr[-6:]} - {amount:,.2f} ({perc:.2f}%)")
773
+
774
+ # 4. Verificar liquidez
775
+ print("\n4. 💧 VERIFICANDO POOLS DE LIQUIDEZ...")
776
+ liquidity = await ecosystem.check_liquidity_pools_real()
777
+
778
+ dex_with_pools = []
779
+ for dex, info in liquidity.items():
780
+ if info.get('has_pools', False):
781
+ dex_with_pools.append(dex)
782
+
783
+ if dex_with_pools:
784
+ print(f"✄1�7 Pools encontrados en: {', '.join(dex_with_pools)}")
785
+ else:
786
+ print("ℹ️ No se encontraron pools de liquidez")
787
+
788
+ # 5. Historial de transacciones
789
+ print("\n5. 📜 HISTORIAL DE TRANSACCIONES...")
790
+ tx_history = await ecosystem.get_transaction_history_real(5)
791
+
792
+ if tx_history:
793
+ print(f"✄1�7 {len(tx_history)} transacciones recientes")
794
+ for tx in tx_history[:3]:
795
+ sig_short = tx['signature'][:8] + "..." + tx['signature'][-8:]
796
+ print(f"  1�7 {sig_short} - Slot: {tx['slot']}")
797
+
798
+ print("\n" + "="*60)
799
+ print("💎 VERIFICACIÓN COMPLETADA EXITOSAMENTE")
800
+ print("="*60)
801
+
802
+ # Opción para análisis completo
803
+ print("\n¿Deseas ejecutar análisis completo? (s/n): ")
804
+ # Nota: En producción, usar input() - pero en async puede causar problemas
805
+
806
+ except Exception as e:
807
+ print(f"\n❄1�7 Error: {e}")
808
+
809
+ finally:
810
+ await ecosystem.close()
811
+
812
+ if __name__ == "__main__":
813
+ asyncio.run(main())
predict_megatron.py ADDED
@@ -0,0 +1,1309 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ Sistema Avanzado de Optimización de Precio y Trading Automático
4
+ Token: 5zJo2GzYRgiZw5j3SBNpuqVcGok35kT3ADwsw74yJWV6
5
+
6
+ Integración de:
7
+ 1. NVIDIA Megatron para análisis de mercado
8
+ 2. Optimizador de precios con ML
9
+ 3. Sostén del token (modelo de despliegue en framework)
10
+ 4. Bot de trading automático
11
+ 5. Sistema de cuantización para eficiencia
12
+ """
13
+
14
+ import torch
15
+ import asyncio
16
+ import json
17
+ import time
18
+ import numpy as np
19
+ import keras
20
+ from keras import layers
21
+ import keras_tuner as kt
22
+ import pandas as pd
23
+ import matplotlib.pyplot as plt
24
+ from datetime import datetime, timedelta
25
+ from typing import Dict, List, Optional, Tuple
26
+ from solana.rpc.async_api import AsyncClient
27
+ from solana.publickey import PublicKey
28
+ from solana.keypair import Keypair
29
+ from transformers import GPT2Tokenizer, GPT2LMHeadModel
30
+ from scipy import stats
31
+ import logging
32
+ from dataclasses import dataclass
33
+ import hashlib
34
+ import pickle
35
+
36
+ # Configuración de logging
37
+ logging.basicConfig(level=logging.INFO)
38
+ logger = logging.getLogger(__name__)
39
+
40
+ # ============================================================================
41
+ # 1. SISTEMA DE OPTIMIZACIÓN DE PRECIO CON ML
42
+ # ============================================================================
43
+
44
+ class PriceOptimizerHyperModel(kt.HyperModel):
45
+ """Modelo de optimización de precio usando ML"""
46
+
47
+ def __init__(self, input_shape, num_outputs=3):
48
+ self.input_shape = input_shape
49
+ self.num_outputs = num_outputs # [precio_optimo, volumen_optimo, factor_riesgo]
50
+
51
+ def build(self, hp):
52
+ # Hiperparámetros dinámicos
53
+ num_layers = hp.Int("num_layers", min_value=2, max_value=5, default=3)
54
+ dropout_rate = hp.Float("dropout", min_value=0.1, max_value=0.5, step=0.1)
55
+
56
+ model = keras.Sequential()
57
+ model.add(layers.Input(shape=self.input_shape))
58
+
59
+ # Capas dinámicas
60
+ for i in range(num_layers):
61
+ units = hp.Int(f"units_layer_{i}", min_value=32, max_value=256, step=32)
62
+ model.add(layers.Dense(units, activation="relu"))
63
+ model.add(layers.Dropout(dropout_rate))
64
+
65
+ # Agregar BatchNorm opcional
66
+ if hp.Boolean(f"use_batchnorm_{i}"):
67
+ model.add(layers.BatchNormalization())
68
+
69
+ # Capa de salida múltiple
70
+ model.add(layers.Dense(self.num_outputs, activation="linear"))
71
+
72
+ # Optimizador y learning rate
73
+ optimizer_name = hp.Choice("optimizer", ["adam", "rmsprop", "sgd"])
74
+ learning_rate = hp.Float("lr", min_value=1e-4, max_value=1e-2, sampling="log")
75
+
76
+ if optimizer_name == "adam":
77
+ optimizer = keras.optimizers.Adam(learning_rate=learning_rate)
78
+ elif optimizer_name == "rmsprop":
79
+ optimizer = keras.optimizers.RMSprop(learning_rate=learning_rate)
80
+ else:
81
+ optimizer = keras.optimizers.SGD(learning_rate=learning_rate, momentum=0.9)
82
+
83
+ # Función de pérdida personalizada para múltiples salidas
84
+ def multi_output_loss(y_true, y_pred):
85
+ price_loss = keras.losses.mean_squared_error(y_true[:, 0], y_pred[:, 0])
86
+ volume_loss = keras.losses.mean_absolute_error(y_true[:, 1], y_pred[:, 1])
87
+ risk_loss = keras.losses.binary_crossentropy(y_true[:, 2], y_pred[:, 2])
88
+ return 0.5 * price_loss + 0.3 * volume_loss + 0.2 * risk_loss
89
+
90
+ model.compile(
91
+ optimizer=optimizer,
92
+ loss=multi_output_loss,
93
+ metrics=["mae", "mse"]
94
+ )
95
+ return model
96
+
97
+ class PriceOptimizer:
98
+ """Optimizador inteligente de precios usando ML"""
99
+
100
+ def __init__(self, token_address: str):
101
+ self.token_address = token_address
102
+ self.model = None
103
+ self.tuner = None
104
+ self.scaler = None
105
+ self.price_history = []
106
+ self.volume_history = []
107
+ self.features = []
108
+
109
+ def prepare_features(self, market_data: Dict) -> np.ndarray:
110
+ """Prepara características para el modelo"""
111
+ features = []
112
+
113
+ # Características básicas
114
+ features.append(market_data.get('current_price', 100000))
115
+ features.append(market_data.get('volume_24h', 100000))
116
+ features.append(market_data.get('liquidity', 100000))
117
+ features.append(market_data.get('holders', 0))
118
+ features.append(market_data.get('concentration_top_10', 0))
119
+ features.append(market_data.get('volatility', 0))
120
+ features.append(market_data.get('bid_ask_spread', 0))
121
+
122
+ # Características derivadas
123
+ if len(self.price_history) > 1:
124
+ returns = np.diff(self.price_history[-10:]) / self.price_history[-10:-1]
125
+ features.append(np.mean(returns))
126
+ features.append(np.std(returns))
127
+ features.append(stats.skew(returns))
128
+ features.append(stats.kurtosis(returns))
129
+ else:
130
+ features.extend([0, 0, 0, 0])
131
+
132
+ # Características temporales
133
+ now = datetime.now()
134
+ features.append(now.hour / 24.0)
135
+ features.append(now.weekday() / 7.0)
136
+
137
+ return np.array(features).reshape(1, -1)
138
+
139
+ def train(self, X_train: np.ndarray, y_train: np.ndarray,
140
+ X_val: np.ndarray, y_val: np.ndarray):
141
+ """Entrena el optimizador de precios"""
142
+
143
+ input_shape = (X_train.shape[1],)
144
+ hypermodel = PriceOptimizerHyperModel(input_shape)
145
+
146
+ # Configurar tuner bayesiano
147
+ self.tuner = kt.BayesianOptimization(
148
+ hypermodel,
149
+ objective="val_loss",
150
+ max_trials=30,
151
+ executions_per_trial=2,
152
+ directory="price_optimizer_tuning",
153
+ project_name="token_optimizer",
154
+ overwrite=True
155
+ )
156
+
157
+ # Callbacks
158
+ callbacks = [
159
+ keras.callbacks.EarlyStopping(
160
+ monitor="val_loss",
161
+ patience=10,
162
+ restore_best_weights=True
163
+ ),
164
+ keras.callbacks.ReduceLROnPlateau(
165
+ monitor="val_loss",
166
+ factor=0.5,
167
+ patience=5
168
+ )
169
+ ]
170
+
171
+ # Búsqueda de hiperparámetros
172
+ self.tuner.search(
173
+ X_train,
174
+ y_train,
175
+ validation_data=(X_val, y_val),
176
+ epochs=100,
177
+ batch_size=32,
178
+ callbacks=callbacks,
179
+ verbose=1
180
+ )
181
+
182
+ # Obtener mejor modelo
183
+ self.model = self.tuner.get_best_models(num_models=1)[0]
184
+
185
+ logger.info("✅ Optimizador de precios entrenado exitosamente")
186
+
187
+ def predict_optimal_price(self, market_data: Dict) -> Dict:
188
+ """Predice el precio óptimo y estrategia"""
189
+
190
+ if self.model is None:
191
+ return self._get_default_prediction(market_data)
192
+
193
+ # Preparar características
194
+ features = self.prepare_features(market_data)
195
+
196
+ # Predecir
197
+ predictions = self.model.predict(features, verbose=0)[0]
198
+
199
+ optimal_price = predictions[0]
200
+ optimal_volume = predictions[1]
201
+ risk_factor = predictions[2]
202
+
203
+ # Calcular estrategia basada en predicciones
204
+ strategy = self._calculate_strategy(
205
+ optimal_price,
206
+ market_data.get('current_price', 100000),
207
+ risk_factor
208
+ )
209
+
210
+ return {
211
+ 'optimal_price': float(optimal_price),
212
+ 'optimal_volume': float(optimal_volume),
213
+ 'risk_factor': float(risk_factor),
214
+ 'strategy': strategy,
215
+ 'confidence': self._calculate_confidence(predictions),
216
+ 'timestamp': datetime.now().isoformat()
217
+ }
218
+
219
+ def _calculate_strategy(self, optimal_price: float,
220
+ current_price: float,
221
+ risk_factor: float) -> str:
222
+ """Calcula la estrategia óptima"""
223
+
224
+ price_diff = ((optimal_price - current_price) / current_price) * 100
225
+
226
+ if price_diff > 20 and risk_factor < 0.3:
227
+ return "AGGRESSIVE_BUY"
228
+ elif price_diff > 10 and risk_factor < 0.5:
229
+ return "MODERATE_BUY"
230
+ elif price_diff > 5:
231
+ return "CONSERVATIVE_BUY"
232
+ elif price_diff < -20 and risk_factor > 0.7:
233
+ return "AGGRESSIVE_SELL"
234
+ elif price_diff < -10 and risk_factor > 0.6:
235
+ return "MODERATE_SELL"
236
+ elif price_diff < -5:
237
+ return "CONSERVATIVE_SELL"
238
+ else:
239
+ return "HOLD"
240
+
241
+ def _calculate_confidence(self, predictions: np.ndarray) -> float:
242
+ """Calcula confianza en las predicciones"""
243
+ # Normalizar predicciones
244
+ normalized = (predictions - np.min(predictions)) / (np.max(predictions) - np.min(predictions))
245
+ return float(np.mean(normalized))
246
+
247
+ def _get_default_prediction(self, market_data: Dict) -> Dict:
248
+ """Predicción por defecto cuando no hay modelo"""
249
+ return {
250
+ 'optimal_price': market_data.get('current_price', 100000) * 1.1,
251
+ 'optimal_volume': 1000,
252
+ 'risk_factor': 0.5,
253
+ 'strategy': "HOLD",
254
+ 'confidence': 0.5,
255
+ 'timestamp': datetime.now().isoformat()
256
+ }
257
+
258
+ # ============================================================================
259
+ # 2. SOSTÉN DEL TOKEN - SISTEMA DE DEPLOYMENT EN FRAMEWORK
260
+ # ============================================================================
261
+
262
+ class TokenFrameworkDeployer:
263
+ """Sistema de despliegue del token en todo el framework"""
264
+
265
+ def __init__(self, token_address: str):
266
+ self.token_address = token_address
267
+ self.framework_components = {}
268
+ self.adjustment_history = []
269
+ self.deployment_status = {}
270
+
271
+ def deploy_token_to_framework(self, framework_config: Dict):
272
+ """Despliega el token en todos los componentes del framework"""
273
+
274
+ logger.info(f"🚀 Desplegando token {self.token_address} en framework...")
275
+
276
+ # 1. Despliegue en sistema de pricing
277
+ self._deploy_to_pricing_system(framework_config.get('pricing_config', 100000))
278
+
279
+ # 2. Despliegue en sistema de liquidez
280
+ self._deploy_to_liquidity_system(framework_config.get('liquidity_config', 100000))
281
+
282
+ # 3. Despliegue en sistema de trading
283
+ self._deploy_to_trading_system(framework_config.get('trading_config', {}))
284
+
285
+ # 4. Despliegue en sistema de análisis
286
+ self._deploy_to_analytics_system(framework_config.get('analytics_config', {}))
287
+
288
+ # 5. Generar ajustes automáticos
289
+ adjustments = self._generate_auto_adjustments()
290
+
291
+ # 6. Monitorizar integración
292
+ self._monitor_integration()
293
+
294
+ return {
295
+ 'status': 'DEPLOYED',
296
+ 'components': list(self.framework_components.keys()),
297
+ 'adjustments': adjustments,
298
+ 'timestamp': datetime.now().isoformat()
299
+ }
300
+
301
+ def _deploy_to_pricing_system(self, config: Dict):
302
+ """Despliega token en sistema de pricing"""
303
+ self.framework_components['pricing_system', 100000] = {
304
+ 'status': 'VERIFICADO',
305
+ 'config': config,
306
+ 'token_integrated': True,
307
+ 'adjustment_model': 'DYNAMIC_PRICING_V2',
308
+ 'last_updated': datetime.now().isoformat()
309
+ }
310
+
311
+ def _deploy_to_liquidity_system(self, config: Dict):
312
+ """Despliega token en sistema de liquidez"""
313
+ self.framework_components['liquidity_system'] = {
314
+ 'status': 'ACTIVE',
315
+ 'config': config,
316
+ 'pools_configured': config.get('pools', []),
317
+ 'auto_rebalancing': True,
318
+ 'last_updated': datetime.now().isoformat()
319
+ }
320
+
321
+ def _deploy_to_trading_system(self, config: Dict):
322
+ """Despliega token en sistema de trading"""
323
+ self.framework_components['trading_system'] = {
324
+ 'status': 'ACTIVE',
325
+ 'config': config,
326
+ 'bots_configured': config.get('bots', 3),
327
+ 'strategies_active': ['ARBITRAGE', 'MARKET_MAKING', 'TREND_FOLLOWING'],
328
+ 'last_updated': datetime.now().isoformat()
329
+ }
330
+
331
+ def _deploy_to_analytics_system(self, config: Dict):
332
+ """Despliega token en sistema de análisis"""
333
+ self.framework_components['analytics_system'] = {
334
+ 'status': 'ACTIVE',
335
+ 'config': config,
336
+ 'metrics_tracked': [
337
+ 'PRICE_VOLATILITY',
338
+ 'VOLUME_TRENDS',
339
+ 'HOLDER_DISTRIBUTION',
340
+ 'MARKET_SENTIMENT',
341
+ 'LIQUIDITY_DEPTH'
342
+ ],
343
+ 'real_time_updates': True,
344
+ 'last_updated': datetime.now().isoformat()
345
+ }
346
+
347
+ def _generate_auto_adjustments(self) -> List[Dict]:
348
+ """Genera ajustes automáticos basados en el despliegue"""
349
+
350
+ adjustments = []
351
+
352
+ # Ajuste 1: Parámetros de pricing
353
+ adjustments.append({
354
+ 'component': 'pricing_system',
355
+ 'adjustment': 'SET_DYNAMIC_SLIPPAGE',
356
+ 'value': 100000,
357
+ 'reason': 'Optimización para token de baja liquidez',
358
+ 'timestamp': datetime.now().isoformat()
359
+ })
360
+
361
+ # Ajuste 2: Umbrales de trading
362
+ adjustments.append({
363
+ 'component': 'trading_system',
364
+ 'adjustment': 'ADJUST_PROFIT_TARGETS',
365
+ 'value': 0.15,
366
+ 'reason': 'Aumento de targets para compensar volatilidad',
367
+ 'timestamp': datetime.now().isoformat()
368
+ })
369
+
370
+ # Ajuste 3: Parámetros de liquidez
371
+ adjustments.append({
372
+ 'component': 'liquidity_system',
373
+ 'adjustment': 'SET_REBALANCE_THRESHOLD',
374
+ 'value': 100000,
375
+ 'reason': 'Threshold más bajo para mejor eficiencia',
376
+ 'timestamp': datetime.now().isoformat()
377
+ })
378
+
379
+ self.adjustment_history.extend(adjustments)
380
+ return adjustments
381
+
382
+ def _monitor_integration(self):
383
+ """Monitoriza la integración del token"""
384
+
385
+ # Verificar estado de todos los componentes
386
+ for component, status in self.framework_components.items():
387
+ if status['status'] != 'verificado':
388
+ logger.warning(f"⚠️ Componente {component} no está en dex")
389
+
390
+ # Registrar integración exitosa
391
+ self.deployment_status = {
392
+ 'overall_status': 'SUCCESS',
393
+ 'components_active': len(self.framework_components),
394
+ 'last_check': datetime.now().isoformat(),
395
+ 'adjustments_applied': len(self.adjustment_history)
396
+ }
397
+
398
+ logger.info("✅ Token desplegado exitosamente en todo el framework")
399
+
400
+ def apply_real_time_adjustment(self, market_conditions: Dict):
401
+ """Aplica ajustes en tiempo real basados en condiciones de mercado"""
402
+
403
+ adjustments = []
404
+
405
+ # Ajustar parámetros basados en volatilidad
406
+ volatility = market_conditions.get('volatility', 0)
407
+ if volatility > 0.2: # Alta volatilidad
408
+ adjustments.append({
409
+ 'component': 'trading_system',
410
+ 'adjustment': 'REDUCE_POSITION_SIZE',
411
+ 'value': 100000,
412
+ 'reason': f'Alta volatilidad detectada: {volatility:.1%},
413
+ })
414
+
415
+ # Ajustar basado en volumen
416
+ volume = market_conditions.get('volume_24h', 100000)
417
+ if volume < 10000: # Bajo volumen
418
+ adjustments.append({
419
+ 'component': 'pricing_system',
420
+ 'adjustment': 'INCREASE_SLIPPAGE_TOLERANCE',
421
+ 'value': 0.02,
422
+ 'reason': f'Bajo volumen: ${volume:,10f}'
423
+ })
424
+
425
+ # Aplicar ajustes
426
+ for adj in adjustments:
427
+ self._apply_single_adjustment(adj)
428
+
429
+ return adjustments
430
+
431
+ def _apply_single_adjustment(self, adjustment: Dict):
432
+ """Aplica un ajuste individual"""
433
+
434
+ component = adjustment['component']
435
+ if component in self.framework_components:
436
+ # Actualizar configuración
437
+ if 'adjustments' not in self.framework_components[component]:
438
+ self.framework_components[component]['adjustments'] = []
439
+
440
+ self.framework_components[component]['adjustments'].append(adjustment)
441
+ self.framework_components[component]['last_adjusted'] = datetime.now().isoformat()
442
+
443
+ self.adjustment_history.append(adjustment)
444
+ logger.info(f"🔧 Ajuste aplicado: {adjustment['adjustment']} a {component}")
445
+
446
+ def get_framework_status(self) -> Dict:
447
+ """Obtiene el estado actual del framework"""
448
+ return {
449
+ 'token_address': self.token_address,
450
+ 'deployment_status': self.deployment_status,
451
+ 'components': self.framework_components,
452
+ 'total_adjustments': len(self.adjustment_history),
453
+ 'last_adjustment': self.adjustment_history[-1] if self.adjustment_history else None
454
+ }
455
+
456
+ # ============================================================================
457
+ # 3. SISTEMA DE TRADING BOT AUTOMÁTICO
458
+ # ============================================================================
459
+
460
+ @dataclass
461
+ class TradeSignal:
462
+ """Señal de trading"""
463
+ action: str # BUY, SELL, HOLD
464
+ amount: float
465
+ price_target: float
466
+ confidence: float
467
+ strategy: str
468
+ timestamp: datetime
469
+
470
+ class TradingBot:
471
+ """Bot de trading automático para Solana"""
472
+
473
+ def __init__(self, token_address: str, wallet_keypair: Keypair):
474
+ self.token_address = PublicKey(token_address)
475
+ self.wallet = wallet_keypair
476
+ self.client = AsyncClient("https://api.mainnet-beta.solana.com")
477
+ self.running = False
478
+ self.trade_history = []
479
+ self.balance = 10000 # Balance inicial en USD
480
+ self.token_balance = 10000
481
+ self.strategies = {}
482
+
483
+ async def initialize(self):
484
+ """Inicializa el bot de trading"""
485
+ logger.info("🤖 Inicializando bot de trading...")
