Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# LoRA Adapter Model
|
| 2 |
+
|
| 3 |
+
This is a LoRA adapter model fine-tuned on llava-hf/llava-1.5-7b-hf.
|
| 4 |
+
|
| 5 |
+
## Model Details
|
| 6 |
+
- Base Model: llava-hf/llava-1.5-7b-hf
|
| 7 |
+
- Training Parameters:
|
| 8 |
+
- Learning Rate: N/A
|
| 9 |
+
- Batch Size: N/A
|
| 10 |
+
- Training Steps: N/A
|
| 11 |
+
|
| 12 |
+
## Usage
|
| 13 |
+
|
| 14 |
+
```python
|
| 15 |
+
from transformers import LlavaForConditionalGeneration, AutoProcessor
|
| 16 |
+
from peft import PeftModel
|
| 17 |
+
import torch
|
| 18 |
+
|
| 19 |
+
# Load base model
|
| 20 |
+
base_model = LlavaForConditionalGeneration.from_pretrained(
|
| 21 |
+
"llava-hf/llava-1.5-7b-hf",
|
| 22 |
+
revision='a272c74',
|
| 23 |
+
torch_dtype=torch.float16,
|
| 24 |
+
device_map="auto"
|
| 25 |
+
)
|
| 26 |
+
tokenizer = AutoProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf", revision='a272c74')
|
| 27 |
+
|
| 28 |
+
# Load LoRA adapter
|
| 29 |
+
model = PeftModel.from_pretrained(
|
| 30 |
+
base_model,
|
| 31 |
+
"Dipto084/RepLLaVA4",
|
| 32 |
+
torch_dtype=torch.float16,
|
| 33 |
+
device_map="auto"
|
| 34 |
+
)
|
| 35 |
+
```
|