File size: 5,912 Bytes
cd8454d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# Copyright (C) 2025. Huawei Technologies Co., Ltd. All Rights Reserved. (authors: Xiao Chen)

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
from tqdm import tqdm
import logging
import os
from verification import init_model, MODEL_LIST
import soundfile as sf
import torch
import numpy as np
import torch.nn.functional as F
from torchaudio.transforms import Resample
import torch.multiprocessing as mp

console_format = logging.Formatter(
    "[%(asctime)s][%(filename)s:%(levelname)s][%(process)d:%(threadName)s]%(message)s"
)
console_handler = logging.StreamHandler()
console_handler.setFormatter(console_format)
console_handler.setLevel(logging.INFO)
if len(logging.root.handlers) > 0:
    for handler in logging.root.handlers:
        logging.root.removeHandler(handler)
logging.root.addHandler(console_handler)
logging.root.setLevel(logging.INFO)


MODEL_NAME = "wavlm_large"
S3PRL_PATH = os.environ.get("S3PRL_PATH")
if S3PRL_PATH is not None:
    import patch_unispeech
    logging.info("Applying Patches for unispeech!!!")
    patch_unispeech.patch_for_npu()


def get_ref_and_gen_files(
    test_lst, test_folder, task_queue
):
    with open(test_lst, "r") as fp:
        for line in fp:
            fields = line.strip().split("|")
            gen_name = fields[2].split("/")[-1]
            gen_name = gen_name.split(".")[0]
            gen_file = f"{test_folder}/{gen_name}_gen.wav"
            
            ref_name = fields[0].split("/")[-1]
            ref_name = ref_name.split(".")[0]
            ref_file = f"{test_folder}/{ref_name}_ref.wav"

            task_queue.put((ref_file, gen_file))

    return


def eval_speaker_similarity(model,  wav1, wav2, rank):
    wav1, sr1 = sf.read(wav1)
    wav2, sr2 = sf.read(wav2)

    wav1 = torch.from_numpy(wav1).unsqueeze(0).float()
    wav2 = torch.from_numpy(wav2).unsqueeze(0).float()
    resample1 = Resample(orig_freq=sr1, new_freq=16000)
    resample2 = Resample(orig_freq=sr2, new_freq=16000)
    wav1 = resample1(wav1)
    wav2 = resample2(wav2)

    wav1 = wav1.cuda(f"cuda:{rank}")
    wav2 = wav2.cuda(f"cuda:{rank}")

    model.eval()
    with torch.no_grad():
        emb1 = model(wav1)
        emb2 = model(wav2)

    sim = F.cosine_similarity(emb1, emb2)
    logging.info("The similarity score between two audios is %.4f (-1.0, 1.0)." % (sim[0].item()))
    return sim[0].item()


def eval_proc(model_path, task_queue, rank, sim_list):
    model = None
    assert MODEL_NAME in MODEL_LIST, 'The model_name should be in {}'.format(MODEL_LIST)
    model = init_model(MODEL_NAME, model_path) if model is None else model
    model.to(f"cuda:{rank}")
    # sim_list = []
    # for ref, gen in tqdm(ref_gen_list):
    while True:
        try:
            new_record = task_queue.get()
            if new_record is None:
                logging.info("FINISH processing all inputs")
                break

            ref = new_record[0]
            gen = new_record[1]
            logging.info(f"eval SIM: {ref} v.s. {gen}")

            if not os.path.exists(ref) or not os.path.exists(gen):
                logging.info(f"MISSING: {ref} v.s. {gen}")
                continue

            sim = eval_speaker_similarity(model, ref, gen, rank)
            sim_list.append((sim, ref, gen))
        except:
            logging.info(f"FAIL to eval SIM: {ref} v.s. {gen}")
    

def main(args):
    handler = logging.FileHandler(filename=args.log_file, mode="w")
    logging.root.addHandler(handler)

    device_list = [0] 
    if "CUDA_VISIBLE_DEVICES" in os.environ:
        device_list = [int(x.strip()) for x in os.environ["CUDA_VISIBLE_DEVICES"].split(",")]

    logging.info(f"Using devices: {device_list}")
    n_procs = len(device_list)
    ctx = mp.get_context('spawn')
    with ctx.Manager() as manager:
        sim_list = manager.list()
        task_queue = manager.Queue()
        get_ref_and_gen_files(args.test_lst, args.test_path, task_queue)

        processes = []
        for idx in range(n_procs):
            task_queue.put(None)
            rank = idx # device_list[idx]
            p = ctx.Process(target=eval_proc, args=(args.model_path, task_queue, rank, sim_list))
            processes.append(p)

        for proc in processes:
            proc.start()
        
        for proc in processes:
            proc.join()
   
        sim_scores = []
        for sim, ref, gen in sim_list:
            logging.info(f"{ref} vs {gen} : {sim}")
            sim_scores.append(sim)
        avg_sim = round(np.mean(np.array(list(sim_scores))), 3)
        logging.info("total evaluated wav pairs: %d" % (len(sim_list)))
        logging.info("The average similarity score of %s is %.4f (-1.0, 1.0)." % (args.test_path, avg_sim))
    return avg_sim


if __name__ == "__main__":

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--test-path",
        required=True,
        type=str,
        help=f"folder of wav files",
    )
    parser.add_argument(
        "--test-lst",
        required=True,
        type=str,
        help=f"path to test file lst",
    )
    parser.add_argument(
        "--log-file",
        required=False,
        type=str,
        default=None,
        help=f"path to test file lst",
    )
    parser.add_argument(
        "--model-path",
        type=str,
        default="./wavlm-sv",
        help=f"path to sv model",
    )

    args = parser.parse_args()
    main(args)