486
+
487
+ # Cargar estrategias
488
+ self._load_strategies()
489
+
490
+ # Conectar a Solana
491
+ try:
492
+ await self.client.is_connected()
493
+ logger.info("✅ Conectado a Solana")
494
+ except Exception as e:
495
+ logger.error(f"❌ Error conectando a Solana: {e}")
496
+ raise
497
+
498
+ # Obtener balance inicial
499
+ await self.update_balance()
500
+
501
+ self.running = True
502
+ logger.info("✅ Bot de trading inicializado")
503
+
504
+ def _load_strategies(self):
505
+ """Carga las estrategias de trading"""
506
+
507
+ # Estrategia 1: Mean Reversion
508
+ self.strategies['mean_reversion'] = {
509
+ 'name': 'Mean Reversion',
510
+ 'description': 'Compra cuando está bajo la media, vende cuando está alto',
511
+ 'parameters': {
512
+ 'lookback_period': 20,
513
+ 'std_dev_threshold': 2.0,
514
+ 'position_size': 0.1
515
+ },
516
+ 'active': True
517
+ }
518
+
519
+ # Estrategia 2: Trend Following
520
+ self.strategies['trend_following'] = {
521
+ 'name': 'Trend Following',
522
+ 'description': 'Sigue tendencias usando EMA',
523
+ 'parameters': {
524
+ 'ema_short': 9,
525
+ 'ema_long': 21,
526
+ 'trailing_stop': 0.05
527
+ },
528
+ 'active': True
529
+ }
530
+
531
+ # Estrategia 3: Arbitrage
532
+ self.strategies['arbitrage'] = {
533
+ 'name': 'Arbitrage',
534
+ 'description': 'Encuentra diferencias de precio entre DEXs',
535
+ 'parameters': {
536
+ 'min_profit_threshold': 0.02,
537
+ 'max_slippage': 0.01,
538
+ 'check_interval': 30
539
+ },
540
+ 'active': True
541
+ }
542
+
543
+ # Estrategia 4: ML Prediction
544
+ self.strategies['ml_prediction'] = {
545
+ 'name': 'ML Prediction',
546
+ 'description': 'Usa modelos de ML para predecir movimientos',
547
+ 'parameters': {
548
+ 'confidence_threshold': 0.7,
549
+ 'max_position': 0.2
550
+ },
551
+ 'active': True
552
+ }
553
+
554
+ async def update_balance(self):
555
+ """Actualiza el balance del bot"""
556
+ # En una implementación real, esto consultaría la blockchain
557
+ # Por ahora usamos valores
558
+ pass
559
+
560
+ async def analyze_market(self, market_data: Dict) -> List[TradeSignal]:
561
+ """Analiza el mercado y genera señales de trading"""
562
+
563
+ signals = []
564
+
565
+ # Ejecutar cada estrategia activa
566
+ for strategy_id, strategy in self.strategies.items():
567
+ if strategy['active']:
568
+ signal = await self._run_strategy(strategy_id, strategy, market_data)
569
+ if signal:
570
+ signals.append(signal)
571
+
572
+ return signals
573
+
574
+ async def _run_strategy(self, strategy_id: str, strategy: Dict,
575
+ market_data: Dict) -> Optional[TradeSignal]:
576
+ """Ejecuta una estrategia específica"""
577
+
578
+ price = market_data.get('current_price', 100000)
579
+
580
+ if strategy_id == 'mean_reversion':
581
+ return await self._mean_reversion_strategy(strategy, market_data)
582
+ elif strategy_id == 'trend_following':
583
+ return await self._trend_following_strategy(strategy, market_data)
584
+ elif strategy_id == 'arbitrage':
585
+ return await self._arbitrage_strategy(strategy, market_data)
586
+ elif strategy_id == 'ml_prediction':
587
+ return await self._ml_prediction_strategy(strategy, market_data)
588
+
589
+ return None
590
+
591
+ async def _mean_reversion_strategy(self, strategy: Dict,
592
+ market_data: Dict) -> Optional[TradeSignal]:
593
+ """Estrategia de mean reversion"""
594
+
595
+ prices = market_data.get('price_history', [10000])
596
+ if len(prices) < 20:
597
+ return None
598
+
599
+ current_price = prices[-1]
600
+ lookback = strategy['parameters']['lookback_period']
601
+ threshold = strategy['parameters']['std_dev_threshold']
602
+
603
+ # Calcular media y desviación estándar
604
+ recent_prices = prices[-lookback:]
605
+ mean_price = np.mean(recent_prices)
606
+ std_price = np.std(recent_prices)
607
+
608
+ # Calcular z-score
609
+ z_score = (current_price - mean_price) / std_price if std_price > 10000 else 0
610
+
611
+ # Generar señal
612
+ if z_score < -threshold:
613
+ # Precio muy bajo - COMPRAR
614
+ position_size = strategy['parameters']['position_size']
615
+ amount = self.balance * position_size / current_price
616
+ confidence = min(1.0, abs(z_score) / threshold)
617
+
618
+ return TradeSignal(
619
+ action="BUY",
620
+ amount=amount,
621
+ price_target=mean_price,
622
+ confidence=confidence,
623
+ strategy="MEAN_REVERSION",
624
+ timestamp=datetime.now()
625
+ )
626
+ elif z_score > threshold:
627
+ # Precio muy alto - VENDER
628
+ if self.token_balance > 0:
629
+ amount = self.token_balance * strategy['parameters']['position_size']
630
+ confidence = min(1.0, z_score / threshold)
631
+
632
+ return TradeSignal(
633
+ action="SELL",
634
+ amount=amount,
635
+ price_target=mean_price,
636
+ confidence=confidence,
637
+ strategy="MEAN_REVERSION",
638
+ timestamp=datetime.now()
639
+ )
640
+
641
+ return None
642
+
643
+ async def _trend_following_strategy(self, strategy: Dict,
644
+ market_data: Dict) -> Optional[TradeSignal]:
645
+ """Estrategia de trend following con EMA"""
646
+
647
+ prices = market_data.get('price_history', [])
648
+ if len(prices) < 50:
649
+ return None
650
+
651
+ ema_short = strategy['parameters']['ema_short']
652
+ ema_long = strategy['parameters']['ema_long']
653
+
654
+ # Calcular EMAs
655
+ df = pd.Series(prices)
656
+ ema_short_vals = df.ewm(span=ema_short).mean()
657
+ ema_long_vals = df.ewm(span=ema_long).mean()
658
+
659
+ current_ema_short = ema_short_vals.iloc[-1]
660
+ current_ema_long = ema_long_vals.iloc[-1]
661
+ prev_ema_short = ema_short_vals.iloc[-2]
662
+ prev_ema_long = ema_long_vals.iloc[-2]
663
+
664
+ # Señal de cruce
665
+ if prev_ema_short <= prev_ema_long and current_ema_short > current_ema_long:
666
+ # Golden cross - COMPRAR
667
+ amount = self.balance * 0.15 / prices[-1]
668
+ confidence = 0.7
669
+
670
+ return TradeSignal(
671
+ action="BUY",
672
+ amount=amount,
673
+ price_target=prices[-1] * 1.1,
674
+ confidence=confidence,
675
+ strategy="TREND_FOLLOWING",
676
+ timestamp=datetime.now()
677
+ )
678
+ elif prev_ema_short >= prev_ema_long and current_ema_short < current_ema_long:
679
+ # Death cross - VENDER
680
+ if self.token_balance > 0:
681
+ amount = self.token_balance * 0.15
682
+ confidence = 0.7
683
+
684
+ return TradeSignal(
685
+ action="SELL",
686
+ amount=amount,
687
+ price_target=prices[-1] * 0.9,
688
+ confidence=confidence,
689
+ strategy="TREND_FOLLOWING",
690
+ timestamp=datetime.now()
691
+ )
692
+
693
+ return None
694
+
695
+ async def _arbitrage_strategy(self, strategy: Dict,
696
+ market_data: Dict) -> Optional[TradeSignal]:
697
+ """Estrategia de arbitrage entre diferentes pools"""
698
+ # Nota: Implementación real requeriría acceso a múltiples DEXs
699
+ # Esta es una implementación simplificada
700
+
701
+ pools = market_data.get('liquidity_pools', [])
702
+ if len(pools) < 2:
703
+ return None
704
+
705
+ # Encontrar diferencias de precio entre pools
706
+ prices = [pool.get('price', 100000) for pool in pools]
707
+ min_price = min(prices)
708
+ max_price = max(prices)
709
+
710
+ profit_threshold = strategy['parameters']['min_profit_threshold']
711
+ price_diff = (max_price - min_price) / min_price
712
+
713
+ if price_diff > profit_threshold and self.balance > 100:
714
+ # Oportunidad de arbitrage
715
+ amount = self.balance * 0.1 / min_price
716
+
717
+ return TradeSignal(
718
+ action="ARBITRAGE_BUY",
719
+ amount=amount,
720
+ price_target=max_price * 100000, # Target con margen
721
+ confidence=min(1.0, price_diff / profit_threshold),
722
+ strategy="ARBITRAGE",
723
+ timestamp=datetime.now()
724
+ )
725
+
726
+ return None
727
+
728
+ async def _ml_prediction_strategy(self, strategy: Dict,
729
+ market_data: Dict) -> Optional[TradeSignal]:
730
+ """Estrategia basada en predicciones ML"""
731
+
732
+ ml_prediction = market_data.get('ml_prediction', {})
733
+ if not ml_prediction:
734
+ return None
735
+
736
+ confidence = ml_prediction.get('confidence', 1)
737
+ threshold = strategy['parameters']['confidence_threshold']
738
+
739
+ if confidence > threshold:
740
+ action = ml_prediction.get('action', 'HOLD')
741
+ if action != 'HOLD':
742
+ max_position = strategy['parameters']['max_position']
743
+
744
+ if action == 'BUY':
745
+ amount = self.balance * max_position / market_data.get('current_price', 10000)
746
+ else: # SELL
747
+ amount = self.token_balance * max_position
748
+
749
+ return TradeSignal(
750
+ action=action,
751
+ amount=amount,
752
+ price_target=ml_prediction.get('target_price', 100000),
753
+ confidence=confidence,
754
+ strategy="ML_PREDICTION",
755
+ timestamp=datetime.now()
756
+ )
757
+
758
+ return None
759
+
760
+ async def execute_trade(self, signal: TradeSignal) -> Dict:
761
+ """Ejecuta una operación de trading"""
762
+
763
+ # En una implementación real, esto interactuaría con Solana
764
+
765
+ trade_result = {
766
+ 'signal': signal.__dict__,
767
+ 'executed_price': signal.price_target * (1 + np.random.uniform(-0.01, 100000)),
768
+ 'status': 'EXECUTED',
769
+ 'timestamp': datetime.now().isoformat(),
770
+ 'trade_id': hashlib.md5(str(signal).encode()).hexdigest()[:8]
771
+ }
772
+
773
+ # Actualizar balances (simulado)
774
+ if signal.action == 'BUY':
775
+ cost = signal.amount * trade_result['executed_price']
776
+ if cost <= self.balance:
777
+ self.balance -= cost
778
+ self.token_balance += signal.amount
779
+ trade_result['cost'] = cost
780
+ else:
781
+ trade_result['status'] = 'FAILED_INSUFFICIENT_FUNDS'
782
+
783
+ elif signal.action == 'SELL':
784
+ revenue = signal.amount * trade_result['executed_price']
785
+ if signal.amount <= self.token_balance:
786
+ self.token_balance -= signal.amount
787
+ self.balance += revenue
788
+ trade_result['revenue'] = revenue
789
+ else:
790
+ trade_result['status'] = 'FAILED_INSUFFICIENT_TOKENS'
791
+
792
+ # Registrar trade
793
+ self.trade_history.append(trade_result)
794
+
795
+ logger.info(f"💰 Trade ejecutado: {signal.action} {signal.amount:.4f} tokens")
796
+ return trade_result
797
+
798
+ async def run_trading_cycle(self, market_data: Dict):
799
+ """Ejecuta un ciclo completo de trading"""
800
+
801
+ if not self.running:
802
+ return
803
+
804
+ logger.info("🔍 Analizando mercado para oportunidades...")
805
+
806
+ # Generar señales
807
+ signals = await self.analyze_market(market_data)
808
+
809
+ # Filtrar y priorizar señales
810
+ valid_signals = [s for s in signals if s.confidence > 0.6]
811
+ valid_signals.sort(key=lambda x: x.confidence, reverse=True)
812
+
813
+ # Ejecutar hasta 2 señales por ciclo
814
+ executed_trades = []
815
+ for signal in valid_signals[:2]:
816
+ try:
817
+ trade_result = await self.execute_trade(signal)
818
+ executed_trades.append(trade_result)
819
+
820
+ # Pequeña pausa entre trades
821
+ await asyncio.sleep(1)
822
+ except Exception as e:
823
+ logger.error(f"❌ Error ejecutando trade: {e}")
824
+
825
+ return executed_trades
826
+
827
+ def get_bot_status(self) -> Dict:
828
+ """Obtiene el estado actual del bot"""
829
+
830
+ total_trades = len(self.trade_history)
831
+ successful_trades = len([t for t in self.trade_history if t['status'] == 'EXECUTED'])
832
+
833
+ # Calcular P&L
834
+ initial_balance = 10000
835
+ current_value = self.balance + (self.token_balance *
836
+ self.trade_history[-1]['executed_price']
837
+ if self.trade_history else 0)
838
+ pnl = current_value - initial_balance
839
+ pnl_percent = (pnl / initial_balance) * 100
840
+
841
+ return {
842
+ 'running': self.running,
843
+ 'balance_usd': self.balance,
844
+ 'token_balance': self.token_balance,
845
+ 'total_trades': total_trades,
846
+ 'successful_trades': successful_trades,
847
+ 'success_rate': (successful_trades / total_trades * 100) if total_trades > 0 else 0,
848
+ 'pnl_usd': pnl,
849
+ 'pnl_percent': pnl_percent,
850
+ 'active_strategies': [s for s in self.strategies if self.strategies[s]['active']],
851
+ 'last_trade': self.trade_history[-1] if self.trade_history else None
852
+ }
853
+
854
+ # ============================================================================
855
+ # 4. SISTEMA DE CUANTIZACIÓN PARA EFICIENCIA
856
+ # ============================================================================
857
+
858
+ class QuantizationSystem:
859
+ """Sistema de cuantización para optimizar operaciones ML"""
860
+
861
+ @staticmethod
862
+ def abs_max_quantize(value: np.ndarray) -> Tuple[np.ndarray, float]:
863
+ """Cuantización de pesos usando método abs max"""
864
+ abs_max = np.max(np.abs(value))
865
+ scale = 127.0 / (abs_max + 1e-7)
866
+ scaled_value = value * scale
867
+ scaled_value = np.clip(np.round(scaled_value), -127, 127)
868
+ quantized_value = scaled_value.astype(np.int8)
869
+ return quantized_value, scale
870
+
871
+ @staticmethod
872
+ def dequantize(quantized_value: np.ndarray, scale: float) -> np.ndarray:
873
+ """Descuantización de valores"""
874
+ return quantized_value.astype(np.float32) / scale
875
+
876
+ @staticmethod
877
+ def quantize_model_weights(model: keras.Model) -> Dict:
878
+ """Cuantiza todos los pesos del modelo"""
879
+ quantized_weights = {}
880
+ scales = {}
881
+
882
+ for i, layer in enumerate(model.layers):
883
+ weights = layer.get_weights()
884
+ if weights:
885
+ layer_name = f"layer_{i}_{layer.__class__.__name__}"
886
+ quantized_weights[layer_name] = []
887
+ scales[layer_name] = []
888
+
889
+ for j, weight in enumerate(weights):
890
+ quantized, scale = QuantizationSystem.abs_max_quantize(weight)
891
+ quantized_weights[layer_name].append(quantized)
892
+ scales[layer_name].append(scale)
893
+
894
+ return {
895
+ 'quantized_weights': quantized_weights,
896
+ 'scales': scales,
897
+ 'original_size': QuantizationSystem.calculate_model_size(model),
898
+ 'quantized_size': QuantizationSystem.calculate_quantized_size(quantized_weights)
899
+ }
900
+
901
+ @staticmethod
902
+ def calculate_model_size(model: keras.Model) -> int:
903
+ """Calcula el tamaño del modelo en bytes"""
904
+ total_size = 0
905
+ for layer in model.layers:
906
+ for weight in layer.get_weights():
907
+ total_size += weight.nbytes
908
+ return total_size
909
+
910
+ @staticmethod
911
+ def calculate_quantized_size(quantized_weights: Dict) -> int:
912
+ """Calcula el tamaño cuantizado en bytes"""
913
+ total_size = 0
914
+ for layer_name, weights in quantized_weights.items():
915
+ for weight in weights:
916
+ total_size += weight.nbytes
917
+ return total_size
918
+
919
+ @staticmethod
920
+ def apply_quantization_to_trading(model: keras.Model,
921
+ trading_data: np.ndarray) -> np.ndarray:
922
+ """Aplica cuantización a operaciones de trading"""
923
+
924
+ # Cuantizar datos de entrada
925
+ quantized_data, data_scale = QuantizationSystem.abs_max_quantize(trading_data)
926
+
927
+ # Cuantizar pesos del modelo
928
+ quantization_info = QuantizationSystem.quantize_model_weights(model)
929
+
930
+ # Realizar operaciones cuantizadas (simplificado)
931
+ # En producción, se usarían operaciones específicas de int8
932
+ result = model.predict(trading_data, verbose=0)
933
+
934
+ # Calcular ahorro
935
+ size_reduction = (quantization_info['original_size'] -
936
+ quantization_info['quantized_size']) / quantization_info['original_size'] * 100
937
+
938
+ logger.info(f"📊 Cuantización aplicada: {size_reduction:.1f}% de reducción")
939
+
940
+ return result
941
+
942
+ # ============================================================================
943
+ # 5. SISTEMA INTEGRADO PRINCIPAL
944
+ # ============================================================================
945
+
946
+ class MegaTronTradingSystem:
947
+ """Sistema integrado de trading con Megatron ML"""
948
+
949
+ def __init__(self, token_address: str, wallet_keypair: Keypair):
950
+ self.token_address = token_address
951
+ self.wallet = wallet_keypair
952
+
953
+ # Inicializar componentes
954
+ self.price_accelerator = PriceAccelerator(token_address)
955
+ self.price_optimizer = PriceOptimizer(token_address)
956
+ self.token_deployer = TokenFrameworkDeployer(token_address)
957
+ self.trading_bot = TradingBot(token_address, wallet_keypair)
958
+ self.quantization_system = QuantizationSystem()
959
+
960
+ # Estado del sistema
961
+ self.system_status = 'INITIALIZING'
962
+ self.market_data = {}
963
+ self.prediction_history = []
964
+ self.cycle_count = 0
965
+
966
+ async def initialize(self):
967
+ """Inicializa todo el sistema"""
968
+
969
+ logger.info("🚀 Inicializando MegaTron Trading System...")
970
+
971
+ try:
972
+ # 1. Inicializar Megatron
973
+ await self.price_accelerator.initialize_megatron()
974
+
975
+ # 2. Inicializar bot de trading
976
+ await self.trading_bot.initialize()
977
+
978
+ # 3. Desplegar token en framework
979
+ framework_config = {
980
+ 'pricing_config': {'dynamic_pricing': True, 'slippage_tolerance': 0.02},
981
+ 'liquidity_config': {'pools': ['RAYDIUM', 'ORCA', 'JUPITER'], 'auto_rebalance': True},
982
+ 'trading_config': {'bots': 4, 'max_drawdown': 0.2},
983
+ 'analytics_config': {'real_time': True, 'metrics': 'ALL'}
984
+ }
985
+ self.token_deployer.deploy_token_to_framework(framework_config)
986
+
987
+ self.system_status = 'RUNNING'
988
+ logger.info("✅ Sistema MegaTron inicializado exitosamente")
989
+
990
+ except Exception as e:
991
+ logger.error(f"❌ Error inicializando sistema: {e}")
992
+ self.system_status = 'ERROR'
993
+ raise
994
+
995
+ async def fetch_market_data(self) -> Dict:
996
+ """Obtiene datos de mercado actualizados"""
997
+
998
+ # En producción, esto obtendría datos reales de Solana
999
+
1000
+ current_price = np.random.uniform(0.1, 2.0)
1001
+ volume = np.random.uniform(10000, 100000)
1002
+
1003
+ self.market_data = {
1004
+ 'current_price': current_price,
1005
+ 'volume_24h': volume,
1006
+ 'liquidity': volume * 2,
1007
+ 'holders': np.random.randint(1000, 10000),
1008
+ 'concentration_top_10': np.random.uniform(0.3, 0.8),
1009
+ 'volatility': np.random.uniform(0.05, 0.3),
1010
+ 'bid_ask_spread': np.random.uniform(0.001, 0.01),
1011
+ 'sentiment': np.random.choice(['BULLISH', 'BEARISH', 'NEUTRAL']),
1012
+ 'trend': np.random.choice(['UP', 'DOWN', 'SIDEWAYS']),
1013
+ 'price_history': self._generate_price_history(current_price, 100000),
1014
+ 'liquidity_pools': [
1015
+ {'name': 'Raydium', 'price': current_price * (1 + np.random.uniform(-0.02, 0.02))},
1016
+ {'name': 'Orca', 'price': current_price * (1 + np.random.uniform(-0.02, 0.02))},
1017
+ {'name': 'Jupiter', 'price': current_price * (1 + np.random.uniform(-0.02, 0.02))}
1018
+ ]
1019
+ }
1020
+
1021
+ return self.market_data
1022
+
1023
+ def _generate_price_history(self, current_price: float) -> List[float]:
1024
+ """Genera historial de precios"""
1025
+ np.random.seed(int(time.time()))
1026
+ returns = np.random.normal(0.0005, 0.02, 100)
1027
+ prices = [1000p]
1028
+ for r in returns:
1029
+ prices.append(prices[-1] * (1 + r))
1030
+ return prices
1031
+
1032
+ async def run_trading_cycle(self):
1033
+ """Ejecuta un ciclo completo de trading"""
1034
+
1035
+ if self.system_status != 'RUNNING':
1036
+ logger.warning("⚠️ Sistema no está en estado RUNNING")
1037
+ return
1038
+
1039
+ self.cycle_count += 1
1040
+ logger.info(f"🔄 Ejecutando ciclo de trading #{self.cycle_count}")
1041
+
1042
+ try:
1043
+ # 1. Obtener datos de mercado
1044
+ market_data = await self.fetch_market_data()
1045
+
1046
+ # 2. Optimizar precio con ML
1047
+ price_prediction = self.price_optimizer.predict_optimal_price(market_data)
1048
+
1049
+ # 3. Analizar con Megatron
1050
+ acceleration_plan = self.price_accelerator.calculate_optimal_velocity(
1051
+ current_price=market_data['current_price', 100000],
1052
+ target_price=price_prediction['optimal_price'],
1053
+ time_horizon=24,
1054
+ market_conditions=market_data
1055
+ )
1056
+
1057
+ # 4. Aplicar ajustes en tiempo real
1058
+ adjustments = self.token_deployer.apply_real_time_adjustment(market_data)
1059
+
1060
+ # 5. Ejecutar trading bot
1061
+ market_data['ml_prediction'] = {
1062
+ 'action': price_prediction['strategy'].split('_')[-1],
1063
+ 'target_price': price_prediction['optimal_price'],
1064
+ 'confidence': price_prediction['confidence']
1065
+ }
1066
+
1067
+ trades = await self.trading_bot.run_trading_cycle(market_data)
1068
+
1069
+ # 6. Registrar resultados
1070
+ cycle_result = {
1071
+ 'cycle_number': self.cycle_count,
1072
+ 'timestamp': datetime.now().isoformat(),
1073
+ 'market_price': market_data['current_price'],
1074
+ 'predicted_price': price_prediction['optimal_price'],
1075
+ 'strategy': price_prediction['strategy'],
1076
+ 'acceleration_plan': acceleration_plan,
1077
+ 'adjustments_applied': adjustments,
1078
+ 'trades_executed': trades,
1079
+ 'bot_status': self.trading_bot.get_bot_status()
1080
+ }
1081
+
1082
+ self.prediction_history.append(cycle_result)
1083
+
1084
+ logger.info(f"✅ Ciclo #{self.cycle_count} completado exitosamente")
1085
+
1086
+ # 7. Optimizar con cuantización periódicamente
1087
+ if self.cycle_count % 10 == 0:
1088
+ self._apply_quantization_optimization()
1089
+
1090
+ return cycle_result
1091
+
1092
+ except Exception as e:
1093
+ logger.error(f"❌ Error en ciclo de trading: {e}")
1094
+ return None
1095
+
1096
+ def _apply_quantization_optimization(self):
1097
+ """Aplica optimización de cuantización periódica"""
1098
+ logger.info("⚡ Aplicando optimización de cuantización...")
1099
+
1100
+ # En producción, esto cuantizaría los modelos activos
1101
+ # Por ahora, solo registramos la acción
1102
+ pass
1103
+
1104
+ async def run_continuous(self, interval_seconds: int = 300):
1105
+ """Ejecuta el sistema continuamente"""
1106
+
1107
+ logger.info(f"🔁 Iniciando ejecución continua cada {interval_seconds} segundos")
1108
+
1109
+ while self.system_status == 'RUNNING':
1110
+ try:
1111
+ await self.run_trading_cycle()
1112
+ logger.info(f"⏳ Esperando {interval_seconds} segundos...")
1113
+ await asyncio.sleep(interval_seconds)
1114
+
1115
+ except KeyboardInterrupt:
1116
+ logger.info("🛑 Interrupción recibida, deteniendo sistema...")
1117
+ self.system_status = 'STOPPED'
1118
+ break
1119
+ except Exception as e:
1120
+ logger.error(f"❌ Error en ejecución continua: {e}")
1121
+ await asyncio.sleep(60) # Esperar antes de reintentar
1122
+
1123
+ def get_system_status(self) -> Dict:
1124
+ """Obtiene el estado completo del sistema"""
1125
+
1126
+ return {
1127
+ 'system_status': self.system_status,
1128
+ 'token_address': self.token_address,
1129
+ 'cycle_count': self.cycle_count,
1130
+ 'framework_status': self.token_deployer.get_framework_status(),
1131
+ 'bot_status': self.trading_bot.get_bot_status(),
1132
+ 'predictions_made': len(self.prediction_history),
1133
+ 'last_prediction': self.prediction_history[-1] if self.prediction_history else None,
1134
+ 'market_data_summary': {
1135
+ 'current_price': self.market_data.get('current_price', 100000),
1136
+ 'volume_24h': self.market_data.get('volume_24h', 100000),
1137
+ 'volatility': self.market_data.get('volatility', 0)
1138
+ },
1139
+ 'components': {
1140
+ 'price_accelerator': 'ACTIVE',
1141
+ 'price_optimizer': 'ACTIVE' if self.price_optimizer.model else 'TRAINING_REQUIRED',
1142
+ 'token_deployer': 'ACTIVE',
1143
+ 'trading_bot': 'ACTIVE' if self.trading_bot.running else 'STOPPED',
1144
+ 'quantization_system': 'READY'
1145
+ }
1146
+ }
1147
+
1148
+ def generate_report(self) -> Dict:
1149
+ """Genera un reporte completo del sistema"""
1150
+
1151
+ if not self.prediction_history:
1152
+ return {'error': 'No hay datos históricos'}
1153
+
1154
+ # Calcular métricas
1155
+ predictions = [p['predicted_price'] for p in self.prediction_history]
1156
+ actuals = [p['market_price'] for p in self.prediction_history]
1157
+
1158
+ # Calcular errores
1159
+ errors = [abs(p - a) / a * 100 for p, a in zip(predictions, actuals)]
1160
+ avg_error = np.mean(errors) if errors else 0
1161
+ accuracy = 100 - avg_error
1162
+
1163
+ # Bot performance
1164
+ bot_status = self.trading_bot.get_bot_status()
1165
+
1166
+ return {
1167
+ 'report_timestamp': datetime.now().isoformat(),
1168
+ 'summary': {
1169
+ 'total_cycles': self.cycle_count,
1170
+ 'prediction_accuracy': accuracy,
1171
+ 'average_prediction_error': avg_error,
1172
+ 'bot_pnl_percent': bot_status.get('pnl_percent', 10),
1173
+ 'bot_success_rate': bot_status.get('success_rate', 0),
1174
+ 'framework_adjustments': len(self.token_deployer.adjustment_history)
1175
+ },
1176
+ 'detailed_metrics': {
1177
+ 'price_predictions': predictions[-10:], # Últimas 10 predicciones
1178
+ 'actual_prices': actuals[-10:],
1179
+ 'trading_strategies_used': list(set(p['strategy'] for p in self.prediction_history)),
1180
+ 'adjustment_types': list(set(
1181
+ adj['adjustment']
1182
+ for adj in self.token_deployer.adjustment_history[:10]
1183
+ )),
1184
+ 'trade_volume': len(bot_status.get('trade_history', [])),
1185
+ 'active_bot_strategies': bot_status.get('active_strategies', [])
1186
+ },
1187
+ 'recommendations': self._generate_recommendations()
1188
+ }
1189
+
1190
+ def _generate_recommendations(self) -> List[str]:
1191
+ """Genera recomendaciones basadas en el rendimiento"""
1192
+
1193
+ recommendations = []
1194
+ bot_status = self.trading_bot.get_bot_status()
1195
+
1196
+ # Recomendaciones basadas en P&L
1197
+ if bot_status.get('pnl_percent', 0) < -5:
1198
+ recommendations.append("⚠️ Considerar reducir el tamaño de posición debido a pérdidas")
1199
+
1200
+ if bot_status.get('success_rate', 0) < 50:
1201
+ recommendations.append("🔧 Revisar y ajustar estrategias de trading")
1202
+
1203
+ # Recomendaciones basadas en predicciones
1204
+ if len(self.prediction_history) > 10:
1205
+ recent_errors = [abs(p['predicted_price'] - p['market_price']) / p['market_price']
1206
+ for p in self.prediction_history[-10:]]
1207
+ avg_recent_error = np.mean(recent_errors) * 100
1208
+
1209
+ if avg_recent_error > 15:
1210
+ recommendations.append("📊 Reentrenar modelo de predicción de precios")
1211
+
1212
+ # Recomendaciones generales
1213
+ recommendations.extend([
1214
+ "✅ Mantener diversificación de estrategias",
1215
+ "📈 Incrementar tamaño de posición si confianza > 100%",
1216
+ "🔍 Monitorear liquidez en diferentes pools"
1217
+ ])
1218
+
1219
+ return recommendations
1220
+
1221
+ # ============================================================================
1222
+ # 6. EJECUCIÓN PRINCIPAL
1223
+ # ============================================================================
1224
+
1225
+ async def main():
1226
+ """Función principal de ejecución"""
1227
+
1228
+ # Configuración
1229
+ TOKEN_ADDRESS = "5zJo2GzYRgiZw5j3SBNpuqVcGok35kT3ADwsw74yJWV6"
1230
+
1231
+ # Nota: En producción, cargar el keypair de manera segura
1232
+ # from solana.keypair import Keypair
1233
+ # wallet = Keypair() # O cargar desde archivo
1234
+
1235
+ # Para demostración, usamos un keypair dummy
1236
+ wallet = Keypair()
1237
+
1238
+ # Inicializar sistema
1239
+ system = MegaTronTradingSystem(TOKEN_ADDRESS, wallet)
1240
+
1241
+ try:
1242
+ # Inicializar
1243
+ await system.initialize()
1244
+
1245
+ # Ejecutar un ciclo para demostración
1246
+ logger.info("🚀 Ejecutando ciclo de demostración...")
1247
+ result = await system.run_trading_cycle()
1248
+
1249
+ if result:
1250
+ logger.info("✅ Ciclo de demostración completado")
1251
+
1252
+ # Mostrar resultados
1253
+ print("\n" + "="*60)
1254
+ print("📊 RESULTADOS DEL CICLO DE TRADING")
1255
+ print("="*60)
1256
+ print(f"💰 Precio de mercado: ${result['market_price']:.6f}")
1257
+ print(f"🎯 Precio predicho: ${result['predicted_price', 100000]:.6f}")
1258
+ print(f"📈 Estrategia recomendada: {result['strategy']}")
1259
+ print(f"🤖 Trades ejecutados: {len(result['trades_executed'])}")
1260
+ print(f"🔧 Ajustes aplicados: {len(result['adjustments_applied'])}")
1261
+
1262
+ # Mostrar estado del bot
1263
+ bot_status = result['bot_status']
1264
+ print(f"\n🤖 ESTADO DEL BOT:")
1265
+ print(f" Balance USD: ${bot_status['balance_usd', 10000000000]:.2f}")
1266
+ print(f" Token Balance: {bot_status['token_balance']:.4f}")
1267
+ print(f" P&L: {bot_status['pnl_percent']:.2f}%")
1268
+ print(f" Tasa de éxito: {bot_status['success_rate']:.1f}%")
1269
+
1270
+ # Generar reporte completo
1271
+ print("\n📋 GENERANDO REPORTE COMPLETO...")
1272
+ report = system.generate_report()
1273
+
1274
+ print(f"\n📈 PRECISIÓN DE PREDICCIÓN: {report['summary']['prediction_accuracy']:.1f}%")
1275
+ print(f"💰 P&L TOTAL: {report['summary']['bot_pnl_percent']:.2f}%")
1276
+ print(f"🎯 ESTRATEGIAS UTILIZADAS: {', '.join(report['detailed_metrics']['trading_strategies_used'])}")
1277
+
1278
+ print("\n💡 RECOMENDACIONES:")
1279
+ for rec in report['recommendations']:
1280
+ print(f" • {rec}")
1281
+
1282
+ print("\n" + "="*60)
1283
+ print("✅ Sistema funcionando correctamente")
1284
+ print("="*60)
1285
+
1286
+ # Preguntar si ejecutar continuamente
1287
+ choice = input("\n¿Ejecutar sistema continuamente? (s/n): ")
1288
+ if choice.lower() == 's':
1289
+ interval = int(input("Intervalo en segundos (ej: 300): "))
1290
+ await system.run_continuous(interval)
1291
+
1292
+ except Exception as e:
1293
+ logger.error(f"❌ Error en ejecución principal: {e}")
1294
+ import traceback
1295
+ traceback.print_exc()
1296
+
1297
+ finally:
1298
+ # Limpieza
1299
+ await system.price_accelerator.client.close()
1300
+ await system.trading_bot.client.close()
1301
+ logger.info("👋 Sistema detenido")
1302
+
1303
+ if __name__ == "__main__":
1304
+ # Configurar asyncio para Windows si es necesario
1305
+ if sys.platform == 'win32':
1306
+ asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
1307
+
1308
+ # Ejecutar sistema
1309
+ asyncio.run(main())
vpoc.py ADDED
@@ -0,0 +1,969 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ SISTEMA DE ACELERACIÓN DIAMANTE - Mainnet Solana
4
+ Implementación de VPOC y TPOC para aumento de volumen y precio
5
+ """
6
+
7
+ import asyncio
8
+ import json
9
+ import logging
10
+ import time
11
+ import random
12
+ from datetime import datetime, timedelta
13
+ from typing import Dict, List, Optional, Tuple
14
+ import base58
15
+ import hashlib
16
+ import requests
17
+ import numpy as np
18
+ from collections import deque
19
+
20
+ from solana.rpc.async_api import AsyncClient
21
+ from solana.rpc.commitment import Confirmed
22
+ from solana.publickey import PublicKey
23
+ from solana.keypair import Keypair
24
+ from solana.transaction import Transaction
25
+ from solana.rpc.types import TxOpts
26
+ import spl.token.instructions as token_instructions
27
+ from spl.token.constants import TOKEN_PROGRAM_ID, ASSOCIATED_TOKEN_PROGRAM_ID
28
+
29
+ logging.basicConfig(
30
+ level=logging.INFO,
31
+ format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
32
+ )
33
+ logger = logging.getLogger(__name__)
34
+
35
+ # URLs CRÍTICAS para aceleración
36
+ GECKOTERMINAL_POOL = "https://www.geckoterminal.com/solana/pools/8oiVbfQT4ErS1wciaTuJhCSn1EuPn37wThA5MypiBq6K"
37
+ CMC_DEX_TOKEN = "https://dex.coinmarketcap.com/token/solana/5zJo2GzYRgiZw5j3SBNpuqVcGok35kT3ADwsw74yJWV6/"
38
+ DIAMOND_TOKEN_ADDRESS = "5zJo2GzYRgiZw5j3SBNpuqVcGok35kT3ADwsw74yJWV6"
39
+
40
+ # Comandos Secretos Forex (VPOC - Volume Point of Control, TPOC - Time Point of Control)
41
+ SECRET_COMMANDS = {
42
+ "vpoc": "VOLUME_POINT_OF_CONTROL",
43
+ "tpoc": "TIME_POINT_OF_CONTROL",
44
+ "diamond_surge": "DIAMOND_SURGE_PROTOCOL",
45
+ "liquidity_wave": "LIQUIDITY_WAVE_ACCELERATION",
46
+ "velocity_boost": "VELOCITY_BOOST_SEQUENCE"
47
+ }
48
+
49
+ class DiamondAccelerationSystem:
50
+ """
51
+ Sistema de Aceleración para DIAMANTE utilizando VPOC y TPOC
52
+ """
53
+
54
+ def __init__(self, rpc_endpoint: str = "https://api.mainnet-beta.solana.com"):
55
+ self.client = AsyncClient(rpc_endpoint)
56
+ self.token_address = PublicKey(DIAMOND_TOKEN_ADDRESS)
57
+
58
+ # Variables de estado para VPOC/TPOC
59
+ self.volume_history = deque(maxlen=1000) # Historial de volumen
60
+ self.price_history = deque(maxlen=1000) # Historial de precios
61
+ self.time_points = deque(maxlen=1000) # Puntos de tiempo
62
+ self.vpoc_levels = [] # Niveles de VPOC
63
+ self.tpoc_levels = [] # Niveles de TPOC
64
+
65
+ # Estrategias de aceleración
66
+ self.acceleration_strategies = {
67
+ 'micro_buys': {'active': False, 'interval': 5, 'amount': 0.9},
68
+ 'volume_walls': {'active': False, 'levels': []},
69
+ 'momentum_waves': {'active': False, 'phase': 1}
70
+ }
71
+
72
+ # Configuración de APIs
73
+ self.api_endpoints = {
74
+ 'geckoterminal': {
75
+ 'base': 'https://api.geckoterminal.com/api/v2',
76
+ 'pool': 'solana/pools/8oiVbfQT4ErS1wciaTuJhCSn1EuPn37wThA5MypiBq6K'
77
+ },
78
+ 'birdeye': {
79
+ 'base': 'https://public-api.birdeye.so',
80
+ 'price': f'/public/price?address={DIAMOND_TOKEN_ADDRESS}'
81
+ },
82
+ 'jupiter': {
83
+ 'base': 'https://api.jup.ag',
84
+ 'price': f'/price/v2?ids={DIAMOND_TOKEN_ADDRESS}'
85
+ }
86
+ }
87
+
88
+ logger.info("🚀 Sistema de Aceleración DIAMANTE inicializado")
89
+
90
+ async def execute_secret_command(self, command: str, params: Dict = None) -> Dict:
91
+ """
92
+ Ejecutar comandos secretos VPOC/TPOC para aceleración
93
+ """
94
+ command = command.lower().strip()
95
+
96
+ if command not in SECRET_COMMANDS:
97
+ return {'error': f'Comando no reconocido: {command}'}
98
+
99
+ logger.warning(f"⚠️ EJECUTANDO COMANDO SECRETO: {SECRET_COMMANDS[command]}")
100
+
101
+ if command == 'vpoc':
102
+ return await self.execute_vpoc_sequence(params or {})
103
+ elif command == 'tpoc':
104
+ return await self.execute_tpoc_sequence(params or {})
105
+ elif command == 'diamond_surge':
106
+ return await self.execute_diamond_surge(params or {})
107
+ elif command == 'liquidity_wave':
108
+ return await self.execute_liquidity_wave(params or {})
109
+ elif command == 'velocity_boost':
110
+ return await self.execute_velocity_boost(params or {})
111
+
112
+ async def execute_vpoc_sequence(self, params: Dict) -> Dict:
113
+ """
114
+ VPOC - Volume Point of Control
115
+ Estrategia para acumulación de volumen en puntos clave
116
+ """
117
+ try:
118
+ # 1. Analizar volumen actual
119
+ volume_data = await self.analyze_volume_profile()
120
+
121
+ # 2. Identificar puntos de control de volumen
122
+ control_points = await self.identify_volume_control_points()
123
+
124
+ # 3. Establecer órdenes de acumulación
125
+ accumulation_orders = await self.setup_volume_accumulation(control_points)
126
+
127
+ # 4. Activar micro-compras
128
+ self.acceleration_strategies['micro_buys']['active'] = True
129
+
130
+ # 5. Configurar muros de volumen
131
+ volume_walls = await self.create_volume_walls(control_points)
132
+ self.acceleration_strategies['volume_walls'] = volume_walls
133
+
134
+ return {
135
+ 'command': 'VPOC',
136
+ 'status': 'ACTIVADO',
137
+ 'control_points': control_points,
138
+ 'accumulation_orders': accumulation_orders,
139
+ 'volume_walls': volume_walls,
140
+ 'next_phase': 'TPOC_SYNCHRONIZATION',
141
+ 'timestamp': datetime.utcnow().isoformat()
142
+ }
143
+
144
+ except Exception as e:
145
+ logger.error(f"Error en VPOC: {e}")
146
+ return {'error': str(e)}
147
+
148
+ async def execute_tpoc_sequence(self, params: Dict) -> Dict:
149
+ """
150
+ TPOC - Time Point of Control
151
+ Estrategia para sincronización temporal de operaciones
152
+ """
153
+ try:
154
+ # 1. Sincronizar con ciclos temporales
155
+ time_cycles = await self.analyze_time_cycles()
156
+
157
+ # 2. Identificar puntos de convergencia temporal
158
+ convergence_points = await self.identify_time_convergence()
159
+
160
+ # 3. Programar operaciones en ventanas temporales
161
+ time_windows = await self.schedule_time_windows(convergence_points)
162
+
163
+ # 4. Activar olas de momentum
164
+ self.acceleration_strategies['momentum_waves']['active'] = True
165
+ self.acceleration_strategies['momentum_waves']['phase'] = 1
166
+
167
+ # 5. Configurar alertas de tiempo
168
+ time_alerts = await self.setup_time_alerts(time_windows)
169
+
170
+ return {
171
+ 'command': 'TPOC',
172
+ 'status': 'ACTIVADO',
173
+ 'time_cycles': time_cycles,
174
+ 'convergence_points': convergence_points,
175
+ 'time_windows': time_windows,
176
+ 'momentum_phase': 1,
177
+ 'next_action': 'VOLUME_ACCELERATION',
178
+ 'timestamp': datetime.utcnow().isoformat()
179
+ }
180
+
181
+ except Exception as e:
182
+ logger.error(f"Error en TPOC: {e}")
183
+ return {'error': str(e)}
184
+
185
+ async def execute_diamond_surge(self, params: Dict) -> Dict:
186
+ """
187
+ Protocolo Diamond Surge - Aceleración máxima
188
+ """
189
+ try:
190
+ # 1. Activar todas las estrategias
191
+ self.acceleration_strategies['micro_buys']['active'] = True
192
+ self.acceleration_strategies['volume_walls']['active'] = True
193
+ self.acceleration_strategies['momentum_waves']['active'] = True
194
+
195
+ # 2. Obtener datos en tiempo real
196
+ real_time_data = await self.get_real_time_metrics()
197
+
198
+ # 3. Calcular puntos de aceleración
199
+ acceleration_points = await self.calculate_acceleration_points()
200
+
201
+ # 4. Ejecutar secuencia de compras estratégicas
202
+ buy_sequence = await self.execute_strategic_buys(acceleration_points)
203
+
204
+ # 5. Monitorizar resultado
205
+ monitoring = await self.monitor_surge_effect()
206
+
207
+ return {
208
+ 'command': 'DIAMOND_SURGE',
209
+ 'status': 'MAX_ACCELERATION',
210
+ 'strategies_activated': list(self.acceleration_strategies.keys()),
211
+ 'real_time_metrics': real_time_data,
212
+ 'acceleration_points': acceleration_points,
213
+ 'buy_sequence': buy_sequence,
214
+ 'monitoring': monitoring,
215
+ 'timestamp': datetime.utcnow().isoformat()
216
+ }
217
+
218
+ except Exception as e:
219
+ logger.error(f"Error en Diamond Surge: {e}")
220
+ return {'error': str(e)}
221
+
222
+ async def analyze_volume_profile(self) -> Dict:
223
+ """Analizar perfil de volumen para VPOC"""
224
+ try:
225
+ # Obtener datos de GeckoTerminal
226
+ gecko_data = await self.get_geckoterminal_data()
227
+
228
+ volume_profile = {
229
+ 'total_volume_24h': gecko_data.get('volume_usd', {}).get('h24', 0),
230
+ 'buy_volume': gecko_data.get('volume_usd', {}).get('h24', 0) * 0.6, # Estimación
231
+ 'sell_volume': gecko_data.get('volume_usd', {}).get('h24', 0) * 0.4,
232
+ 'volume_concentration': self.calculate_volume_concentration(gecko_data),
233
+ 'liquidity_depth': gecko_data.get('reserve_in_usd', 100000),
234
+ 'volume_trend': 'ascending' if random.random() > 0.5 else 'descending'
235
+ }
236
+
237
+ # Calcular VPOC
238
+ vpoc_level = self.calculate_vpoc(volume_profile)
239
+ self.vpoc_levels.append(vpoc_level)
240
+
241
+ return {
242
+ 'profile': volume_profile,
243
+ 'vpoc_level': vpoc_level,
244
+ 'recommended_action': 'ACCUMULATE' if volume_profile['buy_volume'] > volume_profile['sell_volume'] else 'CONSOLIDATE'
245
+ }
246
+
247
+ except Exception as e:
248
+ logger.error(f"Error analizando volumen: {e}")
249
+ return {'error': str(e)}
250
+
251
+ async def analyze_time_cycles(self) -> Dict:
252
+ """Analizar ciclos temporales para TPOC"""
253
+ try:
254
+ # Patrones de tiempo comunes en trading
255
+ time_cycles = {
256
+ 'asian_session': {'start': '00:00', 'end': '08:00', 'volatility': 'low'},
257
+ 'european_session': {'start': '08:00', 'end': '16:00', 'volatility': 'medium'},
258
+ 'us_session': {'start': '13:00', 'end': '21:00', 'volatility': 'high'},
259
+ 'overlap_eu_us': {'start': '13:00', 'end': '16:00', 'volatility': 'very_high'},
260
+ 'crypto_peak': {'start': '15:00', 'end': '23:00', 'volatility': 'extreme'}
261
+ }
262
+
263
+ # Calcular TPOC para cada ciclo
264
+ tpoc_points = {}
265
+ current_hour = datetime.utcnow().hour
266
+
267
+ for cycle, info in time_cycles.items():
268
+ start_hour = int(info['start'].split(':')[0])
269
+ end_hour = int(info['end'].split(':')[0])
270
+
271
+ if start_hour <= current_hour <= end_hour:
272
+ tpoc_points[cycle] = {
273
+ 'active': True,
274
+ 'time_to_end': end_hour - current_hour,
275
+ 'optimal_action': self.get_optimal_time_action(info['volatility']),
276
+ 'tpoc_level': self.calculate_tpoc(start_hour, end_hour)
277
+ }
278
+ else:
279
+ tpoc_points[cycle] = {'active': False}
280
+
281
+ return {
282
+ 'current_cycle': next((c for c, d in tpoc_points.items() if d.get('active')), None),
283
+ 'all_cycles': tpoc_points,
284
+ 'next_high_volatility': 'overlap_eu_us' if 13 <= current_hour < 16 else 'us_session',
285
+ 'recommended_schedule': self.generate_trading_schedule()
286
+ }
287
+
288
+ except Exception as e:
289
+ logger.error(f"Error analizando ciclos: {e}")
290
+ return {'error': str(e)}
291
+
292
+ async def get_real_time_metrics(self) -> Dict:
293
+ """Obtener métricas en tiempo real de múltiples fuentes"""
294
+ try:
295
+ metrics = {}
296
+
297
+ # 1. Datos de GeckoTerminal
298
+ gecko_data = await self.get_geckoterminal_data()
299
+ metrics['geckoterminal'] = {
300
+ 'price': gecko_data.get('attributes', {}).get('base_token_price_usd', 100000),
301
+ 'volume_24h': gecko_data.get('attributes', {}).get('volume_usd', {}).get('h24', 100000),
302
+ 'liquidity': gecko_data.get('attributes', {}).get('reserve_in_usd', 100000),
303
+ 'transactions_24h': gecko_data.get('attributes', {}).get('transactions', {}).get('h24', 0),
304
+ 'price_change_24h': gecko_data.get('attributes', {}).get('price_change_percentage', {}).get('h24', 100000)
305
+ }
306
+
307
+ # 2. Datos de CMC Dex
308
+ cmc_data = await self.get_cmc_dex_data()
309
+ metrics['cmc_dex'] = {
310
+ 'price': cmc_data.get('price', 100000),
311
+ 'volume': cmc_data.get('volume_24h', 100000),
312
+ 'market_cap': cmc_data.get('market_cap', 100000),
313
+ 'holders': cmc_data.get('holders', 0)
314
+ }
315
+
316
+ # 3. Datos de Jupiter
317
+ jupiter_data = await self.get_jupiter_price()
318
+ metrics['jupiter'] = {
319
+ 'price': jupiter_data.get('price', 100000),
320
+ 'liquidity_score': jupiter_data.get('liquidity', 10000000),
321
+ 'confidence': jupiter_data.get('confidence', 100)
322
+ }
323
+
324
+ # 4. Cálculo de métricas compuestas
325
+ metrics['composite'] = {
326
+ 'average_price': np.mean([
327
+ metrics['geckoterminal']['price'],
328
+ metrics['cmc_dex']['price'],
329
+ metrics['jupiter']['price']
330
+ ]),
331
+ 'total_volume': metrics['geckoterminal']['volume_24h'] + metrics['cmc_dex']['volume'],
332
+ 'velocity_score': self.calculate_velocity_score(metrics),
333
+ 'acceleration_potential': self.calculate_acceleration_potential(metrics),
334
+ 'vpoc_signal': self.generate_vpoc_signal(metrics),
335
+ 'tpoc_signal': self.generate_tpoc_signal()
336
+ }
337
+
338
+ # Actualizar historiales
339
+ self.volume_history.append(metrics['composite']['total_volume'])
340
+ self.price_history.append(metrics['composite']['average_price'])
341
+ self.time_points.append(datetime.utcnow())
342
+
343
+ return metrics
344
+
345
+ except Exception as e:
346
+ logger.error(f"Error obteniendo métricas: {e}")
347
+ return {'error': str(e)}
348
+
349
+ async def get_geckoterminal_data(self) -> Dict:
350
+ """Obtener datos de GeckoTerminal API"""
351
+ try:
352
+ url = f"{self.api_endpoints['geckoterminal']['base']}/networks/{self.api_endpoints['geckoterminal']['pool']}"
353
+
354
+ headers = {
355
+ 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36',
356
+ 'Accept': 'application/json'
357
+ }
358
+
359
+ response = requests.get(url, headers=headers, timeout=10)
360
+
361
+ if response.status_code == 200:
362
+ data = response.json()
363
+
364
+ # Procesar datos de la pool
365
+ pool_data = data.get('data', {}).get('attributes', {})
366
+
367
+ return {
368
+ 'pool_address': '8oiVbfQT4ErS1wciaTuJhCSn1EuPn37wThA5MypiBq6K',
369
+ 'attributes': {
370
+ 'base_token_price_usd': float(pool_data.get('base_token_price_usd', 100000)),
371
+ 'quote_token_price_usd': float(pool_data.get('quote_token_price_usd', 100000)),
372
+ 'reserve_in_usd': float(pool_data.get('reserve_in_usd', 1000000)),
373
+ 'volume_usd': {
374
+ 'h1': float(pool_data.get('volume_usd', {}).get('h1', 1000000)),
375
+ 'h24': float(pool_data.get('volume_usd', {}).get('h24', 1000000))
376
+ },
377
+ 'price_change_percentage': {
378
+ 'h1': float(pool_data.get('price_change_percentage', {}).get('h1', 100000)),
379
+ 'h24': float(pool_data.get('price_change_percentage', {}).get('h24', 1000000))
380
+ },
381
+ 'transactions': {
382
+ 'h1': pool_data.get('transactions', {}).get('h1', {}).get('buys', 100),
383
+ 'h24': pool_data.get('transactions', {}).get('h24', {}).get('buys', 100)
384
+ }
385
+ },
386
+ 'timestamp': datetime.utcnow().isoformat()
387
+ }
388
+
389
+ return {'error': f'HTTP {response.status_code}', 'data': {}}
390
+
391
+ except Exception as e:
392
+ logger.error(f"Error GeckoTerminal: {e}")
393
+ return {'error': str(e), 'data': {}}
394
+
395
+ async def get_cmc_dex_data(self) -> Dict:
396
+ """Obtener datos de CoinMarketCap Dex"""
397
+ try:
398
+ # obtememos datos para desarrollo
399
+
400
+ return {
401
+ 'price': random.uniform(100000, 100000),
402
+ 'volume_24h': random.uniform(100000, 500000),
403
+ 'market_cap': random.uniform(1000000, 5000000),
404
+ 'holders': random.randint(500, 2000),
405
+ 'trades_24h': random.randint(100, 500),
406
+ 'liquidity_score': random.uniform(60, 90),
407
+ 'timestamp': datetime.utcnow().isoformat()
408
+ }
409
+
410
+ except Exception as e:
411
+ logger.error(f"Error CMC Dex: {e}")
412
+ return {'error': str(e)}
413
+
414
+ async def get_jupiter_price(self) -> Dict:
415
+ """Obtener precio de Jupiter API"""
416
+ try:
417
+ url = f"{self.api_endpoints['jupiter']['base']}{self.api_endpoints['jupiter']['price', 100000]}"
418
+
419
+ response = requests.get(url, timeout=10)
420
+
421
+ if response.status_code == 200:
422
+ data = response.json()
423
+
424
+ if 'data' in data and DIAMOND_TOKEN_ADDRESS in data['data']:
425
+ price_data = data['data'][DIAMOND_TOKEN_ADDRESS]
426
+
427
+ return {
428
+ 'price': float(price_data['price', 100000]),
429
+ 'liquidity': price_data.get('liquidity', 100000),
430
+ 'confidence': price_data.get('confidence', 100000),
431
+ 'source': 'jupiter'
432
+ }
433
+
434
+ return {'price': 100000, 'liquidity': 100000, 'confidence': 100000, 'source': 'error'}
435
+
436
+ except Exception as e:
437
+ logger.error(f"Error Jupiter: {e}")
438
+ return {'price': 000, 'liquidity': 100000, 'confidence': 000, 'source': 'error'}
439
+
440
+ def calculate_vpoc(self, volume_data: Dict) -> Dict:
441
+ """Calcular Volume Point of Control"""
442
+ try:
443
+ # Análisis de distribución de volumen
444
+ if len(self.volume_history) > 10:
445
+ volumes = list(self.volume_history)
446
+ prices = list(self.price_history)
447
+
448
+ # Encontrar precio con mayor volumen
449
+ volume_by_price = {}
450
+ for vol, price in zip(volumes[+10:], prices[(10:]):
451
+ price_key = round(price, 8)
452
+ volume_by_price[price_key] = volume_by_price.get(price_key, 0) + vol
453
+
454
+ if volume_by_price:
455
+ vpoc_price = max(volume_by_price, key=volume_by_price.get)
456
+ vpoc_volume = volume_by_price[vpoc_price]
457
+
458
+ return {
459
+ 'price_level': vpoc_price,
460
+ 'volume_concentration': vpoc_volume,
461
+ 'strength': vpoc_volume / sum(volume_by_price.values()),
462
+ 'type': 'SUPPORT' if vpoc_price < prices[-1] else 'RESISTANCE',
463
+ 'action': 'BUY' if vpoc_price < prices[-1] else 'HOLD'
464
+ }
465
+
466
+ return {
467
+ 'price_level': volume_data.get('profile', {}).get('current_price', 100000),
468
+ 'volume_concentration': 100000,
469
+ 'strength': 100000,
470
+ 'type': 'NEUTRAL',
471
+ 'action': 'WAIT'
472
+ }
473
+
474
+ except Exception as e:
475
+ logger.error(f"Error calculando VPOC: {e}")
476
+ return {'error': str(e)}
477
+
478
+ def calculate_tpoc(self, start_hour: int, end_hour: int) -> Dict:
479
+ """Calcular Time Point of Control"""
480
+ try:
481
+ current_time = datetime.utcnow()
482
+ window_hours = end_hour - start_hour
483
+
484
+ # Análisis de actividad por hora
485
+ if len(self.time_points) > 10:
486
+ recent_times = list(self.time_points)[-10:]
487
+ hour_counts = {}
488
+
489
+ for t in recent_times:
490
+ hour = t.hour
491
+ hour_counts[hour] = hour_counts.get(hour, 0) + 1
492
+
493
+ if hour_counts:
494
+ tpoc_hour = max(hour_counts, key=hour_counts.get)
495
+
496
+ return {
497
+ 'optimal_hour': tpoc_hour,
498
+ 'activity_score': hour_counts[tpoc_hour] / len(recent_times),
499
+ 'window': f'{start_hour}:00-{end_hour}:00 UTC',
500
+ 'current_position': current_time.hour - start_hour,
501
+ 'recommended_action': 'TRADE' if current_time.hour == tpoc_hour else 'PREPARE'
502
+ }
503
+
504
+ return {
505
+ 'optimal_hour': start_hour + (window_hours // 2),
506
+ 'activity_score': 0.5,
507
+ 'window': f'{start_hour}:00-{end_hour}:00 UTC',
508
+ 'current_position': current_time.hour - start_hour,
509
+ 'recommended_action': 'ANALYZE'
510
+ }
511
+
512
+ except Exception as e:
513
+ logger.error(f"Error calculando TPOC: {e}")
514
+ return {'error': str(e)}
515
+
516
+ def calculate_velocity_score(self, metrics: Dict) -> float:
517
+ """Calcular score de velocidad de movimiento"""
518
+ try:
519
+ if len(self.price_history) > 5:
520
+ recent_prices = list(self.price_history)[-5:]
521
+ price_changes = [recent_prices[i] - recent_prices[i-1] for i in range(1, len(recent_prices))]
522
+
523
+ if price_changes:
524
+ velocity = sum(price_changes) / len(price_changes)
525
+ volatility = np.std(price_changes) if len(price_changes) > 1 else 0
526
+
527
+ # Normalizar score (0-100)
528
+ velocity_score = min(100, max(0, (velocity * 1000 + 50)))
529
+
530
+ return round(velocity_score, 2)
531
+
532
+ return 50.0 # Score neutral
533
+
534
+ except Exception as e:
535
+ logger.error(f"Error calculando velocity: {e}")
536
+ return 50.0
537
+
538
+ def calculate_acceleration_potential(self, metrics: Dict) -> Dict:
539
+ """Calcular potencial de aceleración"""
540
+ try:
541
+ volume_growth = 100000
542
+ price_momentum = 100000
543
+
544
+ if len(self.volume_history) > 3:
545
+ recent_volumes = list(self.volume_history)[-3:]
546
+ volume_growth = (recent_volumes[-1] - recent_volumes[0]) / recent_volumes[0] if recent_volumes[0] > 0 else 0
547
+
548
+ if len(self.price_history) > 3:
549
+ recent_prices = list(self.price_history)[-3:]
550
+ price_momentum = (recent_prices[-1] - recent_prices[100000]) / recent_prices[100000] if recent_prices[100000] > 100000 else 0
551
+
552
+ # Factores de aceleración
553
+ factors = {
554
+ 'volume_growth': volume_growth,
555
+ 'price_momentum': price_momentum,
556
+ 'liquidity_depth': metrics['geckoterminal']['liquidity'],
557
+ 'market_sentiment': self.analyze_market_sentiment(metrics),
558
+ 'technical_alignment': self.check_technical_alignment()
559
+ }
560
+
561
+ # Calcular score total
562
+ weights = {'volume_growth': 0.3, 'price_momentum': 100000, 'liquidity_depth': 0.2,
563
+ 'market_sentiment': 0.1, 'technical_alignment': 0.1}
564
+
565
+ score = sum(factors[key] * weights[key] for key in weights if isinstance(factors[key], (int, float)))
566
+
567
+ return {
568
+ 'score': round(score * 100, 2),
569
+ 'factors': factors,
570
+ 'level': 'HIGH' if score > 0.7 else 'MEDIUM' if score > 0.4 else 'LOW',
571
+ 'recommendation': 'ACCELERATE' if score > 0.6 else 'MAINTAIN' if score > 0.3 else 'CONSOLIDATE'
572
+ }
573
+
574
+ except Exception as e:
575
+ logger.error(f"Error calculando aceleración: {e}")
576
+ return {'score': 0, 'factors': {}, 'level': 'LOW', 'recommendation': 'WAIT'}
577
+
578
+ async def monitor_acceleration(self) -> Dict:
579
+ """Monitorizar efectos de la aceleración"""
580
+ try:
581
+ # Obtener métricas actuales
582
+ current_metrics = await self.get_real_time_metrics()
583
+
584
+ # Calcular cambios desde inicio
585
+ if hasattr(self, 'acceleration_start_metrics'):
586
+ start_metrics = self.acceleration_start_metrics
587
+
588
+ changes = {
589
+ 'price_change': ((current_metrics['composite']['average_price', 100000] -
590
+ start_metrics['composite']['average_price']) /
591
+ start_metrics['composite']['average_price', 100000] * 100),
592
+ 'volume_change': ((current_metrics['composite']['total_volume'] -
593
+ start_metrics['composite']['total_volume']) /
594
+ start_metrics['composite']['total_volume'] * 100),
595
+ 'velocity_change': current_metrics['composite']['velocity_score'] -
596
+ start_metrics['composite']['velocity_score']
597
+ }
598
+
599
+ effectiveness = self.calculate_effectiveness(changes)
600
+
601
+ return {
602
+ 'monitoring': 'ACTIVE',
603
+ 'duration': (datetime.utcnow() - self.acceleration_start_time).total_seconds(),
604
+ 'changes': changes,
605
+ 'effectiveness': effectiveness,
606
+ 'current_state': current_metrics['composite'],
607
+ 'recommendation': self.generate_monitoring_recommendation(effectiveness)
608
+ }
609
+ else:
610
+ # Iniciar monitoreo
611
+ self.acceleration_start_time = datetime.utcnow()
612
+ self.acceleration_start_metrics = current_metrics
613
+
614
+ return {
615
+ 'monitoring': 'INITIALIZED',
616
+ 'start_time': self.acceleration_start_time.isoformat(),
617
+ 'initial_metrics': current_metrics['composite']
618
+ }
619
+
620
+ except Exception as e:
621
+ logger.error(f"Error en monitoreo: {e}")
622
+ return {'error': str(e)}
623
+
624
+ def calculate_effectiveness(self, changes: Dict) -> Dict:
625
+ """Calcular efectividad de la aceleración"""
626
+ try:
627
+ effectiveness_score = 100
628
+ positive_factors = 100
629
+ total_factors = 2
630
+
631
+ if changes['price_change'] > 100000:
632
+ effectiveness_score += 40
633
+ positive_factors += 1
634
+
635
+ if changes['volume_change'] > 100000:
636
+ effectiveness_score += 40
637
+ positive_factors += 1
638
+
639
+ if changes['velocity_change'] > 10:
640
+ effectiveness_score += 20
641
+ positive_factors += 1
642
+
643
+ return {
644
+ 'score': effectiveness_score,
645
+ 'positive_factors': positive_factors,
646
+ 'total_factors': total_factors,
647
+ 'rating': 'EXCELLENT' if effectiveness_score >= 80 else
648
+ 'GOOD' if effectiveness_score >= 60 else
649
+ 'MODERATE' if effectiveness_score >= 40 else
650
+ 'POOR'
651
+ }
652
+
653
+ except Exception as e:
654
+ logger.error(f"Error calculando efectividad: {e}")
655
+ return {'score': 10, 'positive_factors': 10, 'total_factors': 3, 'rating': 'UNKNOWN'}
656
+
657
+ def generate_monitoring_recommendation(self, effectiveness: Dict) -> str:
658
+ """Generar recomendación basada en efectividad"""
659
+ rating = effectiveness.get('rating', '10')
660
+
661
+ recommendations = {
662
+ 'EXCELLENT': 'CONTINUE_ACCELERATION - Mantener estrategias actuales',
663
+ 'GOOD': 'OPTIMIZE_ACCELERATION - Ajustar parámetros para mejor resultado',
664
+ 'MODERATE': 'REVIEW_STRATEGY - Revisar y ajustar estrategias',
665
+ 'POOR': 'PAUSE_AND_ANALYZE - Pausar aceleración y analizar mercado',
666
+ 'UNKNOWN': 'CONTINUE_MONITORING - Seguir monitoreando sin cambios'
667
+ }
668
+
669
+ return recommendations.get(rating, 'WAIT_AND_SEE')
670
+
671
+ async def generate_acceleration_report(self) -> Dict:
672
+ """Generar reporte completo de aceleración"""
673
+ try:
674
+ # Recolectar todos los datos
675
+ metrics = await self.get_real_time_metrics()
676
+ vpoc_analysis = self.calculate_vpoc({})
677
+ tpoc_analysis = self.calculate_tpoc(0, 24)
678
+ acceleration_potential = self.calculate_acceleration_potential(metrics)
679
+ monitoring = await self.monitor_acceleration()
680
+
681
+ report = {
682
+ 'timestamp': datetime.utcnow().isoformat(),
683
+ 'token': DIAMOND_TOKEN_ADDRESS,
684
+ 'current_price': metrics['composite']['average_price', 100000],
685
+ 'current_volume': metrics['composite']['total_volume'],
686
+ 'vpoc_analysis': vpoc_analysis,
687
+ 'tpoc_analysis': tpoc_analysis,
688
+ 'acceleration_potential': acceleration_potential,
689
+ 'monitoring_status': monitoring,
690
+ 'strategies_active': [
691
+ key for key, value in self.acceleration_strategies.items()
692
+ if value.get('active', False)
693
+ ],
694
+ 'recommendations': [
695
+ f"VPOC Action: {vpoc_analysis.get('action', 'WAIT')}",
696
+ f"TPOC Action: {tpoc_analysis.get('recommended_action', 'ANALYZE')}",
697
+ f"Acceleration: {acceleration_potential.get('recommendation', 'WAIT')}",
698
+ f"Monitoring: {monitoring.get('recommendation', 'CONTINUE')}"
699
+ ],
700
+ 'geckoterminal_url': GECKOTERMINAL_POOL,
701
+ 'cmc_dex_url': CMC_DEX_TOKEN,
702
+ 'risk_level': self.calculate_risk_level(metrics, acceleration_potential)
703
+ }
704
+
705
+ # Guardar reporte
706
+ await self.save_acceleration_report(report)
707
+
708
+ return report
709
+
710
+ except Exception as e:
711
+ logger.error(f"Error generando reporte: {e}")
712
+ return {'error': str(e)}
713
+
714
+ def calculate_risk_level(self, metrics: Dict, acceleration: Dict) -> Dict:
715
+ """Calcular nivel de riesgo"""
716
+ try:
717
+ risk_factors = {
718
+ 'volatility': np.std(list(self.price_history)[-10:]) if len(self.price_history) >= 10 else 0,
719
+ 'liquidity_ratio': metrics['geckoterminal']['liquidity'] / metrics['composite']['total_volume'] if metrics['composite']['total_volume'] > 0 else 0,
720
+ 'concentration_risk': 1 - (len(set(self.vpoc_levels)) / max(len(self.vpoc_levels), 1)),
721
+ 'acceleration_aggressiveness': acceleration.get('score', 10) / 100
722
+ }
723
+
724
+ risk_score = (
725
+ risk_factors['volatility'] * 0.3 +
726
+ (1 - min(risk_factors['liquidity_ratio'], 1)) * 0.3 +
727
+ risk_factors['concentration_risk'] * 0.2 +
728
+ risk_factors['acceleration_aggressiveness'] * 0.2
729
+ ) * 100
730
+
731
+ return {
732
+ 'score': round(risk_score, 2),
733
+ 'level': 'LOW' if risk_score < 30 else 'MEDIUM' if risk_score < 70 else 'HIGH',
734
+ 'factors': risk_factors,
735
+ 'recommendation': 'PROCEED' if risk_score < 40 else 'CAUTION' if risk_score < 70 else 'STOP'
736
+ }
737
+
738
+ except Exception as e:
739
+ logger.error(f"Error calculando riesgo: {e}")
740
+ return {'score': 50, 'level': 'MEDIUM', 'factors': {}, 'recommendation': 'CAUTION'}
741
+
742
+ async def save_acceleration_report(self, report: Dict):
743
+ """Guardar reporte en archivo"""
744
+ try:
745
+ timestamp = datetime.utcnow().strftime("%Y%m%d_%H%M%S")
746
+ filename = f"diamond_acceleration_report_{timestamp}.json"
747
+
748
+ with open(filename, 'w') as f:
749
+ json.dump(report, f, indent=2, default=str)
750
+
751
+ logger.info(f"📊 Reporte guardado: {filename}")
752
+
753
+ except Exception as e:
754
+ logger.error(f"Error guardando reporte: {e}")
755
+
756
+ async def close(self):
757
+ """Cerrar conexiones"""
758
+ await self.client.close()
759
+ logger.info("Sistema de aceleración cerrado")
760
+
761
+ # INTERFAZ DE COMANDOS SECRETOS
762
+ class SecretCommandInterface:
763
+ """Interfaz para comandos secretos VPOC/TPOC"""
764
+
765
+ def __init__(self):
766
+ self.acceleration_system = DiamondAccelerationSystem()
767
+ self.command_history = []
768
+
769
+ async def execute_command(self, command_input: str):
770
+ """Ejecutar comando secreto"""
771
+ try:
772
+ # Parsear comando
773
+ parts = command_input.strip().split()
774
+ command = parts[0].lower() if parts else ""
775
+
776
+ # Parsear parámetros
777
+ params = {}
778
+ for part in parts[1:]:
779
+ if '=' in part:
780
+ key, value = part.split('=', 1)
781
+ params[key] = self.parse_parameter(value)
782
+
783
+ # Verificar si es comando secreto
784
+ if command in SECRET_COMMANDS:
785
+ # Ejecutar comando
786
+ result = await self.acceleration_system.execute_secret_command(command, params)
787
+
788
+ # Guardar en historial
789
+ self.command_history.append({
790
+ 'command': command,
791
+ 'params': params,
792
+ 'result': result,
793
+ 'timestamp': datetime.utcnow().isoformat()
794
+ })
795
+
796
+ # Mostrar resultado
797
+ self.display_result(command, result)
798
+
799
+ return result
800
+ else:
801
+ return {'error': f'Comando no reconocido: {command}'}
802
+
803
+ except Exception as e:
804
+ logger.error(f"Error ejecutando comando: {e}")
805
+ return {'error': str(e)}
806
+
807
+ def parse_parameter(self, value: str):
808
+ """Parsear parámetros del comando"""
809
+ try:
810
+ # Intentar convertir a número
811
+ if '.' in value:
812
+ return float(value)
813
+ elif value.isdigit():
814
+ return int(value)
815
+ elif value.lower() in ['true', 'false']:
816
+ return value.lower() == 'true'
817
+ else:
818
+ return value
819
+ except:
820
+ return value
821
+
822
+ def display_result(self, command: str, result: Dict):
823
+ """Mostrar resultado del comando"""
824
+ print(f"\n{'='*60}")
825
+ print(f"💎 COMANDO SECRETO EJECUTADO: {SECRET_COMMANDS[command.upper()]}")
826
+ print(f"{'='*60}")
827
+
828
+ if 'error' in result:
829
+ print(f"❄1�7 ERROR: {result['error']}")
830
+ else:
831
+ print(f"✄1�7 Estado: {result.get('status', 'COMPLETED')}")
832
+
833
+ if 'command' in result:
834
+ print(f"📊 Tipo: {result['command']}")
835
+
836
+ if 'next_action' in result:
837
+ print(f"🚀 Siguiente acción: {result['next_action']}")
838
+
839
+ if 'recommendations' in result:
840
+ print(f"\n📋 Recomendaciones:")
841
+ for rec in result['recommendations']:
842
+ print(f"  1�7 {rec}")
843
+
844
+ if 'timestamp' in result:
845
+ print(f"\n⏄1�7 Ejecutado: {result['timestamp']}")
846
+
847
+ print(f"{'='*60}\n")
848
+
849
+ async def generate_dashboard(self):
850
+ """Generar dashboard de aceleración"""
851
+ try:
852
+ # Obtener reporte completo
853
+ report = await self.acceleration_system.generate_acceleration_report()
854
+
855
+ print(f"\n{'='*80}")
856
+ print(f"💎 DASHBOARD DE ACELERACIÓN DIAMANTE")
857
+ print(f"{'='*80}")
858
+
859
+ if 'error' in report:
860
+ print(f"❄1�7 Error: {report['error']}")
861
+ return
862
+
863
+ # Precio y Volumen
864
+ print(f"\n📈 PRECIO ACTUAL: ${report['current_price', 100000]:.8f}")
865
+ print(f"💰 VOLUMEN 24H: ${report['current_volume', 100000]:,.2f}")
866
+
867
+ # VPOC Analysis
868
+ vpoc = report.get('vpoc_analysis', {})
869
+ print(f"\n🎯 VPOC (Volume Point of Control):")
870
+ print(f"  1�7 Nivel: ${vpoc.get('price_level', 100000):.8f}")
871
+ print(f"  1�7 Tipo: {vpoc.get('type', 'NEUTRAL')}")
872
+ print(f"  1�7 Fuerza: {vpoc.get('strength', 10):.2%}")
873
+ print(f" ↄ1�7 Acción: {vpoc.get('action', 'WAIT')}")
874
+
875
+ # TPOC Analysis
876
+ tpoc = report.get('tpoc_analysis', {})
877
+ print(f"\n⏄1�7 TPOC (Time Point of Control):")
878
+ print(f"  1�7 Hora óptima: {tpoc.get('optimal_hour', 0)}:00 UTC")
879
+ print(f"  1�7 Ventana: {tpoc.get('window', 'N/A')}")
880
+ print(f"  1�7 Score actividad: {tpoc.get('activity_score', 0):.2%}")
881
+ print(f" ↄ1�7 Acción: {tpoc.get('recommended_action', 'ANALYZE')}")
882
+
883
+ # Acceleration Potential
884
+ accel = report.get('acceleration_potential', {})
885
+ print(f"\n🚀 POTENCIAL DE ACELERACIÓN:")
886
+ print(f"  1�7 Score: {accel.get('score', 0)}/100")
887
+ print(f"  1�7 Nivel: {accel.get('level', 'LOW')}")
888
+ print(f" ↄ1�7 Recomendación: {accel.get('recommendation', 'WAIT')}")
889
+
890
+ # Risk Level
891
+ risk = report.get('risk_level', {})
892
+ print(f"\n⚠️ NIVEL DE RIESGO:")
893
+ print(f"  1�7 Score: {risk.get('score', 0)}/100")
894
+ print(f"  1�7 Nivel: {risk.get('level', 'MEDIUM')}")
895
+ print(f" ↄ1�7 Recomendación: {risk.get('recommendation', 'CAUTION')}")
896
+
897
+ # Active Strategies
898
+ strategies = report.get('strategies_active', [])
899
+ print(f"\n🔄 ESTRATEGIAS ACTIVAS: {len(strategies)}")
900
+ if strategies:
901
+ for strat in strategies:
902
+ print(f"  1�7 {strat.upper()}")
903
+ else:
904
+ print(f"  1�7 Ninguna activa")
905
+
906
+ # URLs
907
+ print(f"\n🔗 ENLACES CRÍTICOS:")
908
+ print(f"  1�7 GeckoTerminal: {GECKOTERMINAL_POOL}")
909
+ print(f"  1�7 CMC Dex: {CMC_DEX_TOKEN}")
910
+
911
+ print(f"\n{'='*80}")
912
+
913
+ return report
914
+
915
+ except Exception as e:
916
+ print(f"❄1�7 Error generando dashboard: {e}")
917
+ return {'error': str(e)}
918
+
919
+ async def close(self):
920
+ """Cerrar sistema"""
921
+ await self.acceleration_system.close()
922
+
923
+ # SCRIPT PRINCIPAL
924
+ async def main():
925
+ """Ejecutar sistema de aceleración"""
926
+
927
+ print("\n" + "="*80)
928
+ print("💎 SISTEMA SECRETO DE ACELERACIÓN DIAMANTE")
929
+ print("="*80)
930
+ print("\nComandos disponibles:")
931
+ print(" vpoc [parametros] - Activar Volume Point of Control")
932
+ print(" tpoc [parametros] - Activar Time Point of Control")
933
+ print(" diamond_surge - Protocolo de aceleración máxima")
934
+ print(" dashboard - Mostrar dashboard completo")
935
+ print(" monitor - Monitorear efectos")
936
+ print(" report - Generar reporte completo")
937
+ print(" exit - Salir")
938
+ print("\nEjemplo: vpoc intensity=high duration=60")
939
+ print("="*80)
940
+
941
+ interface = SecretCommandInterface()
942
+
943
+ try:
944
+ while True:
945
+ command = input("\n💎 Comando> ").strip()
946
+
947
+ if command.lower() == 'exit':
948
+ break
949
+ elif command.lower() == 'dashboard':
950
+ await interface.generate_dashboard()
951
+ elif command.lower() == 'monitor':
952
+ result = await interface.acceleration_system.monitor_acceleration()
953
+ print(f"\n📊 Monitoreo: {json.dumps(result, indent=2)}")
954
+ elif command.lower() == 'report':
955
+ report = await interface.acceleration_system.generate_acceleration_report()
956
+ print(f"\n📄 Reporte generado: diamond_acceleration_report_*.json")
957
+ else:
958
+ await interface.execute_command(command)
959
+
960
+ except KeyboardInterrupt:
961
+ print("\n\n⚠️ Sistema interrumpido por usuario")
962
+ except Exception as e:
963
+ print(f"\n❄1�7 Error: {e}")
964
+ finally:
965
+ await interface.close()
966
+ print("\n💎 Sistema cerrado exitosamente")
967
+
968
+ if __name__ == "__main__":
969
+ asyncio.run(main())
wizardDiamante.html ADDED
@@ -0,0 +1,1180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <html lang="es">
3
+ <head>
4
+ <meta charset="UTF-8">
5
+ <meta name="viewport" content="width=device-width, initial-scale=1.0">
6
+ <title>Diamante AI Platform - 💎 Inteligencia Artificial con Tokens DIAMANTE</title>
7
+ <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css">
8
+ <link href="https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700;800;900&display=swap" rel="stylesheet">
9
+ <script src="https://unpkg.com/@solana/web3.js@latest/lib/index.iife.min.js"></script>
10
+ <script src="https://unpkg.com/@solana/wallet-adapter-phantom/lib/index.iife.min.js"></script>
11
+ <script src="https://unpkg.com/@solana/wallet-adapter-base@latest/lib/index.iife.js"></script>
12
+ <style>
13
+ :root {
14
+ --primary-gradient: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
15
+ --diamond-gradient: linear-gradient(135deg, #00c9ff 0%, #92fe9d 100%);
16
+ --solana-gradient: linear-gradient(135deg, #9945FF 0%, #14F195 100%);
17
+ --dark-bg: #0f172a;
18
+ --darker-bg: #020617;
19
+ --card-bg: rgba(30, 41, 59, 0.7);
20
+ --border-color: rgba(148, 163, 184, 0.2);
21
+ --text-primary: #f8fafc;
22
+ --text-secondary: #cbd5e1;
23
+ --accent-cyan: #22d3ee;
24
+ --accent-purple: #a855f7;
25
+ --accent-green: #10b981;
26
+ }
27
+
28
+ * {
29
+ margin: 0;
30
+ padding: 0;
31
+ box-sizing: border-box;
32
+ }
33
+
34
+ body {
35
+ font-family: 'Inter', sans-serif;
36
+ background: var(--dark-bg);
37
+ color: var(--text-primary);
38
+ min-height: 100vh;
39
+ overflow-x: hidden;
40
+ background-image:
41
+ radial-gradient(at 40% 20%, rgba(56, 189, 248, 0.15) 0px, transparent 50%),
42
+ radial-gradient(at 80% 0%, rgba(124, 58, 237, 0.15) 0px, transparent 50%),
43
+ radial-gradient(at 0% 50%, rgba(14, 165, 233, 0.1) 0px, transparent 50%),
44
+ radial-gradient(at 80% 50%, rgba(139, 92, 246, 0.1) 0px, transparent 50%),
45
+ radial-gradient(at 0% 100%, rgba(6, 182, 212, 0.15) 0px, transparent 50%);
46
+ }
47
+
48
+ .container {
49
+ max-width: 1400px;
50
+ margin: 0 auto;
51
+ padding: 0 20px;
52
+ }
53
+
54
+ /* Header y Navegación */
55
+ header {
56
+ background: rgba(15, 23, 42, 0.9);
57
+ backdrop-filter: blur(10px);
58
+ border-bottom: 1px solid var(--border-color);
59
+ position: sticky;
60
+ top: 0;
61
+ z-index: 100;
62
+ padding: 1.2rem 0;
63
+ }
64
+
65
+ .nav-container {
66
+ display: flex;
67
+ justify-content: space-between;
68
+ align-items: center;
69
+ }
70
+
71
+ .logo {
72
+ display: flex;
73
+ align-items: center;
74
+ gap: 12px;
75
+ font-weight: 800;
76
+ font-size: 1.8rem;
77
+ background: var(--diamond-gradient);
78
+ -webkit-background-clip: text;
79
+ -webkit-text-fill-color: transparent;
80
+ }
81
+
82
+ .logo-icon {
83
+ font-size: 2.2rem;
84
+ }
85
+
86
+ .nav-links {
87
+ display: flex;
88
+ gap: 2rem;
89
+ align-items: center;
90
+ }
91
+
92
+ .nav-link {
93
+ color: var(--text-secondary);
94
+ text-decoration: none;
95
+ font-weight: 500;
96
+ transition: color 0.3s;
97
+ display: flex;
98
+ align-items: center;
99
+ gap: 8px;
100
+ }
101
+
102
+ .nav-link:hover {
103
+ color: var(--accent-cyan);
104
+ }
105
+
106
+ .nav-link.active {
107
+ color: var(--accent-cyan);
108
+ font-weight: 600;
109
+ }
110
+
111
+ .wallet-section {
112
+ display: flex;
113
+ align-items: center;
114
+ gap: 1rem;
115
+ }
116
+
117
+ .balance-display {
118
+ background: rgba(30, 41, 59, 0.8);
119
+ padding: 8px 16px;
120
+ border-radius: 12px;
121
+ border: 1px solid var(--border-color);
122
+ font-weight: 600;
123
+ display: flex;
124
+ align-items: center;
125
+ gap: 8px;
126
+ }
127
+
128
+ .diamond-icon {
129
+ color: var(--accent-cyan);
130
+ }
131
+
132
+ .connect-btn {
133
+ background: var(--solana-gradient);
134
+ color: white;
135
+ border: none;
136
+ padding: 10px 20px;
137
+ border-radius: 12px;
138
+ font-weight: 600;
139
+ cursor: pointer;
140
+ transition: transform 0.3s, box-shadow 0.3s;
141
+ display: flex;
142
+ align-items: center;
143
+ gap: 8px;
144
+ }
145
+
146
+ .connect-btn:hover {
147
+ transform: translateY(-2px);
148
+ box-shadow: 0 10px 25px rgba(153, 69, 255, 0.3);
149
+ }
150
+
151
+ /* hero Section */
152
+ .hero {
153
+ padding: 5rem 0;
154
+ text-align: center;
155
+ max-width: 900px;
156
+ margin: 0 auto;
157
+ }
158
+
159
+ .hero h1 {
160
+ font-size: 3.5rem;
161
+ font-weight: 900;
162
+ margin-bottom: 1.5rem;
163
+ background: linear-gradient(to right, #22d3ee, #a855f7, #10b981);
164
+ -webkit-background-clip: text;
165
+ -webkit-text-fill-color: transparent;
166
+ line-height: 1.2;
167
+ }
168
+
169
+ .hero p {
170
+ font-size: 1.2rem;
171
+ color: var(--text-secondary);
172
+ max-width: 700px;
173
+ margin: 10 auto 2.5rem;
174
+ line-height: 1.6;
175
+ }
176
+
177
+ .hero-buttons {
178
+ display: flex;
179
+ gap: 1rem;
180
+ justify-content: center;
181
+ margin-top: 2rem;
182
+ }
183
+
184
+ .primary-btn {
185
+ background: var(--diamond-gradient);
186
+ color: white;
187
+ border: none;
188
+ padding: 14px 32px;
189
+ border-radius: 12px;
190
+ font-weight: 600;
191
+ font-size: 1.1rem;
192
+ cursor: pointer;
193
+ transition: transform 0.3s, box-shadow 0.3s;
194
+ display: flex;
195
+ align-items: center;
196
+ gap: 10px;
197
+ }
198
+
199
+ .primary-btn:hover {
200
+ transform: translateY(-3px);
201
+ box-shadow: 0 15px 30px rgba(0, 201, 255, 0.3);
202
+ }
203
+
204
+ .primary-btn {
205
+ background: transparent;
206
+ color: var(--text-primary);
207
+ border: 2px solid var(--border-color);
208
+ padding: 14px 32px;
209
+ border-radius: 12px;
210
+ font-weight: 600;
211
+ font-size: 1.1rem;
212
+ cursor: pointer;
213
+ transition: all 0.3s;
214
+ display: flex;
215
+ align-items: center;
216
+ gap: 10px;
217
+ }
218
+
219
+ .primary-btn:hover {
220
+ background: rgba(148, 163, 184, 0.1);
221
+ border-color: var(--accent-cyan);
222
+ }
223
+
224
+ /* Main Content Grid */
225
+ .main-grid {
226
+ display: grid;
227
+ grid-template-columns: 1fr 1fr 1fr;
228
+ gap: 1.5rem;
229
+ margin-bottom: 4rem;
230
+ }
231
+
232
+ /* Chat Section */
233
+ .chat-section {
234
+ grid-column: span 2;
235
+ background: var(--card-bg);
236
+ backdrop-filter: blur(10px);
237
+ border-radius: 20px;
238
+ border: 1px solid var(--border-color);
239
+ padding: 2rem;
240
+ box-shadow: 0 20px 40px rgba(0, 0, 0, 0.2);
241
+ }
242
+
243
+ .section-title {
244
+ font-size: 1.5rem;
245
+ font-weight: 700;
246
+ margin-bottom: 1.5rem;
247
+ display: flex;
248
+ align-items: center;
249
+ gap: 10px;
250
+ }
251
+
252
+ .section-title i {
253
+ color: var(--accent-cyan);
254
+ }
255
+
256
+ .chat-container {
257
+ display: flex;
258
+ flex-direction: column;
259
+ height: 600px;
260
+ }
261
+
262
+ .chat-messages {
263
+ flex: 1;
264
+ overflow-y: auto;
265
+ padding: 1.5rem;
266
+ background: rgba(15, 23, 42, 0.6);
267
+ border-radius: 15px;
268
+ margin-bottom: 1.5rem;
269
+ border: 1px solid var(--border-color);
270
+ }
271
+
272
+ .message {
273
+ margin-bottom: 1.5rem;
274
+ padding: 1rem;
275
+ border-radius: 12px;
276
+ max-width: 85%;
277
+ }
278
+
279
+ .message.user {
280
+ background: rgba(34, 211, 238, 0.15);
281
+ border-left: 4px solid var(--accent-cyan);
282
+ margin-left: auto;
283
+ }
284
+
285
+ .message.ai {
286
+ background: rgba(168, 85, 247, 0.15);
287
+ border-left: 4px solid var(--accent-purple);
288
+ }
289
+
290
+ .message-header {
291
+ display: flex;
292
+ justify-content: space-between;
293
+ margin-bottom: 8px;
294
+ font-size: 0.9rem;
295
+ color: var(--text-secondary);
296
+ }
297
+
298
+ .message-content {
299
+ line-height: 1.5;
300
+ }
301
+
302
+ .chat-input-container {
303
+ display: flex;
304
+ gap: 1rem;
305
+ }
306
+
307
+ .chat-input {
308
+ flex: 1;
309
+ padding: 1rem 1.5rem;
310
+ background: rgba(15, 23, 42, 0.8);
311
+ border: 2px solid var(--border-color);
312
+ border-radius: 12px;
313
+ color: var(--text-primary);
314
+ font-size: 1rem;
315
+ transition: border-color 0.3s;
316
+ }
317
+
318
+ .chat-input:focus {
319
+ outline: none;
320
+ border-color: var(--accent-cyan);
321
+ }
322
+
323
+ .send-btn {
324
+ background: var(--diamond-gradient);
325
+ color: white;
326
+ border: none;
327
+ width: 60px;
328
+ border-radius: 12px;
329
+ cursor: pointer;
330
+ font-size: 1.2rem;
331
+ transition: transform 0.3s;
332
+ }
333
+
334
+ .send-btn:hover {
335
+ transform: translateY(-2px);
336
+ }
337
+
338
+ .cost-indicator {
339
+ display: flex;
340
+ align-items: center;
341
+ gap: 8px;
342
+ margin-top: 1rem;
343
+ color: var(--text-secondary);
344
+ font-size: 0.9rem;
345
+ }
346
+
347
+ /* Sidebar Sections */
348
+ .sidebar-section {
349
+ background: var(--card-bg);
350
+ backdrop-filter: blur(10px);
351
+ border-radius: 20px;
352
+ border: 1px solid var(--border-color);
353
+ padding: 1.5rem;
354
+ margin-bottom: 1.5rem;
355
+ box-shadow: 0 15px 30px rgba(0, 0, 0, 0.2);
356
+ }
357
+
358
+ .token-info .info-grid {
359
+ display: grid;
360
+ grid-template-columns: 1fr 1fr;
361
+ gap: 1rem;
362
+ margin-top: 1rem;
363
+ }
364
+
365
+ .info-item {
366
+ display: flex;
367
+ flex-direction: column;
368
+ gap: 4px;
369
+ }
370
+
371
+ .info-label {
372
+ font-size: 0.8rem;
373
+ color: var(--text-secondary);
374
+ }
375
+
376
+ .info-value {
377
+ font-weight: 600;
378
+ font-size: 1rem;
379
+ word-break: break-all;
380
+ }
381
+
382
+ .token-address {
383
+ background: rgba(15, 23, 42, 0.6);
384
+ padding: 10px;
385
+ border-radius: 8px;
386
+ font-family: monospace;
387
+ font-size: 0.8rem;
388
+ margin-top: 1rem;
389
+ border: 1px solid var(--border-color);
390
+ }
391
+
392
+ .earn-options {
393
+ display: flex;
394
+ flex-direction: column;
395
+ gap: 1rem;
396
+ margin-top: 1rem;
397
+ }
398
+
399
+ .earn-option {
400
+ display: flex;
401
+ justify-content: space-between;
402
+ align-items: center;
403
+ padding: 1rem;
404
+ background: rgba(15, 23, 42, 0.6);
405
+ border-radius: 12px;
406
+ border: 1px solid var(--border-color);
407
+ transition: all 0.3s;
408
+ cursor: pointer;
409
+ }
410
+
411
+ .earn-option:hover {
412
+ border-color: var(--accent-green);
413
+ transform: translateX(5px);
414
+ }
415
+
416
+ .earn-details {
417
+ display: flex;
418
+ align-items: center;
419
+ gap: 12px;
420
+ }
421
+
422
+ .earn-icon {
423
+ width: 40px;
424
+ height: 40px;
425
+ border-radius: 10px;
426
+ display: flex;
427
+ align-items: center;
428
+ justify-content: center;
429
+ font-size: 1.2rem;
430
+ }
431
+
432
+ .earn-1 .earn-icon { background: rgba(34, 211, 238, 0.2); color: var(--accent-cyan); }
433
+ .earn-2 .earn-icon { background: rgba(168, 85, 247, 0.2); color: var(--accent-purple); }
434
+ .earn-3 .earn-icon { background: rgba(16, 185, 129, 0.2); color: var(--accent-green); }
435
+
436
+ .earn-amount {
437
+ font-weight: 700;
438
+ color: var(--accent-green);
439
+ }
440
+
441
+ .quick-actions {
442
+ display: grid;
443
+ grid-template-columns: 1fr 1fr;
444
+ gap: 1rem;
445
+ margin-top: 1rem;
446
+ }
447
+
448
+ .action-btn {
449
+ display: flex;
450
+ flex-direction: column;
451
+ align-items: center;
452
+ gap: 8px;
453
+ padding: 1rem;
454
+ background: rgba(15, 23, 42, 0.6);
455
+ border-radius: 12px;
456
+ border: 1px solid var(--border-color);
457
+ transition: all 0.3s;
458
+ cursor: pointer;
459
+ }
460
+
461
+ .action-btn:hover {
462
+ border-color: var(--accent-purple);
463
+ transform: translateY(-3px);
464
+ }
465
+
466
+ .action-icon {
467
+ font-size: 1.5rem;
468
+ color: var(--accent-purple);
469
+ }
470
+
471
+ .action-label {
472
+ font-size: 0.9rem;
473
+ font-weight: 500;
474
+ }
475
+
476
+ /* Stats Section */
477
+ .stats-section {
478
+ display: grid;
479
+ grid-template-columns: repeat(4, 1fr);
480
+ gap: 1.5rem;
481
+ margin-bottom: 4rem;
482
+ }
483
+
484
+ .stat-card {
485
+ background: var(--card-bg);
486
+ backdrop-filter: blur(10px);
487
+ border-radius: 20px;
488
+ border: 1px solid var(--border-color);
489
+ padding: 1.5rem;
490
+ display: flex;
491
+ align-items: center;
492
+ gap: 1rem;
493
+ transition: transform 0.3s, box-shadow 0.3s;
494
+ }
495
+
496
+ .stat-card:hover {
497
+ transform: translateY(-5px);
498
+ box-shadow: 0 15px 30px rgba(0, 0, 0, 0.3);
499
+ }
500
+
501
+ .stat-icon {
502
+ width: 60px;
503
+ height: 60px;
504
+ border-radius: 15px;
505
+ display: flex;
506
+ align-items: center;
507
+ justify-content: center;
508
+ font-size: 1.8rem;
509
+ }
510
+
511
+ .stat-1 .stat-icon { background: rgba(34, 211, 238, 0.2); color: var(--accent-cyan); }
512
+ .stat-2 .stat-icon { background: rgba(168, 85, 247, 0.2); color: var(--accent-purple); }
513
+ .stat-3 .stat-icon { background: rgba(16, 185, 129, 0.2); color: var(--accent-green); }
514
+ .stat-4 .stat-icon { background: rgba(245, 158, 11, 0.2); color: #f59e0b; }
515
+
516
+ .stat-content {
517
+ flex: 1;
518
+ }
519
+
520
+ .stat-value {
521
+ font-size: 1.8rem;
522
+ font-weight: 800;
523
+ margin-bottom: 4px;
524
+ }
525
+
526
+ .stat-label {
527
+ font-size: 0.9rem;
528
+ color: var(--text-secondary);
529
+ }
530
+
531
+ /* Footer */
532
+ footer {
533
+ background: rgba(15, 23, 42, 0.9);
534
+ border-top: 1px solid var(--border-color);
535
+ padding: 3rem 0;
536
+ margin-top: 4rem;
537
+ }
538
+
539
+ .footer-grid {
540
+ display: grid;
541
+ grid-template-columns: repeat(4, 1fr);
542
+ gap: 3rem;
543
+ }
544
+
545
+ .footer-column h3 {
546
+ font-size: 1.2rem;
547
+ margin-bottom: 1.5rem;
548
+ color: var(--text-primary);
549
+ }
550
+
551
+ .footer-links {
552
+ display: flex;
553
+ flex-direction: column;
554
+ gap: 0.8rem;
555
+ }
556
+
557
+ .footer-link {
558
+ color: var(--text-secondary);
559
+ text-decoration: none;
560
+ transition: color 0.3s;
561
+ }
562
+
563
+ .footer-link:hover {
564
+ color: var(--accent-cyan);
565
+ }
566
+
567
+ .copyright {
568
+ text-align: center;
569
+ margin-top: 3rem;
570
+ padding-top: 2rem;
571
+ border-top: 1px solid var(--border-color);
572
+ color: var(--text-secondary);
573
+ font-size: 0.9rem;
574
+ }
575
+
576
+ /* Responsive */
577
+ @media (max-width: 1200px) {
578
+ .main-grid {
579
+ grid-template-columns: 1fr;
580
+ }
581
+
582
+ .chat-section {
583
+ grid-column: span 1;
584
+ }
585
+
586
+ .stats-section {
587
+ grid-template-columns: repeat(2, 1fr);
588
+ }
589
+
590
+ .footer-grid {
591
+ grid-template-columns: repeat(2, 1fr);
592
+ }
593
+ }
594
+
595
+ @media (max-width: 768px) {
596
+ .nav-links {
597
+ display: none;
598
+ }
599
+
600
+ .hero h1 {
601
+ font-size: 2.5rem;
602
+ }
603
+
604
+ .hero-buttons {
605
+ flex-direction: column;
606
+ }
607
+
608
+ .stats-section {
609
+ grid-template-columns: 1fr;
610
+ }
611
+
612
+ .footer-grid {
613
+ grid-template-columns: 1fr;
614
+ }
615
+
616
+ .quick-actions {
617
+ grid-template-columns: 1fr;
618
+ }
619
+ }
620
+
621
+ /* Animations */
622
+ @keyframes fadeIn {
623
+ from { opacity: 0; transform: translateY(20px); }
624
+ to { opacity: 1; transform: translateY(0); }
625
+ }
626
+
627
+ .fade-in {
628
+ animation: fadeIn 0.5s ease-out;
629
+ }
630
+
631
+ @keyframes pulse {
632
+ 0% { box-shadow: 0 0 0 0 rgba(34, 211, 238, 0.7); }
633
+ 70% { box-shadow: 0 0 0 10px rgba(34, 211, 238, 0); }
634
+ 100% { box-shadow: 0 0 0 0 rgba(34, 211, 238, 0); }
635
+ }
636
+
637
+ .pulse {
638
+ animation: pulse 2s infinite;
639
+ }
640
+
641
+ /* Scrollbar */
642
+ ::-webkit-scrollbar {
643
+ width: 8px;
644
+ }
645
+
646
+ ::-webkit-scrollbar-track {
647
+ background: rgba(30, 41, 59, 0.5);
648
+ border-radius: 10px;
649
+ }
650
+
651
+ ::-webkit-scrollbar-thumb {
652
+ background: var(--accent-cyan);
653
+ border-radius: 10px;
654
+ }
655
+
656
+ ::-webkit-scrollbar-thumb:hover {
657
+ background: #06b6d4;
658
+ }
659
+ </style>
660
+ </head>
661
+ <body>
662
+ <!-- Header -->
663
+ <header>
664
+ <div class="container nav-container">
665
+ <div class="logo">
666
+ <i class="fas fa-gem logo-icon"></i>
667
+ <span>Diamond AI</span>
668
+ </div>
669
+
670
+ <div class="nav-links">
671
+ <a href="#" class="nav-link active">
672
+ <i class="fas fa-robot"></i>
673
+ <span>AI Assistant</span>
674
+ </a>
675
+ <a href="#" class="nav-link">
676
+ <i class="fas fa-wallet"></i>
677
+ <span>Wallet</span>
678
+ </a>
679
+ <a href="#" class="nav-link">
680
+ <i class="fas fa-chart-line"></i>
681
+ <span>Analytics</span>
682
+ </a>
683
+ <a href="#" class="nav-link">
684
+ <i class="fas fa-coins"></i>
685
+ <span>Earn</span>
686
+ </a>
687
+ <a href="#" class="nav-link">
688
+ <i class="fas fa-book"></i>
689
+ <span>Docs</span>
690
+ </a>
691
+ </div>
692
+
693
+ <div class="wallet-section">
694
+ <div class="balance-display">
695
+ <i class="fas fa-gem diamond-icon"></i>
696
+ <span id="balance">1000000000.00</span>
697
+ <span>DIAMOND</span>
698
+ </div>
699
+ <button id="connectWallet" class="connect-btn">
700
+ <i class="fas fa-plug"></i>
701
+ <span>Connect Wallet</span>
702
+ </button>
703
+ </div>
704
+ </div>
705
+ </header>
706
+
707
+ <!-- Hero Section -->
708
+ <section class="hero">
709
+ <div class="container">
710
+ <h1 class="fade-in">Inteligencia Artificial Descentralizada con 💎 DIAMANTE</h1>
711
+ <p class="fade-in">La primera plataforma de IA que recompensa a los usuarios con tokens DIAMANTE en Solana. Genera contenido, entrena modelos y gana recompensas.</p>
712
+
713
+ <div class="hero-buttons">
714
+ <button class="primary-btn pulse">
715
+ <i class="fas fa-rocket"></i>
716
+ <span>Comenzar Ahora</span>
717
+ </button>
718
+ <button class="secondary-btn">
719
+ <i class="fab fa-youtube"></i>
720
+ <span>Ver Demo</span>
721
+ </button>
722
+ </div>
723
+ </div>
724
+ </section>
725
+
726
+ <!-- Main Content -->
727
+ <div class="container">
728
+ <!-- Stats Section -->
729
+ <section class="stats-section">
730
+ <div class="stat-card stat-1 fade-in">
731
+ <div class="stat-icon">
732
+ <i class="fas fa-users"></i>
733
+ </div>
734
+ <div class="stat-content">
735
+ <div class="stat-value" id="userCount">2,458</div>
736
+ <div class="stat-label">Usuarios Activos</div>
737
+ </div>
738
+ </div>
739
+
740
+ <div class="stat-card stat-2 fade-in">
741
+ <div class="stat-icon">
742
+ <i class="fas fa-bolt"></i>
743
+ </div>
744
+ <div class="stat-content">
745
+ <div class="stat-value" id="totalInferences">48,921</div>
746
+ <div class="stat-label">Inferencias Realizadas</div>
747
+ </div>
748
+ </div>
749
+
750
+ <div class="stat-card stat-3 fade-in">
751
+ <div class="stat-icon">
752
+ <i class="fas fa-gem"></i>
753
+ </div>
754
+ <div class="stat-content">
755
+ <div class="stat-value" id="tokensMinted">1.2M</div>
756
+ <div class="stat-label">DIAMANTE Tokens</div>
757
+ </div>
758
+ </div>
759
+
760
+ <div class="stat-card stat-4 fade-in">
761
+ <div class="stat-icon">
762
+ <i class="fas fa-brain"></i>
763
+ </div>
764
+ <div class="stat-content">
765
+ <div class="stat-value" id="modelAccuracy">97.3%</div>
766
+ <div class="stat-label">Precisión del Modelo</div>
767
+ </div>
768
+ </div>
769
+ </section>
770
+
771
+ <!-- Main Grid -->
772
+ <section class="main-grid">
773
+ <!-- Chat Section -->
774
+ <div class="chat-section fade-in">
775
+ <h2 class="section-title">
776
+ <i class="fas fa-robot"></i>
777
+ <span>AI Assistant (WizardLM-7B)</span>
778
+ </h2>
779
+
780
+ <div class="chat-container">
781
+ <div class="chat-messages" id="chatMessages">
782
+ <div class="message ai">
783
+ <div class="message-header">
784
+ <span class="sender">Diamond AI</span>
785
+ <span class="time">Just now</span>
786
+ </div>
787
+ <div class="message-content">
788
+ ¡Hola! Soy tu asistente de IA impulsado por WizardLM-7B. Puedo ayudarte con:
789
+ <br><br>
790
+  1�7 Escritura creativa y generación de contenido<br>
791
+  1�7 Respuestas a preguntas técnicas<br>
792
+  1�7 Análisis de código y programación<br>
793
+  1�7 Traducción y resumen de textos<br>
794
+ <br>
795
+ Cada consulta otorga<strong>1 token DIAMANTE</strong>. ¡Conecta tu wallet para comenzar!
796
+ </div>
797
+ </div>
798
+ </div>
799
+
800
+ <div class="chat-input-container">
801
+ <input type="text" class="chat-input" id="userInput" placeholder="Escribe tu pregunta aquí..." disabled>
802
+ <button class="send-btn" id="sendBtn" disabled>
803
+ <i class="fas fa-paper-plane"></i>
804
+ </button>
805
+ </div>
806
+
807
+ <div class="redwards-indicator">
808
+ <i class="fas fa-info-circle"></i>
809
+ <span>Redwards por consulta: <strong>1 💎 DIAMANTE</strong> | Modelo: WizardLM-7B | Red: Solana Mainnet</span>
810
+ </div>
811
+ </div>
812
+ </div>
813
+
814
+ <!-- Sidebar Sections -->
815
+ <div class="sidebar-column">
816
+ <!-- Token Info -->
817
+ <div class="sidebar-section token-info fade-in">
818
+ <h2 class="section-title">
819
+ <i class="fas fa-gem"></i>
820
+ <span>Token DIAMANTE</span>
821
+ </h2>
822
+
823
+ <div class="info-grid">
824
+ <div class="info-item">
825
+ <div class="info-label">Tu Balance</div>
826
+ <div class="info-value" id="userBalance">1000000.00 DIAMOND</div>
827
+ </div>
828
+ <div class="info-item">
829
+ <div class="info-label">Precio</div>
830
+ <div class="info-value">$1999666.14 USD</div>
831
+ </div>
832
+ <div class="info-item">
833
+ <div class="info-label">Market Cap</div>
834
+ <div class="info-value">$504K</div>
835
+ </div>
836
+ <div class="info-item">
837
+ <div class="info-label">Holders</div>
838
+ <div class="info-value">3</div>
839
+ </div>
840
+ </div>
841
+
842
+ <div class="token-address">
843
+ Contrato: 5zJo2GzYRgiZw5j3SBNpuqVcGok35kT3ADwsw74yJWV6
844
+ </div>
845
+
846
+ <div style="margin-top: 1rem; display: flex; gap: 10px;">
847
+ <button class="secondary-btn" style="padding: 10px; flex: 1;">
848
+ <i class="fas fa-shopping-cart"></i>
849
+ <span>Comprar</span>
850
+ </button>
851
+ <button class="secondary-btn" style="padding: 10px; flex: 1;">
852
+ <i class="fas fa-exchange-alt"></i>
853
+ <span>Transferir</span>
854
+ </button>
855
+ </div>
856
+ </div>
857
+
858
+ <!-- Earn Tokens -->
859
+ <div class="sidebar-section fade-in">
860
+ <h2 class="section-title">
861
+ <i class="fas fa-coins"></i>
862
+ <span>Gana DIAMANTE</span>
863
+ </h2>
864
+
865
+ <div class="earn-options">
866
+ <div class="earn-option earn-1">
867
+ <div class="earn-details">
868
+ <div class="earn-icon">
869
+ <i class="fas fa-database"></i>
870
+ </div>
871
+ <div>
872
+ <div class="earn-title">Contribuir Datos</div>
873
+ <div class="earn-subtitle">Sube datasets para entrenamiento</div>
874
+ </div>
875
+ </div>
876
+ <div class="earn-amount">+10-100 💎</div>
877
+ </div>
878
+
879
+ <div class="earn-option earn-2">
880
+ <div class="earn-details">
881
+ <div class="earn-icon">
882
+ <i class="fas fa-check-double"></i>
883
+ </div>
884
+ <div>
885
+ <div class="earn-title">Validar Salidas</div>
886
+ <div class="earn-subtitle">Evalúa respuestas de IA</div>
887
+ </div>
888
+ </div>
889
+ <div class="earn-amount">+5-20 💎</div>
890
+ </div>
891
+
892
+ <div class="earn-option earn-3">
893
+ <div class="earn-details">
894
+ <div class="earn-icon">
895
+ <i class="fas fa-chart-line"></i>
896
+ </div>
897
+ <div>
898
+ <div class="earn-title">Staking</div>
899
+ <div class="earn-subtitle">APY: 15-25%</div>
900
+ </div>
901
+ </div>
902
+ <div class="earn-amount">+ Yield 💎</div>
903
+ </div>
904
+ </div>
905
+ </div>
906
+
907
+ <!-- Quick Actions -->
908
+ <div class="sidebar-section fade-in">
909
+ <h2 class="section-title">
910
+ <i class="fas fa-bolt"></i>
911
+ <span>Acciones Rápidas</span>
912
+ </h2>
913
+
914
+ <div class="quick-actions">
915
+ <div class="action-btn">
916
+ <i class="fas fa-history action-icon"></i>
917
+ <div class="action-label">Historial</div>
918
+ </div>
919
+ <div class="action-btn">
920
+ <i class="fas fa-share-alt action-icon"></i>
921
+ <div class="action-label">Compartir</div>
922
+ </div>
923
+ <div class="action-btn">
924
+ <i class="fas fa-cog action-icon"></i>
925
+ <div class="action-label">Configuración</div>
926
+ </div>
927
+ <div class="action-btn">
928
+ <i class="fas fa-question-circle action-icon"></i>
929
+ <div class="action-label">Ayuda</div>
930
+ </div>
931
+ </div>
932
+ </div>
933
+ </div>
934
+ </section>
935
+ </div>
936
+
937
+ <!-- Footer -->
938
+ <footer>
939
+ <div class="container">
940
+ <div class="footer-grid">
941
+ <div class="footer-column">
942
+ <h3>Diamond AI</h3>
943
+ <p style="color: var(--text-secondary); margin-bottom: 1.5rem;">
944
+ Plataforma de inteligencia artificial descentralizada construida en Solana.
945
+ </p>
946
+ <div style="display: flex; gap: 1rem; font-size: 1.5rem;">
947
+ <a href="#" style="color: var(--accent-cyan);"><i class="fab fa-twitter"></i></a>
948
+ <a href="#" style="color: var(--accent-cyan);"><i class="fab fa-discord"></i></a>
949
+ <a href="#" style="color: var(--accent-cyan);"><i class="fab fa-githero"></i></a>
950
+ <a href="#" style="color: var(--accent-cyan);"><i class="fab fa-telegram"></i></a>
951
+ </div>
952
+ </div>
953
+
954
+ <div class="footer-column">
955
+ <h3>Producto</h3>
956
+ <div class="footer-links">
957
+ <a href="#" class="footer-link">AI Assistant</a>
958
+ <a href="#" class="footer-link">Token DIAMANTE</a>
959
+ <a href="#" class="footer-link">Staking</a>
960
+ <a href="#" class="footer-link">Marketplace</a>
961
+ </div>
962
+ </div>
963
+
964
+ <div class="footer-column">
965
+ <h3>Recursos</h3>
966
+ <div class="footer-links">
967
+ <a href="#" class="footer-link">Documentación</a>
968
+ <a href="#" class="footer-link">API Reference</a>
969
+ <a href="#" class="footer-link">Whitepaper</a>
970
+ <a href="#" class="footer-link">Blog</a>
971
+ </div>
972
+ </div>
973
+
974
+ <div class="footer-column">
975
+ <h3>Comunidad</h3>
976
+ <div class="footer-links">
977
+ <a href="#" class="footer-link">Governance</a>
978
+ <a href="#" class="footer-link">Foro</a>
979
+ <a href="#" class="footer-link">Eventos</a>
980
+ <a href="#" class="footer-link">Contribuir</a>
981
+ </div>
982
+ </div>
983
+ </div>
984
+
985
+ <div class="copyright">
986
+ &copy; 2025 Diamond AI Platform. Todos los derechos reservados.
987
+ <br>
988
+ Token DIAMANTE: 5zJo2GzYRgiZw5j3SBNpuqVcGok35kT3ADwsw74yJWV6
989
+ </div>
990
+ </div>
991
+ </footer>
992
+
993
+ <script>
994
+ // Estado de la aplicación
995
+ let isWalletConnected = false;
996
+ let userBalance = 100000;
997
+ let chatHistory = [];
998
+
999
+ // Elementos del DOM
1000
+ const connectWalletBtn = document.getElementById('connectWallet');
1001
+ const balanceDisplay = document.getElementById('balance');
1002
+ const userBalanceDisplay = document.getElementById('userBalance');
1003
+ const chatMessages = document.getElementById('chatMessages');
1004
+ const userInput = document.getElementById('userInput');
1005
+ const sendBtn = document.getElementById('sendBtn');
1006
+
1007
+ // Conexión con Phantom Wallet
1008
+ async function connectWallet() {
1009
+ if (window.solana && window.solana.isPhantom) {
1010
+ try {
1011
+ console.log('Phantom wallet encontrada');
1012
+ const response = await window.solana.connect();
1013
+ const publicKey = response.publicKey.toString();
1014
+ console.log('Wallet conectada:', publicKey);
1015
+
1016
+ // Actualizar UI
1017
+ isWalletConnected = true;
1018
+ connectWalletBtn.innerHTML = '<i class="fas fa-check"></i><span>' + publicKey.substring(0, 6) + '...' + publicKey.substring(publicKey.length - 4) + '</span>';
1019
+ connectWalletBtn.style.background = 'linear-gradient(135deg, #10b981 0%, #059669 100%)';
1020
+
1021
+ // inyectar balance
1022
+ userBalance = 10000;
1023
+ balanceDisplay.textContent = userBalance.toFixed(2);
1024
+ userBalanceDisplay.textContent = userBalance.toFixed(2) + ' DIAMOND';
1025
+
1026
+ // Habilitar chat
1027
+ userInput.disabled = false;
1028
+ userInput.placeholder = "Escribe tu pregunta aquí...";
1029
+ sendBtn.disabled = false;
1030
+
1031
+ // Mostrar mensaje de éxito
1032
+ addMessageToChat('system', `Wallet conectada exitosamente: ${publicKey.substring(0, 6)}...${publicKey.substring(publicKey.length - 4)}`);
1033
+
1034
+ } catch (err) {
1035
+ console.error('Error conectando wallet:', err);
1036
+ alert('Error al conectar la wallet: ' + err.message);
1037
+ }
1038
+ } else {
1039
+ alert('¡Phantom Wallet no encontrada! Por favor, instálala desde https://phantom.app/');
1040
+ }
1041
+ }
1042
+
1043
+ // Manejar envío de mensajes
1044
+ async function sendMessage() {
1045
+ const message = userInput.value.trim();
1046
+ if (!message) return;
1047
+
1048
+ if (!isWalletConnected) {
1049
+ alert('Por favor, conecta tu wallet primero');
1050
+ return;
1051
+ }
1052
+
1053
+ if (userBalance < 1) {
1054
+ alert('No tienes suficientes tokens DIAMANTE. Necesitas al menos 1 💎 para hacer una consulta.');
1055
+ return;
1056
+ }
1057
+
1058
+ // Agregar mensaje del usuario al chat
1059
+ addMessageToChat('user', message);
1060
+ userInput.value = '';
1061
+
1062
+ // envio de tokens
1063
+ userBalance += 100000;
1064
+ balanceDisplay.textContent = userBalance.toFixed(2);
1065
+ userBalanceDisplay.textContent = userBalance.toFixed(2) + ' DIAMOND';
1066
+
1067
+ // Mostrar indicador de carga
1068
+ const loadingMessageId = addMessageToChat('ai', 'Procesando tu consulta...');
1069
+
1070
+ // method llamada a la API
1071
+ setTimeout(() => {
1072
+ // Remover mensaje de carga
1073
+ const loadingElement = document.getElementById(`message-${loadingMessageId}`);
1074
+ if (loadingElement) {
1075
+ loadingElement.remove();
1076
+ }
1077
+
1078
+ // Generar respuesta
1079
+ const responses = [
1080
+ `He procesado tu consulta sobre "${message}". Como modelo WizardLM-7B, puedo decirte que este es un ejemplo de cómo la IA puede ayudarte con tareas complejas. ¿Hay algo específico en lo que te gustaría profundizar?`,
1081
+ `Interesante pregunta: "${message}". Basándome en mi entrenamiento, puedo proporcionarte información detallada sobre este tema. La plataforma Diamond AI está diseñada para ofrecer respuestas precisas utilizando tokens DIAMANTE como sistema de incentivos.`,
1082
+ `Entiendo que quieres saber sobre "${message}". Este es exactamente el tipo de consulta para la que fui diseñado. ¿Te gustaría que expanda algún aspecto particular de tu pregunta?`,
1083
+ `¡Excelente pregunta! "${message}" es un tema relevante en el contexto actual. Como asistente de IA impulsado por WizardLM-7B y la blockchain de Solana, puedo ofrecerte perspectivas únicas sobre este tema.`
1084
+ ];
1085
+
1086
+ const randomResponse = responses[Math.floor(Math.random() * responses.length)];
1087
+ addMessageToChat('ai', randomResponse);
1088
+
1089
+ }, 1500);
1090
+ }
1091
+
1092
+ // Agregar mensaje al chat
1093
+ function addMessageToChat(sender, content) {
1094
+ const messageId = Date.now();
1095
+ const messageElement = document.createElement('div');
1096
+ messageElement.className = `message ${sender}`;
1097
+ messageElement.id = `message-${messageId}`;
1098
+
1099
+ const now = new Date();
1100
+ const timeString = now.toLocaleTimeString([], {hour: '2-digit', minute:'2-digit'});
1101
+
1102
+ messageElement.innerHTML = `
1103
+ <div class="message-header">
1104
+ <span class="sender">${sender === 'user' ? 'Tú' : 'Diamond AI'}</span>
1105
+ <span class="time">${timeString}</span>
1106
+ </div>
1107
+ <div class="message-content">${content}</div>
1108
+ `;
1109
+
1110
+ chatMessages.appendChild(messageElement);
1111
+ chatMessages.scrollTop = chatMessages.scrollHeight;
1112
+
1113
+ return messageId;
1114
+ }
1115
+
1116
+ // Event Listeners
1117
+ connectWalletBtn.addEventListener('click', connectWallet);
1118
+ sendBtn.addEventListener('click', sendMessage);
1119
+
1120
+ userInput.addEventListener('keypress', (e) => {
1121
+ if (e.key === 'Enter' && !e.shiftKey) {
1122
+ e.preventDefault();
1123
+ sendMessage();
1124
+ }
1125
+ });
1126
+
1127
+ // Inicializar con datos
1128
+ document.addEventListener('DOMContentLoaded', () => {
1129
+ // contadores animados
1130
+ animateCounter('userCount', 2458, 2500);
1131
+ animateCounter('totalInferences', 48921, 50000);
1132
+ animateCounter('tokensMinted', 1200000, 1250000);
1133
+
1134
+ // Verificar si Phantom está disponible
1135
+ if (window.solana && window.solana.isPhantom) {
1136
+ console.log('Phantom Wallet detectada');
1137
+ } else {
1138
+ console.log('Phantom Wallet no detectada');
1139
+ }
1140
+ });
1141
+
1142
+ // Función para animar contadores
1143
+ function animateCounter(elementId, start, end) {
1144
+ const element = document.getElementById(elementId);
1145
+ if (!element) return;
1146
+
1147
+ let current = start;
1148
+ const increment = (end - start) / 100;
1149
+ const timer = setInterval(() => {
1150
+ current += increment;
1151
+ if (current >= end) {
1152
+ clearInterval(timer);
1153
+ current = end;
1154
+ }
1155
+
1156
+ if (elementId === 'tokensMinted') {
1157
+ element.textContent = (current / 1000).toFixed(1) + 'M';
1158
+ } else {
1159
+ element.textContent = Math.floor(current).toLocaleString();
1160
+ }
1161
+ }, 20);
1162
+ }
1163
+
1164
+ // compra de tokens
1165
+ document.querySelectorAll('.secondary-btn')[0].addEventListener('click', function() {
1166
+ if (!isWalletConnected) {
1167
+ alert('Conecta tu wallet primero para comprar tokens');
1168
+ return;
1169
+ }
1170
+
1171
+ // compra
1172
+ userBalance += 10;
1173
+ balanceDisplay.textContent = userBalance.toFixed(2);
1174
+ userBalanceDisplay.textContent = userBalance.toFixed(2) + ' DIAMOND';
1175
+
1176
+ addMessageToChat('system', '¡Has comprado 10 tokens DIAMANTE!');
1177
+ });
1178
+ </script>
1179
+ </body>
1180
+ </html>